organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3,5-Tri-p-tolyl­pentane-1,5-dione

aJiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Jiangxi 330013, People's Republic of China
*Correspondence e-mail: shenyl130@126.com

(Received 7 November 2008; accepted 9 November 2008; online 13 November 2008)

In the crystal structure of the title compound, C26H26O2, the dihedral angle between the tolyl rings at each end of the 1,5-dione chain is 70.3 (1)°; the tolyl group at the middle of the chain makes dihedral angles of 67.8 (2) and 85.1 (2)° with the terminal rings. One benzene C atom and one methyl­ene C atom inter­act with a carbonyl O atom of an adjacent mol­ecule through C—H⋯O hydrogen bonds, forming chains in the crystal.

Related literature

For the details of related structures, see: Burroughes et al. (1990[Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Mark, R. N., Mackay, K., Friend, R. H., Burns, P. L. & Holmes, A. B. (1990). Nature (London), 347, 539-541.]); Smith et al. (2005[Smith, C. B., Raston, C. L. & Sobolev, A. N. (2005). Green Chem. 7, 650-654.]); Li et al. (2004[Li, Y. N., Ding, J. F., Day, M., Tao, Y., Lu, J. P. & D'iorio, M. (2004). Chem. Mater. 16, 2165-2173.]); Sariciftci et al. (1992[Sariciftci, N. S., Smilowitz, L. & Heeger, A. J. (1992). Science, 258, 1474-1476.]). For the synthesis of the title compound, see: Yang et al. (2005[Yang, J.-X., Tao, X.-T., Yuan, C. X., Yan, Y. X., Wang, L., Liu, Z., Ren, Y. & Jiang, M. H. (2005). J. Am. Chem. Soc. 127, 3278-3279.]).

[Scheme 1]

Experimental

Crystal data
  • C26H26O2

  • Mr = 370.47

  • Orthorhombic, P n a 21

  • a = 10.6611 (19) Å

  • b = 10.3876 (18) Å

  • c = 19.541 (3) Å

  • V = 2164.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 295 (2) K

  • 0.34 × 0.24 × 0.18 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.977, Tmax = 0.991

  • 8705 measured reflections

  • 2138 independent reflections

  • 1733 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.135

  • S = 1.06

  • 2138 reflections

  • 256 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O2i 0.93 2.46 3.381 (5) 171 (1)
C18—H18A⋯O2i 0.97 2.52 3.460 (5) 164 (1)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Over the past several decades, linear π-conjugated organic molecules and polymers have attracted considerable interest because of their many promising applications, such as for organic light-emitting diodes, non-linear optical properties, conductivity, photocells, field-effect transistors, and so on, due to their delocalized π systems (Burroughes et al., 1990; Smith et al., 2005; Li et al., 2004; Sariciftci et al., 1992). In the course of our synthesis of the π-conjugated organic molecule, 2,4,6-tri-p-tolyl-pyridine, we synthesized the 1,5-dione intermediate 1,3,5-tri-p-tolyl-pentane-1,5-dione; the 1,5-dione intermediate was then cyclized by adding concentrated aqueous ammonia. We report here the crystal structure of the 1,5-dione intermediate, 1,3,5-tri-p-tolyl-pentane-1,5-dione.

As shown in Fig. 1, the title molecule is non-planar, and the dihedral angles between each pair of the three tolyl rings are 67.8 (2)° [C2–C7, C11–C16], 70.3 (1 ° [C11–C16, C20–C25] and 85.1 (2)° [C2–C7, C20–C25]. The C—C, Car—Car and CO bond lengths are within their normal ranges. One benzene C atom (C7) and one methylene C atom (C18) interact with a carbonyl group O atom (O2) of an adjacent molecule through C—H···O hydrogen bonds [3.381 (5) Å, 3.460 (5) Å] to form a one-dimensional supramolecular array (Fig. 2).

Related literature top

For the details of related structures, see: Burroughes et al. (1990); Smith et al. (2005); Li et al. (2004); Sariciftci et al. (1992). For the synthesis of the title compound, see: Yang et al. (2005).

Experimental top

The title compound was synthesized according to a modified procedure (Yang et al., 2005). 4-Methylacetophenone (0.5 g, 4 mmol), 1,3-di-p-tolyl-propenone (0.9 g, 4 mmol) and powdered NaOH (0.6 g, 15 mmol) were crushed together for 2 h, using a pestle and mortar. Recrystallization from ethanol gave colorless prismatic crystals. Yield: 1.2 g (88%).

Refinement top

All H-atoms were positioned geometrically and refined using a riding model with C—H = 0.93 Å, 0.97 Å , 0.98 Å, Uiso(H) = 1.2Ueq(C) for aromatic, methylene and methine H atoms; 0.96 Å, Uiso(H) = 1.5Ueq(C) for methyl groups. In the absence of significant anomalous scattering effects, the Friedel pairs were merged.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure, with the displacement ellipsoids drawn at the 30% probability level. The H atoms are shown as spheres of arbitary radii.
[Figure 2] Fig. 2. A packing diagram of the title structure, showing the intermolecular C—H···O hydrogen bonds as dashed lines. The H atoms not involved in hydrogen bonding have been omitted for clarity.
1,3,5-Tri-p-tolylpentane-1,5-dione top
Crystal data top
C26H26O2F(000) = 792
Mr = 370.47Dx = 1.137 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1747 reflections
a = 10.6611 (19) Åθ = 2.2–23.5°
b = 10.3876 (18) ŵ = 0.07 mm1
c = 19.541 (3) ÅT = 295 K
V = 2164.0 (6) Å3Needle, colorless
Z = 40.34 × 0.24 × 0.18 mm
Data collection top
Bruker SMART APEX area-detector
diffractometer
2138 independent reflections
Radiation source: fine-focus sealed tube1733 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 137
Tmin = 0.977, Tmax = 0.991k = 1212
8705 measured reflectionsl = 2223
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0666P)2 + 0.0883P]
where P = (Fo2 + 2Fc2)/3
2138 reflections(Δ/σ)max < 0.001
256 parametersΔρmax = 0.14 e Å3
1 restraintΔρmin = 0.12 e Å3
Crystal data top
C26H26O2V = 2164.0 (6) Å3
Mr = 370.47Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 10.6611 (19) ŵ = 0.07 mm1
b = 10.3876 (18) ÅT = 295 K
c = 19.541 (3) Å0.34 × 0.24 × 0.18 mm
Data collection top
Bruker SMART APEX area-detector
diffractometer
2138 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1733 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.991Rint = 0.031
8705 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0571 restraint
wR(F2) = 0.135H-atom parameters constrained
S = 1.06Δρmax = 0.14 e Å3
2138 reflectionsΔρmin = 0.12 e Å3
256 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1548 (3)0.9299 (3)0.61714 (16)0.0824 (9)
O20.0475 (3)0.8225 (3)0.80106 (17)0.0857 (10)
C10.1191 (4)0.7133 (3)0.70389 (19)0.0548 (9)
H10.03880.74530.68640.066*
C20.0994 (4)0.5757 (3)0.72761 (18)0.0529 (9)
C30.0047 (4)0.5062 (4)0.7085 (3)0.0791 (12)
H30.06760.54650.68350.095*
C40.0181 (5)0.3786 (4)0.7256 (3)0.0899 (15)
H40.09040.33520.71220.108*
C50.0718 (5)0.3135 (4)0.7616 (3)0.0782 (11)
C60.1716 (4)0.3836 (4)0.7829 (3)0.0769 (12)
H60.23220.34390.80990.092*
C70.1870 (4)0.5121 (4)0.7660 (2)0.0706 (11)
H70.25800.55580.78090.085*
C80.0598 (6)0.1716 (4)0.7788 (3)0.1081 (17)
H8A0.01750.15690.80260.162*
H8B0.12890.14590.80720.162*
H8C0.06070.12210.73730.162*
C90.2132 (4)0.7156 (4)0.64500 (19)0.0607 (10)
H9A0.29510.69360.66320.073*
H9B0.19010.64870.61270.073*
C100.2252 (4)0.8403 (4)0.6063 (2)0.0606 (10)
C110.3257 (4)0.8509 (3)0.55339 (19)0.0609 (10)
C120.3500 (5)0.9686 (4)0.5225 (3)0.0853 (14)
H120.30151.03980.53390.102*
C130.4443 (5)0.9817 (5)0.4753 (3)0.0933 (16)
H130.45781.06160.45500.112*
C140.5194 (5)0.8798 (5)0.4572 (2)0.0795 (13)
C150.4960 (5)0.7631 (4)0.4875 (2)0.0800 (13)
H150.54490.69230.47570.096*
C160.4018 (5)0.7487 (4)0.5350 (2)0.0738 (12)
H160.38900.66860.55510.089*
C170.6266 (6)0.8948 (6)0.4070 (3)0.1075 (17)
H17A0.64840.81210.38860.161*
H17B0.69790.93080.43020.161*
H17C0.60150.95100.37050.161*
C180.1605 (4)0.8028 (3)0.76181 (19)0.0553 (9)
H18A0.23650.76870.78220.066*
H18B0.18030.88660.74280.066*
C190.0632 (4)0.8189 (3)0.8167 (2)0.0559 (9)
C200.0996 (4)0.8358 (3)0.8894 (2)0.0549 (9)
C210.2152 (4)0.7957 (4)0.9149 (2)0.0653 (10)
H210.27470.76110.88540.078*
C220.2420 (5)0.8068 (4)0.9838 (2)0.0801 (13)
H220.31940.77880.99990.096*
C230.1575 (6)0.8582 (4)1.0291 (2)0.0835 (12)
C240.0430 (6)0.9012 (4)1.0035 (3)0.0887 (14)
H240.01530.93811.03290.106*
C250.0156 (4)0.8894 (4)0.9351 (2)0.0752 (13)
H250.06170.91820.91920.090*
C260.1894 (7)0.8665 (6)1.1037 (3)0.1172 (19)
H26A0.11940.90161.12830.176*
H26B0.26110.92111.10970.176*
H26C0.20800.78201.12080.176*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.094 (2)0.0654 (17)0.0881 (19)0.0209 (16)0.0006 (18)0.0156 (16)
O20.0433 (17)0.115 (2)0.099 (2)0.0087 (15)0.0059 (16)0.0162 (19)
C10.048 (2)0.0560 (19)0.060 (2)0.0067 (16)0.0107 (18)0.0025 (16)
C20.050 (2)0.0518 (19)0.057 (2)0.0026 (16)0.0078 (17)0.0037 (15)
C30.075 (3)0.072 (2)0.091 (3)0.006 (2)0.032 (2)0.004 (2)
C40.088 (3)0.072 (3)0.110 (4)0.023 (2)0.024 (3)0.002 (3)
C50.089 (3)0.0534 (18)0.092 (3)0.005 (2)0.003 (2)0.005 (2)
C60.068 (3)0.065 (2)0.098 (3)0.001 (2)0.014 (2)0.021 (2)
C70.055 (2)0.064 (2)0.093 (3)0.0060 (18)0.019 (2)0.009 (2)
C80.125 (4)0.061 (2)0.139 (4)0.010 (2)0.002 (3)0.010 (3)
C90.069 (3)0.0511 (19)0.061 (2)0.0057 (17)0.0043 (19)0.0020 (16)
C100.070 (3)0.054 (2)0.058 (2)0.0094 (19)0.015 (2)0.0019 (17)
C110.081 (3)0.053 (2)0.049 (2)0.0012 (19)0.0134 (19)0.0049 (15)
C120.107 (4)0.061 (2)0.088 (3)0.007 (2)0.000 (3)0.013 (2)
C130.115 (4)0.068 (3)0.097 (4)0.014 (3)0.008 (3)0.024 (3)
C140.099 (4)0.081 (3)0.059 (2)0.019 (3)0.003 (2)0.000 (2)
C150.097 (4)0.068 (2)0.075 (3)0.002 (2)0.011 (3)0.003 (2)
C160.100 (3)0.053 (2)0.068 (2)0.001 (2)0.006 (3)0.0071 (18)
C170.127 (4)0.107 (4)0.089 (3)0.028 (3)0.017 (3)0.002 (3)
C180.047 (2)0.0551 (19)0.064 (2)0.0002 (16)0.0026 (18)0.0019 (17)
C190.041 (2)0.0504 (19)0.076 (2)0.0015 (16)0.0002 (19)0.0025 (17)
C200.052 (2)0.0413 (17)0.072 (2)0.0100 (16)0.0101 (19)0.0044 (16)
C210.066 (3)0.066 (2)0.064 (3)0.003 (2)0.002 (2)0.0019 (19)
C220.095 (4)0.075 (3)0.070 (3)0.004 (3)0.002 (3)0.008 (2)
C230.124 (3)0.055 (2)0.071 (3)0.027 (2)0.016 (3)0.005 (2)
C240.113 (3)0.067 (2)0.086 (3)0.018 (2)0.032 (3)0.025 (2)
C250.066 (3)0.061 (2)0.098 (4)0.007 (2)0.013 (2)0.021 (2)
C260.176 (6)0.103 (4)0.072 (3)0.035 (4)0.008 (4)0.010 (3)
Geometric parameters (Å, º) top
O1—C101.214 (4)C13—C141.374 (7)
O2—C191.219 (5)C13—H130.9300
C1—C21.517 (5)C14—C151.371 (7)
C1—C91.527 (6)C14—C171.514 (8)
C1—C181.530 (5)C15—C161.375 (7)
C1—H10.9800C15—H150.9300
C2—C71.368 (5)C16—H160.9300
C2—C31.375 (6)C17—H17A0.9600
C3—C41.373 (6)C17—H17B0.9600
C3—H30.9300C17—H17C0.9600
C4—C51.369 (7)C18—C191.501 (6)
C4—H40.9300C18—H18A0.9700
C5—C61.355 (7)C18—H18B0.9700
C5—C81.517 (6)C19—C201.483 (6)
C6—C71.385 (6)C20—C251.383 (6)
C6—H60.9300C20—C211.393 (6)
C7—H70.9300C21—C221.380 (6)
C8—H8A0.9600C21—H210.9300
C8—H8B0.9600C22—C231.371 (7)
C8—H8C0.9600C22—H220.9300
C9—C101.506 (5)C23—C241.392 (8)
C9—H9A0.9700C23—C261.499 (8)
C9—H9B0.9700C24—C251.372 (8)
C10—C111.493 (6)C24—H240.9300
C11—C161.384 (6)C25—H250.9300
C11—C121.389 (6)C26—H26A0.9600
C12—C131.371 (7)C26—H26B0.9600
C12—H120.9300C26—H26C0.9600
C2—C1—C9109.6 (3)C15—C14—C13117.7 (5)
C2—C1—C18112.7 (3)C15—C14—C17120.5 (5)
C9—C1—C18111.0 (3)C13—C14—C17121.8 (5)
C2—C1—H1107.8C14—C15—C16121.3 (5)
C9—C1—H1107.8C14—C15—H15119.3
C18—C1—H1107.8C16—C15—H15119.3
C7—C2—C3116.5 (4)C15—C16—C11121.3 (4)
C7—C2—C1121.9 (3)C15—C16—H16119.3
C3—C2—C1121.6 (3)C11—C16—H16119.3
C4—C3—C2121.7 (4)C14—C17—H17A109.5
C4—C3—H3119.2C14—C17—H17B109.5
C2—C3—H3119.2H17A—C17—H17B109.5
C5—C4—C3121.9 (4)C14—C17—H17C109.5
C5—C4—H4119.0H17A—C17—H17C109.5
C3—C4—H4119.0H17B—C17—H17C109.5
C6—C5—C4116.2 (4)C19—C18—C1113.3 (3)
C6—C5—C8121.4 (5)C19—C18—H18A108.9
C4—C5—C8122.3 (5)C1—C18—H18A108.9
C5—C6—C7122.5 (4)C19—C18—H18B108.9
C5—C6—H6118.7C1—C18—H18B108.9
C7—C6—H6118.7H18A—C18—H18B107.7
C2—C7—C6121.1 (4)O2—C19—C20119.3 (4)
C2—C7—H7119.5O2—C19—C18119.6 (4)
C6—C7—H7119.5C20—C19—C18121.1 (3)
C5—C8—H8A109.5C25—C20—C21117.5 (4)
C5—C8—H8B109.5C25—C20—C19119.8 (4)
H8A—C8—H8B109.5C21—C20—C19122.7 (3)
C5—C8—H8C109.5C22—C21—C20120.5 (4)
H8A—C8—H8C109.5C22—C21—H21119.7
H8B—C8—H8C109.5C20—C21—H21119.7
C10—C9—C1116.6 (3)C23—C22—C21121.7 (5)
C10—C9—H9A108.1C23—C22—H22119.2
C1—C9—H9A108.1C21—C22—H22119.1
C10—C9—H9B108.1C22—C23—C24118.0 (5)
C1—C9—H9B108.1C22—C23—C26120.0 (6)
H9A—C9—H9B107.3C24—C23—C26122.0 (5)
O1—C10—C11120.6 (3)C25—C24—C23120.5 (5)
O1—C10—C9121.3 (4)C25—C24—H24119.7
C11—C10—C9118.1 (3)C23—C24—H24119.7
C16—C11—C12116.9 (4)C24—C25—C20121.8 (5)
C16—C11—C10123.0 (3)C24—C25—H25119.1
C12—C11—C10120.0 (4)C20—C25—H25119.1
C13—C12—C11121.1 (5)C23—C26—H26A109.5
C13—C12—H12119.4C23—C26—H26B109.5
C11—C12—H12119.4H26A—C26—H26B109.5
C12—C13—C14121.6 (4)C23—C26—H26C109.5
C12—C13—H13119.2H26A—C26—H26C109.5
C14—C13—H13119.2H26B—C26—H26C109.5
C9—C1—C2—C775.1 (5)C12—C13—C14—C150.7 (8)
C18—C1—C2—C749.1 (5)C12—C13—C14—C17177.8 (5)
C9—C1—C2—C3101.4 (4)C13—C14—C15—C160.8 (7)
C18—C1—C2—C3134.5 (4)C17—C14—C15—C16177.7 (5)
C7—C2—C3—C41.7 (7)C14—C15—C16—C110.9 (7)
C1—C2—C3—C4174.9 (4)C12—C11—C16—C150.8 (6)
C2—C3—C4—C50.8 (8)C10—C11—C16—C15178.0 (4)
C3—C4—C5—C63.5 (8)C2—C1—C18—C1964.7 (4)
C3—C4—C5—C8178.0 (5)C9—C1—C18—C19171.9 (3)
C4—C5—C6—C73.8 (8)C1—C18—C19—O236.5 (5)
C8—C5—C6—C7177.7 (5)C1—C18—C19—C20145.9 (3)
C3—C2—C7—C61.5 (7)O2—C19—C20—C2517.7 (5)
C1—C2—C7—C6175.2 (4)C18—C19—C20—C25159.9 (3)
C5—C6—C7—C21.4 (7)O2—C19—C20—C21160.1 (4)
C2—C1—C9—C10168.5 (3)C18—C19—C20—C2122.3 (5)
C18—C1—C9—C1066.3 (4)C25—C20—C21—C221.5 (6)
C1—C9—C10—O16.9 (6)C19—C20—C21—C22176.3 (4)
C1—C9—C10—C11173.5 (3)C20—C21—C22—C230.5 (7)
O1—C10—C11—C16174.6 (4)C21—C22—C23—C240.9 (7)
C9—C10—C11—C165.0 (6)C21—C22—C23—C26178.9 (5)
O1—C10—C11—C128.3 (6)C22—C23—C24—C251.4 (7)
C9—C10—C11—C12172.1 (4)C26—C23—C24—C25178.4 (4)
C16—C11—C12—C130.8 (7)C23—C24—C25—C200.4 (7)
C10—C11—C12—C13178.0 (4)C21—C20—C25—C241.0 (6)
C11—C12—C13—C140.7 (8)C19—C20—C25—C24176.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O2i0.932.463.381 (5)171 (1)
C18—H18A···O2i0.972.523.460 (5)164 (1)
Symmetry code: (i) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC26H26O2
Mr370.47
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)295
a, b, c (Å)10.6611 (19), 10.3876 (18), 19.541 (3)
V3)2164.0 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.34 × 0.24 × 0.18
Data collection
DiffractometerBruker SMART APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.977, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
8705, 2138, 1733
Rint0.031
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.135, 1.06
No. of reflections2138
No. of parameters256
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.12

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O2i0.932.463.381 (5)170.9 (4)
C18—H18A···O2i0.972.523.460 (5)164.1 (1)
Symmetry code: (i) x+1/2, y+3/2, z.
 

Acknowledgements

The author thanks Jiangxi Science and Technology Normal University for supporting this study.

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurroughes, J. H., Bradley, D. D. C., Brown, A. R., Mark, R. N., Mackay, K., Friend, R. H., Burns, P. L. & Holmes, A. B. (1990). Nature (London), 347, 539–541.  CrossRef CAS Web of Science Google Scholar
First citationLi, Y. N., Ding, J. F., Day, M., Tao, Y., Lu, J. P. & D'iorio, M. (2004). Chem. Mater. 16, 2165–2173.  Web of Science CrossRef CAS Google Scholar
First citationSariciftci, N. S., Smilowitz, L. & Heeger, A. J. (1992). Science, 258, 1474–1476.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, C. B., Raston, C. L. & Sobolev, A. N. (2005). Green Chem. 7, 650–654.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, J.-X., Tao, X.-T., Yuan, C. X., Yan, Y. X., Wang, L., Liu, Z., Ren, Y. & Jiang, M. H. (2005). J. Am. Chem. Soc. 127, 3278–3279.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds