organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Di-4-pyrid­ylpropane–2-hy­droxy­benzene-1,4-di­carboxylic acid (1/2)

aCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China, and bCollege of Chemistry and Environmental Science, Henan Normal University, Xinxiang, 453007, People's Republic of China
*Correspondence e-mail: jh_q128105@126.com

(Received 3 September 2008; accepted 14 November 2008; online 20 November 2008)

In the title compound, C13H14N2·2C8H6O5, which crystallized in the monoclinic C2/c space group, the 1,3-bis­(4-pyrid­yl)propane mol­ecules and 2-hydr­oxy-1,4-benzene­dicarboxylic acid mol­ecules are alternately linked by O—H⋯N and O—H⋯O hydrogen bonds into herringbone/zigzag chains.

Related literature

For general background, see: Bowers et al. (2005[Bowers, J. R., Hopkins, G. W., Yap, G. P. A. & Wheeler, K. A. (2005). Cryst. Growth Des. 5, 727-736.]); Mukherjee et al. (2004[Mukherjee, P. S., Ghoshal, D., Zangrando, E., Mallah, T. & Chaudhuri, N. R. (2004). Eur. J. Inorg. Chem. 23, 4675-4680.]). For the substitution of bromine for hydroxyl, see: Chen & Tong (2007[Chen, X. M. & Tong, M. L. (2007). Acc. Chem. Res. 40, 162-170.]); Zhang (2005[Zhang, X. M. (2005). Coord. Chem. Rev. 249, 1201-1219.]).

[Scheme 1]

Experimental

Crystal data
  • C13H14N2·2C8H6O5

  • Mr = 562.52

  • Monoclinic, C 2/c

  • a = 22.939 (11) Å

  • b = 4.781 (2) Å

  • c = 24.163 (11) Å

  • β = 96.542 (6)°

  • V = 2633 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 291 (2) K

  • 0.35 × 0.19 × 0.05 mm

Data collection
  • Bruker CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.963, Tmax = 0.994

  • 9178 measured reflections

  • 2444 independent reflections

  • 1335 reflections with I > 2σ(I)

  • Rint = 0.049

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.173

  • S = 1.03

  • 2444 reflections

  • 187 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O5i 0.82 1.82 2.631 (3) 172
O2—H2⋯N1 0.82 1.75 2.568 (3) 174
O1—H1⋯O3 0.82 1.79 2.516 (3) 147
Symmetry code: (i) -x+1, -y+4, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The aromatic dicarboxylate are used extensively in the synthesis of coordination polymers (Mukherjee et al., 2004) and the generation of hydrogen-bonding arrays of organic co-crystals (Bowers et al., 2005). The 2-bromo-1,4-benzenedicarboxylic acid, possesses several interesting characteristics: (a) it has two carboxyl groups which may be completely or partially deprotonated, inducing rich coordination modes and allowing interesting structures with higher dimensions; (b) it can act not only as hydrogen-bond acceptor but also as hydrogen-bond donor, depending upon the number of deprotonated carboxyl groups. To propagate non-covalent interactions only along one direction, each unit must have two-point interactions with two adjacent neighbors. Dicarboxylic acids epitomize this model and exhibits a two-point contact per unit that can result in 1-D hydrogen bonding networks.

The crystal structure of the title compound comprises half of a 1,3-bis(4-pyridyl)propane (bpp) molecule and a 2-hydroxy-1,4-benzenedicarboxylic acid molecule per asymmetric unit (Fig. 1). One bpp molecule connects two adjacent 2-hydroxy-1,4-benzenedicarboxylic acid molecules via O—H···N hydrogen bonds, and complementary via O—H···O hydrogen bonds between adjacent dicarboxylic acid molecules, which extend into an one-dimensional herringbone/zigzag chain structure (Fig. 2). The dihedral angle between two pyridyl rings is 85.551 (11)°, and thus incorporation into supramolecular architecture imparts significant conformation change in the bpp molecule. The 1-D chain structure seems to suggest that the CH2 chain in pyridyl bases is not an inert spacer but could have a conformational and structural role in controlling the supramolecular architecture.

Related literature top

For related literature, see: Bowers et al. (2005); Chen & Tong (2007); Mukherjee et al. (2004); Zhang (2005). It would be much more useful to readers if the "Related literature" section had some kind of simple sub-division, so that, instead of just "For related literature, see···" it said, for example, "For general background, see···. For related structures, see···; etc. Please revise this section as indicated.

Experimental top

1,3-Bis(4-pyridyl)propane (bpp) (0.5 mmol), 2-bromo-1,4-benzenedicarboxylic acid (1.0 mmol), and KOH (0.5 mmol) were added to water (12 ml) in a Teflon-lined stainless steel reactor. The mixture was heated at 435 K for 3 d, and then slowly cooled down to room temperature. Colorless crystals of the title compound were obtained. Elemental analysis – found: C, 61.81%; H, 4.56%; N, 4.92%; calc. for C29H26N2 O10: C, 61.86%; H, 4.62%; N, 4.98%. Note the substitution of bromine for hydroxyl in the formation of title compound, which commonly happened under hydro(solvo)thermal conditions (Chen & Tong, 2007; Zhang, 2005).

Refinement top

H atoms were positioned geometrically and treated as riding, with C—H bonding lengths constrained to 0.93 (aromatic CH), or 0.97Å (methylene CH2), and O—H=0.82Å, and with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound, showing 30% probability displacement ellipsoids. Symmetry code: (A) -x, y, 1/2 - z.
[Figure 2] Fig. 2. The unit-cell packing of the title compound, showing the hydrogen bonding interactions.
1,3-Di-4-pyridylpropane–2-hydroxybenzene-1,4-dicarboxylic acid (1/2) top
Crystal data top
C13H14N2·2C8H6O5F(000) = 1176
Mr = 562.52Dx = 1.419 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1102 reflections
a = 22.939 (11) Åθ = 3.4–23.3°
b = 4.781 (2) ŵ = 0.11 mm1
c = 24.163 (11) ÅT = 291 K
β = 96.542 (6)°Block, colorless
V = 2633 (2) Å30.35 × 0.19 × 0.05 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2444 independent reflections
Radiation source: fine-focus sealed tube1335 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω & ϕ scansθmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 2727
Tmin = 0.963, Tmax = 0.994k = 55
9178 measured reflectionsl = 2928
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0772P)2 + 1.353P]
where P = (Fo2 + 2Fc2)/3
2444 reflections(Δ/σ)max < 0.001
187 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C13H14N2·2C8H6O5V = 2633 (2) Å3
Mr = 562.52Z = 4
Monoclinic, C2/cMo Kα radiation
a = 22.939 (11) ŵ = 0.11 mm1
b = 4.781 (2) ÅT = 291 K
c = 24.163 (11) Å0.35 × 0.19 × 0.05 mm
β = 96.542 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2444 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1335 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.994Rint = 0.049
9178 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.03Δρmax = 0.39 e Å3
2444 reflectionsΔρmin = 0.18 e Å3
187 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.38415 (11)1.0471 (6)0.32590 (9)0.0857 (9)
H10.35570.95160.31410.129*
O20.24082 (9)0.8169 (5)0.40221 (9)0.0642 (7)
H20.22030.69760.38520.096*
O30.29118 (9)0.7716 (5)0.32941 (9)0.0695 (7)
O40.43663 (9)1.8252 (5)0.51792 (9)0.0666 (7)
H40.46241.94000.52740.100*
O50.48854 (9)1.7794 (5)0.44642 (10)0.0679 (7)
N10.17662 (11)0.4242 (5)0.35544 (11)0.0516 (7)
C10.32537 (12)1.0947 (6)0.40090 (12)0.0467 (7)
C20.37382 (13)1.1721 (6)0.37430 (13)0.0539 (8)
C30.41262 (13)1.3722 (6)0.39812 (13)0.0568 (8)
H30.44511.42150.38050.068*
C40.40338 (12)1.4989 (6)0.44770 (12)0.0470 (7)
C50.35515 (13)1.4263 (6)0.47459 (13)0.0535 (8)
H50.34861.51250.50780.064*
C60.31687 (13)1.2222 (6)0.45088 (13)0.0551 (8)
H60.28491.17020.46900.066*
C70.28337 (13)0.8782 (6)0.37506 (14)0.0527 (8)
C80.44604 (13)1.7142 (6)0.47143 (13)0.0493 (8)
C90.18299 (12)0.3070 (7)0.30666 (13)0.0534 (8)
H90.21470.35840.28810.064*
C100.14366 (12)0.1103 (6)0.28276 (12)0.0516 (8)
H100.14930.02980.24880.062*
C110.09577 (12)0.0334 (6)0.30954 (12)0.0449 (7)
C120.09152 (13)0.1551 (7)0.36110 (13)0.0570 (8)
H120.06090.10560.38130.068*
C130.13223 (14)0.3479 (7)0.38230 (13)0.0575 (8)
H130.12850.42770.41680.069*
C140.04828 (11)0.1557 (6)0.28235 (12)0.0499 (8)
H14A0.03180.26510.31060.060*
H14B0.06480.28370.25720.060*
C150.00000.0194 (8)0.25000.0498 (11)
H15A0.01760.13910.22410.060*0.50
H15B0.01760.13910.27590.060*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.109 (2)0.092 (2)0.0608 (15)0.0379 (16)0.0301 (15)0.0327 (13)
O20.0605 (14)0.0580 (14)0.0726 (15)0.0154 (11)0.0015 (12)0.0059 (12)
O30.0756 (15)0.0679 (16)0.0653 (15)0.0160 (12)0.0091 (12)0.0159 (12)
O40.0658 (14)0.0597 (14)0.0748 (16)0.0169 (12)0.0102 (12)0.0179 (13)
O50.0593 (14)0.0617 (15)0.0858 (16)0.0161 (12)0.0222 (12)0.0191 (12)
N10.0513 (15)0.0481 (15)0.0543 (16)0.0003 (12)0.0012 (13)0.0053 (13)
C10.0496 (18)0.0359 (16)0.0527 (18)0.0006 (13)0.0027 (14)0.0012 (14)
C20.0597 (19)0.0483 (18)0.0543 (19)0.0076 (16)0.0086 (15)0.0058 (16)
C30.059 (2)0.0497 (19)0.063 (2)0.0116 (16)0.0148 (16)0.0048 (16)
C40.0456 (17)0.0362 (17)0.0578 (19)0.0010 (13)0.0004 (15)0.0018 (15)
C50.0593 (19)0.0459 (18)0.0552 (19)0.0024 (16)0.0061 (15)0.0058 (15)
C60.0499 (18)0.0527 (19)0.063 (2)0.0059 (16)0.0087 (15)0.0009 (17)
C70.0475 (18)0.0449 (18)0.065 (2)0.0004 (14)0.0028 (16)0.0041 (17)
C80.0513 (18)0.0350 (16)0.061 (2)0.0017 (14)0.0033 (16)0.0043 (15)
C90.0450 (17)0.055 (2)0.061 (2)0.0051 (15)0.0094 (15)0.0089 (17)
C100.0518 (18)0.0529 (19)0.0509 (18)0.0026 (15)0.0093 (15)0.0022 (15)
C110.0465 (17)0.0364 (16)0.0508 (17)0.0044 (13)0.0008 (14)0.0045 (14)
C120.0504 (18)0.064 (2)0.059 (2)0.0045 (16)0.0137 (15)0.0006 (17)
C130.062 (2)0.058 (2)0.0532 (19)0.0054 (17)0.0070 (16)0.0081 (16)
C140.0467 (17)0.0411 (17)0.0607 (19)0.0015 (14)0.0010 (14)0.0004 (15)
C150.049 (2)0.038 (2)0.061 (3)0.0000.002 (2)0.000
Geometric parameters (Å, º) top
O1—C21.358 (3)C5—C61.391 (4)
O1—H10.8200C5—H50.9300
O2—C71.271 (3)C6—H60.9300
O2—H20.8200C9—C101.383 (4)
O3—C71.246 (4)C9—H90.9300
O4—C81.283 (3)C10—C111.387 (4)
O4—H40.8200C10—H100.9300
O5—C81.244 (3)C11—C121.389 (4)
N1—C131.320 (4)C11—C141.507 (4)
N1—C91.328 (4)C12—C131.369 (4)
C1—C61.386 (4)C12—H120.9300
C1—C21.396 (4)C13—H130.9300
C1—C71.501 (4)C14—C151.530 (3)
C2—C31.386 (4)C14—H14A0.9700
C3—C41.380 (4)C14—H14B0.9700
C3—H30.9300C15—C14i1.530 (3)
C4—C51.389 (4)C15—H15A0.9700
C4—C81.489 (4)C15—H15B0.9700
C2—O1—H1109.5N1—C9—C10121.7 (3)
C7—O2—H2109.5N1—C9—H9119.2
C8—O4—H4109.5C10—C9—H9119.2
C13—N1—C9119.3 (3)C9—C10—C11120.0 (3)
C6—C1—C2118.9 (3)C9—C10—H10120.0
C6—C1—C7121.2 (3)C11—C10—H10120.0
C2—C1—C7119.9 (3)C10—C11—C12116.6 (3)
O1—C2—C3119.6 (3)C10—C11—C14121.8 (3)
O1—C2—C1120.4 (3)C12—C11—C14121.4 (3)
C3—C2—C1119.9 (3)C13—C12—C11120.2 (3)
C4—C3—C2120.6 (3)C13—C12—H12119.9
C4—C3—H3119.7C11—C12—H12119.9
C2—C3—H3119.7N1—C13—C12122.3 (3)
C3—C4—C5120.4 (3)N1—C13—H13118.9
C3—C4—C8118.6 (3)C12—C13—H13118.9
C5—C4—C8121.0 (3)C11—C14—C15109.9 (2)
C4—C5—C6118.8 (3)C11—C14—H14A109.7
C4—C5—H5120.6C15—C14—H14A109.7
C6—C5—H5120.6C11—C14—H14B109.7
C1—C6—C5121.5 (3)C15—C14—H14B109.7
C1—C6—H6119.3H14A—C14—H14B108.2
C5—C6—H6119.3C14—C15—C14i113.7 (3)
O3—C7—O2124.0 (3)C14—C15—H15A108.8
O3—C7—C1120.0 (3)C14i—C15—H15A108.8
O2—C7—C1116.0 (3)C14—C15—H15B108.8
O5—C8—O4122.8 (3)C14i—C15—H15B108.8
O5—C8—C4120.2 (3)H15A—C15—H15B107.7
O4—C8—C4117.0 (3)
C6—C1—C2—O1178.6 (3)C2—C1—C7—O2179.2 (3)
C7—C1—C2—O11.8 (4)C3—C4—C8—O50.9 (4)
C6—C1—C2—C30.4 (4)C5—C4—C8—O5179.0 (3)
C7—C1—C2—C3180.0 (3)C3—C4—C8—O4179.1 (3)
O1—C2—C3—C4179.1 (3)C5—C4—C8—O41.0 (4)
C1—C2—C3—C40.8 (5)C13—N1—C9—C101.2 (4)
C2—C3—C4—C50.3 (5)N1—C9—C10—C110.7 (4)
C2—C3—C4—C8179.5 (3)C9—C10—C11—C122.3 (4)
C3—C4—C5—C60.6 (4)C9—C10—C11—C14173.2 (3)
C8—C4—C5—C6179.5 (3)C10—C11—C12—C132.2 (4)
C2—C1—C6—C50.6 (5)C14—C11—C12—C13173.4 (3)
C7—C1—C6—C5179.0 (3)C9—N1—C13—C121.4 (5)
C4—C5—C6—C11.1 (4)C11—C12—C13—N10.3 (5)
C6—C1—C7—O3178.2 (3)C10—C11—C14—C1590.2 (3)
C2—C1—C7—O31.4 (4)C12—C11—C14—C1585.1 (3)
C6—C1—C7—O21.3 (4)C11—C14—C15—C14i176.1 (3)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O5ii0.821.822.631 (3)172
O2—H2···N10.821.752.568 (3)174
O1—H1···O30.821.792.516 (3)147
Symmetry code: (ii) x+1, y+4, z+1.

Experimental details

Crystal data
Chemical formulaC13H14N2·2C8H6O5
Mr562.52
Crystal system, space groupMonoclinic, C2/c
Temperature (K)291
a, b, c (Å)22.939 (11), 4.781 (2), 24.163 (11)
β (°) 96.542 (6)
V3)2633 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.35 × 0.19 × 0.05
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.963, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
9178, 2444, 1335
Rint0.049
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.173, 1.03
No. of reflections2444
No. of parameters187
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.18

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O5i0.821.822.631 (3)171.6
O2—H2···N10.821.752.568 (3)174.1
O1—H1···O30.821.792.516 (3)147.3
Symmetry code: (i) x+1, y+4, z+1.
 

Acknowledgements

The authors thank Luoyang Normal University for supporting this work.

References

First citationBowers, J. R., Hopkins, G. W., Yap, G. P. A. & Wheeler, K. A. (2005). Cryst. Growth Des. 5, 727–736.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X. M. & Tong, M. L. (2007). Acc. Chem. Res. 40, 162–170.  Web of Science CrossRef PubMed Google Scholar
First citationMukherjee, P. S., Ghoshal, D., Zangrando, E., Mallah, T. & Chaudhuri, N. R. (2004). Eur. J. Inorg. Chem. 23, 4675–4680.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X. M. (2005). Coord. Chem. Rev. 249, 1201–1219.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds