organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-Ethyl-3-(imidazo[1,2-a]pyrimidin-3-yl)-9H-carbazole

aInstitute of Chemistry, Academia Sinica, Nankang, Taipei, Taiwan, and Cardinal Tien College of Healthcare and Management, Taipei, Taiwan, and bInstitute of Chemistry, Academia Sinica, Nankang, Taipei, Taiwan
*Correspondence e-mail: pshuang@ctcn.edu.tw

(Received 29 October 2008; accepted 17 November 2008; online 22 November 2008)

The title compound, C20H16N4, is a precursor for the production of electron-transporting and -emitting materials. The bond lengths and angles in this compound are normal. In the crystal structure, there are no significant hydrogen-bonding inter­actions or ππ stacking inter­actions between mol­ecules.

Related literature

For general background to the use of small organic molecules or organic polymers as electroluminescent materials, see: Burroughes et al. (1990[Burroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burns, P. L. & Holmes, A. B. (1990). Nature (London), 347, 539-540.]); Tang & VanSlyke (1987[Tang, C. W. & VanSlyke, S. A. (1987). Appl. Phys. Lett. 51, 913-915.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16N4

  • Mr = 312.37

  • Monoclinic, P 21 /c

  • a = 13.9106 (3) Å

  • b = 9.3187 (2) Å

  • c = 12.9047 (3) Å

  • β = 112.712 (1)°

  • V = 1543.10 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100.0 (1) K

  • 0.36 × 0.32 × 0.28 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 11748 measured reflections

  • 2717 independent reflections

  • 1991 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.072

  • S = 0.91

  • 2717 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The application of organic electroluminescent (OEL) in flatpanel displays using small organic molecules or organic polymers has been intensively pursued after the reports by Kodak's team (Tang & VanSlyke, 1987) and Cambridge's group (Burroughes et al., 1990). The molecular structure of is shown in Fig. 1. The dihedral angle between the imidazole (P2) and phenyl ring of carbazole (P3) is 34.63 (8)°. Furthermore, the dihedral angles are 4.64 (8)°, 0.90 (8)° and 0.97 (8)° for P1/P2, P3/P4 and P4/P5, respectively.

Related literature top

For related literature, see: Burroughes et al. (1990); Tang & VanSlyke (1987).

Experimental top

The compound was synthesized by the following procedure. Imidazo[1,2-a]pyrimidine hydrobromide (2.0 g, 0.01 mol), 3-bromo-9-ethyl-9H-carbazole (4.6 g, 1.15 eq), Pd(PPh3)4 (0.23 g, 0.02 eq), K2CO3 (2.8 g, 2 eq), and N,N-dimethylformamide (5 ml) were charged in a two-necked flask kept under nitrogen. The mixture was heated to reflux for 48 h. After cooling, it was quenched with 5 ml of water. The solvent was removed under vacuum and the residue was extracted with dichloromethane/water. The organic layer was dried over MgSO4 and filtered. Evaporation of the solvent left a brown residue that was chromatographed through silica gel using dichloromethane/hexane (19:1) mixture as eluant. The compound was obtained as yellow solid in 37% yield. FW:312.4;FAB MS: m/e 313.3 (M+ + H). 1H NMR (CDCl3, δ/ ppm): 8.68 (dd, 1H, J = 6.8 Hz, J = 1.8 Hz), 8.57 (dd, 1H, J = 3.9 Hz, J = 1.9 Hz), 8.21 (s, 1H), 8.11 (d, 1H, J = 7.8 Hz), 7.92 (s, 1H), 7.59–7.49 (m, 3H), 7.45 (d, 1H, J = 8.1 Hz), 7.26(t, 1H, J = 7.3 Hz), 6.89 (dd, 1H, J = 6.8 Hz, J = 4.0 Hz).

Refinement top

H atoms were located geometrically and treated as riding atoms, with C—H = 0.93–0.96Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A molecular structure of (I) with 30% probability displacement ellipsoids, showing the atom-numbering scheme employed.
[Figure 2] Fig. 2. The formation of the title compound.
9-Ethyl-3-(imidazo[1,2-a]pyrimidin-3-yl)-9H-carbazole top
Crystal data top
C20H16N4F(000) = 656
Mr = 312.37Dx = 1.345 Mg m3
Dm = 1.345 Mg m3
Dm measured by not measured
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3698 reflections
a = 13.9106 (3) Åθ = 2.7–30.2°
b = 9.3187 (2) ŵ = 0.08 mm1
c = 12.9047 (3) ÅT = 100 K
β = 112.712 (1)°Prism, yellow
V = 1543.10 (6) Å30.36 × 0.32 × 0.28 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1991 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.033
Graphite monochromatorθmax = 25.0°, θmin = 1.6°
ω and ϕ scansh = 1616
11748 measured reflectionsk = 1111
2717 independent reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.072 w = 1/[σ2(Fo2) + (0.0416P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max = 0.001
2717 reflectionsΔρmax = 0.19 e Å3
218 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0063 (8)
Crystal data top
C20H16N4V = 1543.10 (6) Å3
Mr = 312.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.9106 (3) ŵ = 0.08 mm1
b = 9.3187 (2) ÅT = 100 K
c = 12.9047 (3) Å0.36 × 0.32 × 0.28 mm
β = 112.712 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1991 reflections with I > 2σ(I)
11748 measured reflectionsRint = 0.033
2717 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 0.91Δρmax = 0.19 e Å3
2717 reflectionsΔρmin = 0.19 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N41.35147 (8)0.58921 (11)0.45030 (9)0.0200 (3)
N30.96458 (8)0.19984 (11)0.66711 (9)0.0225 (3)
N10.85050 (8)0.05126 (11)0.51971 (9)0.0209 (3)
N20.98239 (8)0.20433 (11)0.50125 (8)0.0166 (3)
C171.37034 (10)0.48850 (14)0.38158 (10)0.0196 (3)
C161.43492 (10)0.49764 (15)0.32235 (11)0.0256 (3)
H161.47410.57970.32580.031*
C141.43902 (10)0.38125 (15)0.25828 (11)0.0279 (4)
H141.48170.38520.21790.033*
C131.38043 (10)0.25737 (15)0.25257 (11)0.0253 (3)
H131.38450.18050.20850.030*
C121.31683 (10)0.24836 (14)0.31163 (11)0.0210 (3)
H121.27840.16560.30810.025*
C111.31059 (9)0.36437 (13)0.37670 (10)0.0179 (3)
C101.25171 (9)0.39349 (13)0.44510 (10)0.0166 (3)
C91.17866 (9)0.31495 (13)0.47090 (10)0.0171 (3)
H91.16020.22300.44220.021*
C81.13349 (9)0.37494 (13)0.53988 (10)0.0171 (3)
C71.16524 (10)0.51203 (13)0.58548 (10)0.0195 (3)
H71.13640.55030.63360.023*
C241.23750 (10)0.59182 (14)0.56155 (10)0.0203 (3)
H241.25750.68240.59270.024*
C231.27953 (9)0.53254 (13)0.48938 (10)0.0180 (3)
C181.39561 (10)0.73286 (13)0.47180 (11)0.0248 (3)
H18A1.46850.72810.48270.030*
H18B1.39190.76900.54060.030*
C191.33998 (11)0.83644 (15)0.37712 (12)0.0305 (4)
H19A1.37180.92940.39540.046*
H19B1.26800.84300.36680.046*
H19C1.34490.80250.30910.046*
C61.04213 (10)0.29149 (14)0.66997 (11)0.0223 (3)
H61.08100.34510.73310.027*
C40.92857 (10)0.14710 (13)0.56400 (10)0.0181 (3)
C10.82339 (10)0.02090 (13)0.41227 (11)0.0214 (3)
H10.77090.04640.38020.026*
C20.86906 (10)0.08412 (13)0.34325 (11)0.0205 (3)
H20.84450.06240.26710.025*
C30.94900 (10)0.17667 (13)0.38901 (10)0.0184 (3)
H30.98040.22030.34530.022*
C51.05729 (10)0.29722 (13)0.57133 (10)0.0173 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N40.0182 (6)0.0194 (6)0.0212 (6)0.0032 (5)0.0064 (5)0.0020 (5)
N30.0221 (6)0.0286 (7)0.0179 (6)0.0029 (5)0.0090 (5)0.0014 (5)
N10.0186 (6)0.0214 (6)0.0225 (7)0.0001 (5)0.0076 (5)0.0002 (5)
N20.0167 (6)0.0193 (6)0.0148 (6)0.0011 (5)0.0071 (5)0.0008 (5)
C170.0145 (7)0.0257 (8)0.0166 (7)0.0018 (6)0.0038 (6)0.0037 (6)
C160.0167 (7)0.0315 (8)0.0279 (8)0.0014 (6)0.0077 (7)0.0065 (7)
C140.0189 (8)0.0413 (9)0.0273 (8)0.0068 (7)0.0131 (7)0.0075 (7)
C130.0199 (8)0.0338 (9)0.0225 (8)0.0065 (7)0.0087 (6)0.0006 (7)
C120.0164 (7)0.0244 (8)0.0205 (7)0.0019 (6)0.0054 (6)0.0029 (6)
C110.0138 (7)0.0219 (7)0.0161 (7)0.0021 (6)0.0038 (6)0.0032 (6)
C100.0151 (7)0.0194 (7)0.0130 (7)0.0022 (6)0.0030 (6)0.0023 (6)
C90.0178 (7)0.0164 (7)0.0145 (7)0.0006 (6)0.0033 (6)0.0006 (6)
C80.0159 (7)0.0206 (7)0.0129 (7)0.0015 (6)0.0034 (6)0.0021 (6)
C70.0207 (7)0.0228 (7)0.0146 (7)0.0040 (6)0.0065 (6)0.0006 (6)
C240.0219 (7)0.0167 (7)0.0181 (7)0.0001 (6)0.0032 (6)0.0008 (6)
C230.0157 (7)0.0200 (7)0.0158 (7)0.0007 (6)0.0033 (6)0.0050 (6)
C180.0229 (8)0.0214 (8)0.0284 (8)0.0050 (6)0.0081 (6)0.0026 (6)
C190.0288 (9)0.0284 (8)0.0367 (9)0.0029 (7)0.0152 (7)0.0085 (7)
C60.0211 (7)0.0286 (8)0.0171 (7)0.0035 (6)0.0072 (6)0.0041 (6)
C40.0184 (7)0.0213 (7)0.0166 (7)0.0019 (6)0.0090 (6)0.0031 (6)
C10.0180 (7)0.0207 (7)0.0229 (8)0.0011 (6)0.0051 (6)0.0020 (6)
C20.0192 (7)0.0238 (8)0.0165 (7)0.0020 (6)0.0048 (6)0.0021 (6)
C30.0188 (7)0.0226 (8)0.0141 (7)0.0045 (6)0.0068 (6)0.0013 (6)
C50.0160 (7)0.0193 (7)0.0157 (7)0.0008 (6)0.0049 (6)0.0014 (6)
Geometric parameters (Å, º) top
N4—C171.3841 (16)C10—C231.4088 (17)
N4—C231.3871 (15)C9—C81.3898 (16)
N4—C181.4541 (15)C9—H90.9300
N3—C41.3222 (16)C8—C71.4045 (17)
N3—C61.3652 (16)C8—C51.4646 (17)
N1—C11.3194 (15)C7—C241.3778 (17)
N1—C41.3508 (16)C7—H70.9300
N2—C31.3640 (15)C24—C231.3911 (17)
N2—C51.3874 (15)C24—H240.9300
N2—C41.4031 (15)C18—C191.5143 (18)
C17—C161.3889 (17)C18—H18A0.9700
C17—C111.4115 (17)C18—H18B0.9700
C16—C141.3782 (18)C19—H19A0.9600
C16—H160.9300C19—H19B0.9600
C14—C131.3986 (18)C19—H19C0.9600
C14—H140.9300C6—C51.3693 (16)
C13—C121.3752 (17)C6—H60.9300
C13—H130.9300C1—C21.4074 (17)
C12—C111.3920 (17)C1—H10.9300
C12—H120.9300C2—C31.3499 (18)
C11—C101.4429 (16)C2—H20.9300
C10—C91.3929 (16)C3—H30.9300
C17—N4—C23108.46 (10)C8—C7—H7118.8
C17—N4—C18125.16 (10)C7—C24—C23117.87 (12)
C23—N4—C18126.29 (11)C7—C24—H24121.1
C4—N3—C6104.37 (10)C23—C24—H24121.1
C1—N1—C4116.31 (11)N4—C23—C24129.87 (12)
C3—N2—C5132.23 (10)N4—C23—C10109.06 (10)
C3—N2—C4120.15 (11)C24—C23—C10121.07 (11)
C5—N2—C4107.14 (10)N4—C18—C19112.72 (11)
N4—C17—C16129.35 (12)N4—C18—H18A109.0
N4—C17—C11109.28 (10)C19—C18—H18A109.0
C16—C17—C11121.37 (12)N4—C18—H18B109.0
C14—C16—C17117.86 (13)C19—C18—H18B109.0
C14—C16—H16121.1H18A—C18—H18B107.8
C17—C16—H16121.1C18—C19—H19A109.5
C16—C14—C13121.53 (13)C18—C19—H19B109.5
C16—C14—H14119.2H19A—C19—H19B109.5
C13—C14—H14119.2C18—C19—H19C109.5
C12—C13—C14120.51 (13)H19A—C19—H19C109.5
C12—C13—H13119.7H19B—C19—H19C109.5
C14—C13—H13119.7N3—C6—C5113.76 (11)
C13—C12—C11119.36 (12)N3—C6—H6123.1
C13—C12—H12120.3C5—C6—H6123.1
C11—C12—H12120.3N3—C4—N1127.00 (11)
C12—C11—C17119.38 (11)N3—C4—N2111.12 (11)
C12—C11—C10134.22 (12)N1—C4—N2121.88 (11)
C17—C11—C10106.39 (11)N1—C1—C2124.03 (12)
C9—C10—C23119.86 (11)N1—C1—H1118.0
C9—C10—C11133.33 (12)C2—C1—H1118.0
C23—C10—C11106.80 (10)C3—C2—C1119.18 (12)
C8—C9—C10119.59 (12)C3—C2—H2120.4
C8—C9—H9120.2C1—C2—H2120.4
C10—C9—H9120.2C2—C3—N2118.06 (12)
C9—C8—C7119.17 (12)C2—C3—H3121.0
C9—C8—C5122.22 (11)N2—C3—H3121.0
C7—C8—C5118.54 (11)C6—C5—N2103.61 (10)
C24—C7—C8122.38 (12)C6—C5—C8131.65 (12)
C24—C7—H7118.8N2—C5—C8124.72 (11)

Experimental details

Crystal data
Chemical formulaC20H16N4
Mr312.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.9106 (3), 9.3187 (2), 12.9047 (3)
β (°) 112.712 (1)
V3)1543.10 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.36 × 0.32 × 0.28
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11748, 2717, 1991
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.072, 0.91
No. of reflections2717
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.19

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

This work was partially supported by the Institute of Chemistry, Academia Sinica, and Cardinal Tien College of Healthcare and Management.

References

First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurroughes, J. H., Bradley, D. D. C., Brown, A. R., Marks, R. N., Mackay, K., Friend, R. H., Burns, P. L. & Holmes, A. B. (1990). Nature (London), 347, 539–540.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, C. W. & VanSlyke, S. A. (1987). Appl. Phys. Lett. 51, 913–915.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds