organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages o2381-o2382

N-(3-Nitro­benzyl­­idene)aniline

aDepartment of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: zareenakhter@yahoo.com

(Received 18 September 2008; accepted 10 November 2008; online 20 November 2008)

In the title compound, C13H10N2O2, a Schiff base derivative, the dihedral angle between the two aromatic rings is 31.58 (3)°. The C=N double bond is essentially coplanar with the nitro­phenyl ring. The torsion angle of the imine double bond is 175.97 (13)°, indicating that the C=N double bond is in a trans configuration. The crystal structure is stabilized by C—H⋯O contacts and ππ inter­actions (centroid–centroid distances of 3.807 and 3.808Å).

Related literature

Choi et al. (2000[Choi, Y. K., Kim, W. S., Chung, K. I., Chung, M. W. & Nam, H. P. (2000). Microchem. J. 65, 3-15.]) and Nakamura et al. (1999[Nakamura, T., Niwa, K., Fujiwara, M. & Matsushita, T. (1999). Chem. Lett. pp. 1067-1068.]) discuss the use of Schiff bases in the reduction of thionyl chloride, while Maruyama et al. (1995[Maruyama, K., Kubo, K., Toda, Y., Kawash, K., Mashino, T. & Nishinaga, A. (1995). Tetrahedron Lett. 36, 5609-5612.]) and Burrows et al. (1996[Burrows, C. J., Muller, J. G., Poulter, G. T. & Rokita, S. E. (1996). Acta Chem. Scand.50, 337-344.]) describe their use in degradation processes. Hodnett & Mooney (1970[Hodnett, E. M. & Mooney, P. D. (1970). J. Med. Chem. 13, 786.]), Rajavel et al. (2008[Rajavel, R., Vadivu, M. S. & Anitha, C. (2008). Eur. J. Chem. 5, 620-626.]) and Yu et al. (2007[Yu, H., Shao, L. & Fang, J. (2007). J. Organomet. Chem. 692, 991-996.]) discuss anti­neoplastic, anti­bacterial and anti­fungal activities, respectively. Hartley et al. (2002[Hartley, J. H., Phillips, M. D. & James, T. D. (2002). New J. Chem. 26, 1228-1237.]), Torregrosa et al. (2005[Torregrosa, R., Pastor, I. M. & Yus, M. (2005). Tetrahedron, 61, 11148-11155.]) and Naeimi et al. (2008[Naeimi, H., Sharghi, H., Salimi, F. & Rabiei, K. (2008). Heterocycl. Chem. 19, 43-47.]) describe different synthetic routes towards Schiff bases. Landy (1989[Landy, L. F. (1989). The Chemistry of Macrocyclic Ligand Complexes. Cambridge University Press.]) describes their role in biological redox systems. Yoon et al. (1990[Yoon, H., Wagler, T. R., Connor, K. J. O. & Burrows, C. J. (1990). J. Am. Chem. Soc. 122, 4568-4570.]) and Park et al. (1998[Park, S., Mathur, V. K. & Planap, R. P. (1998). Polyhedron, 17, 325-330.]) discuss properties of Schiff base complexes such as alkene epoxidation and oxygen absorption by cobalt(II) complexes. Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) discusses the Rogers's parameter for the characterization of enanti­o­morphic-polar compounds.

[Scheme 1]

Experimental

Crystal data
  • C13H10N2O2

  • Mr = 226.23

  • Orthorhombic, P 21 21 21

  • a = 7.3177 (6) Å

  • b = 12.1022 (11) Å

  • c = 12.4672 (12) Å

  • V = 1104.10 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 (2) K

  • 0.48 × 0.48 × 0.46 mm

Data collection
  • Stoe IPDSII two-circle diffractometer

  • Absorption correction: none

  • 9868 measured reflections

  • 1585 independent reflections

  • 1421 reflections with I > 2σ(I)

  • Rint = 0.053

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.093

  • S = 1.04

  • 1585 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1i 0.95 2.70 3.261 (2) 118
C6—H6⋯O2ii 0.95 2.71 3.303 (2) 122
C7—H7⋯O1i 0.95 2.66 3.237 (2) 120
C13—H13⋯O2iii 0.95 2.64 3.541 (2) 159
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+2, z+{\script{1\over 2}}]; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x, y, z+1.

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Schiff bases and their complexes are widely studied because of their interesting and important properties such as their ability to reversibly bind oxygen (Park et al., 1998) and their use in catalysis. They are part of redox systems in biological systems (Landy, 1989), they are used in the degradation of dyes through decomposition of hydrogen peroxide and other reagents in the textile industry (Maruyama et al., 1995) as well as in the reduction of thionyl chloride (Choi et al., 2000; Nakamura et al., 1999). These compounds can also be used in the degradation of organic compounds (Burrows et al., 1996) and in radiopharmaceuticals (Yoon et al., 1990). Schiff bases also exhibit antineoplastic (Hodnett et al., 1970) antibacterial (Rajavel et al., 2008) and antifungal (Yu et al. 2007) activities. The compound whose crystal structure is reported was synthesized for comparative studies of the biological applications of Schiff bases with and without a ferrocene moiety. The synthesis of the present compound was reported earlier by Torregrosa (Torregrosa et al., 2005), Hartley (Hartley et al., 2002) and Naeimi (Naeimi et al., 2008). We have utilized a different modified method for the synthesis of this compound as described below.

Geometric parameters of the title compound (Fig. 1) are in the usual ranges. The molecule is composed of two almost planar moieties, the 3-nitrobenzylidene moieties and the phenyl ring. The dihedral angle between the two aromatic rings is 31.58 (3)°. The torsion angle C11-N1-C1-C2 [175.97 (13)°] shows that the C-N double bond is trans configured. The crystal packing (Fig. 2) is stabilized by some short C-H···O contacts (see Table 1) and ππ stacking interactions (cogphenyl···cognitrophenyli = 3.807Å, cogphenyl···cognitrophenylii = 3.808Å; symmetry operators: (i) -1/2+x, 3/2-y, 1-z; (ii) 1/2+x, 3/2-y, 1-z).

Related literature top

Choi et al. (2000) and Nakamura et al. (1999) discusses the use of Schiff bases in the reduction of thionyl chloride, while Maruyama et al. (1995) and Burrows et al. (1996) describe their use in degradation processes. Hodnett et al. (1970), Rajavel et al. (2008) and Yu et al. (2007) discuss antineoplastic, antibacterial and antifungal activities, respectively. Hartley et al. (2002), Torregrosa et al. (2005) and Naeimi et al. (2008) describe different synthetic routes towards Schiff bases. Landy et al. (1989) describe their role in biological redox systems. Yoon et al. (1990) and Park et al. (1998) discuss properties of Schiff base complexes such as alkene epoxidation and oxygen absorption by cobalt(II) complexes. Flack (1983) discusses the Rogers's parameter for the characterization of enantiomorph-polar compounds.

Experimental top

In a 250 ml pre-backed two neck flask supplied with a magnetic stirrer, 4 ml (43 mmol) of freshly distilled aniline was mixed with 4.97 g (43 mmol) of 3-nitrobenzaldehyde in dry toluene as the solvent. The reaction mnixture was heated to reflux using a Dean and Stark apparatus for azeotropic removal of water formed during the reaction. Reaction progress was monitored using TLC and the solid obtained after rotary evaporation was recrystallized from a mixture of ethyl acetate and n-hexane. Yield: 80%, melting point: 337-338K.

Refinement top

All H atoms could be located by difference Fourier synthesis. Nevertheless, they were refined with fixed individual isotropic displacement parameters [Uiso(H) = 1.2 Ueq(C)] using a riding model with C—H = 0.95 Å.

In the absence of anomalous scatterers, the Flack (1983) parameter is meaningless and therefore Friedel pairs were merged prior to refinement.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with the numbering scheme and displacement ellipsoids at the 50 % probability level. H atoms are drawn as spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing diagram of the title compound with view onto the bc plane. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. Packing diagram of the title compound with view onto the ac plane. ππ stacking interactions are shown as dashed lines.
N-(3-Nitrobenzylidene)aniline top
Crystal data top
C13H10N2O2F(000) = 472
Mr = 226.23Dx = 1.361 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7899 reflections
a = 7.3177 (6) Åθ = 3.7–25.8°
b = 12.1022 (11) ŵ = 0.09 mm1
c = 12.4672 (12) ÅT = 173 K
V = 1104.10 (17) Å3Block, colourless
Z = 40.48 × 0.48 × 0.46 mm
Data collection top
Stoe IPDSII two-circle
diffractometer
1421 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
Graphite monochromatorθmax = 29.5°, θmin = 3.6°
ω scansh = 98
9868 measured reflectionsk = 1614
1585 independent reflectionsl = 1517
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0638P)2 + 0.081P]
where P = (Fo2 + 2Fc2)/3
1585 reflections(Δ/σ)max < 0.001
154 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C13H10N2O2V = 1104.10 (17) Å3
Mr = 226.23Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.3177 (6) ŵ = 0.09 mm1
b = 12.1022 (11) ÅT = 173 K
c = 12.4672 (12) Å0.48 × 0.48 × 0.46 mm
Data collection top
Stoe IPDSII two-circle
diffractometer
1421 reflections with I > 2σ(I)
9868 measured reflectionsRint = 0.054
1585 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.04Δρmax = 0.26 e Å3
1585 reflectionsΔρmin = 0.14 e Å3
154 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.85150 (17)0.74236 (10)0.59232 (10)0.0265 (3)
N20.9518 (2)0.83182 (11)0.11436 (10)0.0339 (3)
O10.9459 (2)0.90457 (11)0.04548 (10)0.0507 (4)
O20.9936 (2)0.73588 (10)0.09536 (9)0.0525 (4)
C10.9027 (2)0.72475 (11)0.49536 (12)0.0255 (3)
H10.95300.65490.47710.031*
C20.8855 (2)0.81012 (11)0.41137 (12)0.0239 (3)
C30.9276 (2)0.78262 (11)0.30530 (11)0.0243 (3)
H30.96850.71040.28760.029*
C40.9088 (2)0.86252 (12)0.22632 (11)0.0262 (3)
C50.8499 (2)0.96943 (12)0.24807 (12)0.0296 (3)
H50.83831.02250.19240.036*
C60.8086 (2)0.99625 (12)0.35358 (13)0.0314 (4)
H60.76781.06870.37050.038*
C70.8262 (2)0.91791 (12)0.43499 (12)0.0277 (3)
H70.79790.93750.50690.033*
C110.86161 (19)0.65339 (11)0.66706 (11)0.0239 (3)
C120.9017 (2)0.67860 (12)0.77429 (12)0.0291 (3)
H120.92290.75310.79470.035*
C130.9105 (2)0.59535 (14)0.85102 (12)0.0337 (4)
H130.93990.61300.92320.040*
C140.8763 (2)0.48619 (13)0.82226 (13)0.0332 (4)
H140.88320.42920.87450.040*
C150.8317 (2)0.46086 (12)0.71627 (13)0.0308 (3)
H150.80620.38660.69680.037*
C160.8244 (2)0.54339 (12)0.63890 (12)0.0261 (3)
H160.79420.52530.56690.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0264 (6)0.0264 (6)0.0267 (6)0.0005 (5)0.0001 (5)0.0030 (5)
N20.0391 (8)0.0365 (7)0.0262 (6)0.0015 (6)0.0042 (6)0.0052 (5)
O10.0677 (9)0.0548 (7)0.0297 (6)0.0073 (8)0.0022 (7)0.0184 (5)
O20.0883 (12)0.0392 (7)0.0301 (6)0.0053 (7)0.0001 (7)0.0027 (5)
C10.0230 (7)0.0265 (7)0.0271 (7)0.0011 (6)0.0012 (6)0.0032 (6)
C20.0210 (6)0.0249 (6)0.0259 (7)0.0010 (5)0.0021 (6)0.0033 (5)
C30.0227 (7)0.0242 (6)0.0261 (6)0.0004 (5)0.0030 (6)0.0026 (5)
C40.0255 (7)0.0278 (7)0.0255 (7)0.0031 (6)0.0027 (6)0.0043 (6)
C50.0279 (8)0.0267 (7)0.0342 (7)0.0009 (6)0.0048 (6)0.0093 (6)
C60.0304 (8)0.0239 (7)0.0399 (8)0.0012 (6)0.0006 (7)0.0031 (6)
C70.0257 (7)0.0270 (7)0.0305 (7)0.0009 (6)0.0022 (6)0.0023 (6)
C110.0204 (6)0.0264 (6)0.0248 (7)0.0013 (5)0.0026 (6)0.0024 (6)
C120.0297 (8)0.0313 (7)0.0264 (7)0.0001 (6)0.0013 (6)0.0029 (6)
C130.0351 (8)0.0439 (8)0.0222 (6)0.0014 (7)0.0008 (7)0.0021 (6)
C140.0306 (8)0.0376 (8)0.0314 (7)0.0023 (6)0.0023 (6)0.0127 (7)
C150.0297 (8)0.0269 (7)0.0359 (8)0.0003 (6)0.0037 (7)0.0032 (6)
C160.0252 (7)0.0283 (7)0.0247 (6)0.0001 (6)0.0015 (6)0.0001 (6)
Geometric parameters (Å, º) top
N1—C11.283 (2)C6—C71.395 (2)
N1—C111.4258 (18)C6—H60.9500
N2—O21.2237 (18)C7—H70.9500
N2—O11.2306 (17)C11—C121.402 (2)
N2—C41.4783 (19)C11—C161.4034 (19)
C1—C21.476 (2)C12—C131.391 (2)
C1—H10.9500C12—H120.9500
C2—C31.398 (2)C13—C141.391 (2)
C2—C71.4060 (19)C13—H130.9500
C3—C41.3869 (19)C14—C151.395 (2)
C3—H30.9500C14—H140.9500
C4—C51.390 (2)C15—C161.390 (2)
C5—C61.388 (2)C15—H150.9500
C5—H50.9500C16—H160.9500
C1—N1—C11118.36 (12)C6—C7—C2120.45 (14)
O2—N2—O1123.54 (14)C6—C7—H7119.8
O2—N2—C4118.32 (12)C2—C7—H7119.8
O1—N2—C4118.14 (13)C12—C11—C16119.04 (13)
N1—C1—C2121.80 (13)C12—C11—N1118.00 (12)
N1—C1—H1119.1C16—C11—N1122.88 (13)
C2—C1—H1119.1C13—C12—C11120.52 (14)
C3—C2—C7119.15 (12)C13—C12—H12119.7
C3—C2—C1119.04 (12)C11—C12—H12119.7
C7—C2—C1121.81 (13)C12—C13—C14120.15 (14)
C4—C3—C2118.92 (13)C12—C13—H13119.9
C4—C3—H3120.5C14—C13—H13119.9
C2—C3—H3120.5C13—C14—C15119.65 (14)
C3—C4—C5122.76 (14)C13—C14—H14120.2
C3—C4—N2118.30 (13)C15—C14—H14120.2
C5—C4—N2118.94 (12)C16—C15—C14120.57 (14)
C6—C5—C4118.03 (13)C16—C15—H15119.7
C6—C5—H5121.0C14—C15—H15119.7
C4—C5—H5121.0C15—C16—C11120.04 (13)
C5—C6—C7120.69 (14)C15—C16—H16120.0
C5—C6—H6119.7C11—C16—H16120.0
C7—C6—H6119.7
C11—N1—C1—C2175.97 (13)C5—C6—C7—C20.3 (2)
N1—C1—C2—C3174.08 (15)C3—C2—C7—C60.4 (2)
N1—C1—C2—C75.3 (2)C1—C2—C7—C6179.00 (14)
C7—C2—C3—C40.3 (2)C1—N1—C11—C12146.81 (14)
C1—C2—C3—C4179.08 (12)C1—N1—C11—C1636.5 (2)
C2—C3—C4—C50.1 (2)C16—C11—C12—C132.1 (2)
C2—C3—C4—N2179.28 (15)N1—C11—C12—C13179.00 (13)
O2—N2—C4—C33.5 (2)C11—C12—C13—C141.1 (2)
O1—N2—C4—C3175.59 (15)C12—C13—C14—C150.5 (2)
O2—N2—C4—C5175.94 (16)C13—C14—C15—C161.1 (2)
O1—N2—C4—C55.0 (2)C14—C15—C16—C110.1 (2)
C3—C4—C5—C60.0 (2)C12—C11—C16—C151.5 (2)
N2—C4—C5—C6179.38 (14)N1—C11—C16—C15178.20 (13)
C4—C5—C6—C70.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.952.703.261 (2)118
C6—H6···O2ii0.952.713.303 (2)122
C7—H7···O1i0.952.663.237 (2)120
C13—H13···O2iii0.952.643.541 (2)159
Symmetry codes: (i) x+3/2, y+2, z+1/2; (ii) x+2, y+1/2, z+1/2; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H10N2O2
Mr226.23
Crystal system, space groupOrthorhombic, P212121
Temperature (K)173
a, b, c (Å)7.3177 (6), 12.1022 (11), 12.4672 (12)
V3)1104.10 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.48 × 0.48 × 0.46
Data collection
DiffractometerStoe IPDSII two-circle
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9868, 1585, 1421
Rint0.054
(sin θ/λ)max1)0.693
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.093, 1.04
No. of reflections1585
No. of parameters154
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.14

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL-Plus (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O1i0.952.703.261 (2)118.1
C6—H6···O2ii0.952.713.303 (2)121.5
C7—H7···O1i0.952.663.237 (2)119.8
C13—H13···O2iii0.952.643.541 (2)158.6
Symmetry codes: (i) x+3/2, y+2, z+1/2; (ii) x+2, y+1/2, z+1/2; (iii) x, y, z+1.
 

Acknowledgements

The authors are grateful to the Department of Chemistry, Quaid-I-Azam University, Islamabad, Pakistan and the Institute for Inorganic Chemistry, University of Frankfurt, Germany, for providing laboratory and analytical facility.

References

First citationBurrows, C. J., Muller, J. G., Poulter, G. T. & Rokita, S. E. (1996). Acta Chem. Scand.50, 337–344.  Google Scholar
First citationChoi, Y. K., Kim, W. S., Chung, K. I., Chung, M. W. & Nam, H. P. (2000). Microchem. J. 65, 3–15.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHartley, J. H., Phillips, M. D. & James, T. D. (2002). New J. Chem. 26, 1228–1237.  Web of Science CrossRef CAS Google Scholar
First citationHodnett, E. M. & Mooney, P. D. (1970). J. Med. Chem. 13, 786.  CrossRef PubMed Web of Science Google Scholar
First citationLandy, L. F. (1989). The Chemistry of Macrocyclic Ligand Complexes. Cambridge University Press.  Google Scholar
First citationMaruyama, K., Kubo, K., Toda, Y., Kawash, K., Mashino, T. & Nishinaga, A. (1995). Tetrahedron Lett. 36, 5609–5612.  CrossRef CAS Google Scholar
First citationNaeimi, H., Sharghi, H., Salimi, F. & Rabiei, K. (2008). Heterocycl. Chem. 19, 43–47.  Web of Science CrossRef CAS Google Scholar
First citationNakamura, T., Niwa, K., Fujiwara, M. & Matsushita, T. (1999). Chem. Lett. pp. 1067–1068.  Web of Science CrossRef Google Scholar
First citationPark, S., Mathur, V. K. & Planap, R. P. (1998). Polyhedron, 17, 325–330.  Web of Science CrossRef CAS Google Scholar
First citationRajavel, R., Vadivu, M. S. & Anitha, C. (2008). Eur. J. Chem. 5, 620–626.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTorregrosa, R., Pastor, I. M. & Yus, M. (2005). Tetrahedron, 61, 11148–11155.  Web of Science CrossRef CAS Google Scholar
First citationYoon, H., Wagler, T. R., Connor, K. J. O. & Burrows, C. J. (1990). J. Am. Chem. Soc. 122, 4568–4570.  CrossRef Web of Science Google Scholar
First citationYu, H., Shao, L. & Fang, J. (2007). J. Organomet. Chem. 692, 991–996.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 64| Part 12| December 2008| Pages o2381-o2382
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds