organic compounds
2-[Bis(2-aminoethyl)amino]ethanaminium chloride dichloromethane solvate
aLudwig-Maximilians-Universität, Department Chemie und Biochemie, Butenandtstrasse 5–13 (Haus D), 81377 München, Germany
*Correspondence e-mail: kluef@cup.uni-muenchen.de
In the title compound, C6H19N4+·Cl−·CH2Cl2, the non-H atoms of the ammonium ion show non-crystallographic C3 symmetry. The chloride ion is embedded in a framework of seven crystallographically independent hydrogen bonds (five N—H⋯Cl and two C—H⋯Cl), which form layers parallel to the (100) plane. Two N---H...N bonds also occur.
Related literature
For the N,N,N-tris(2-ammonioethyl)amine trichloride, see: Rasmussen & Hazell (1963); Hazell & Rasmussen (1968); Ilioudis et al. (2000).
ofExperimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: COLLECT (Hooft, 2004); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97, PLATON (Spek, 200) and Mercury (Macrae et al., 2006).
Supporting information
10.1107/S1600536808039652/zl2162sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808039652/zl2162Isup2.hkl
Crystals of the title compound were obtained from a solution of tris(2-aminoethyl)amine (0.15 g, 5.0 mmol) and trimethylborate (0.52 g, 5.0 mmol) in dichloromethane (10 ml) upon slow evaporation of the solvent at room temperature.
All H atoms were found in difference maps. C-bonded H atoms were positioned geometrically (C—H = 0.99 Å) and treated as riding on their parent atoms [Uiso(H) = 1.2Ueq(C)]. N-bonded H atoms were assigned from difference maps and treated as riding on their parent atoms [Uiso(H) = 1.2Ueq(N)].
Data collection: COLLECT (Hooft, 2004); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 200) and Mercury (Macrae et al., 2006).Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms. | |
Fig. 2. The packing and the hydrogen-bonded layers in the title compound, viewed along [0 1 0]. | |
Fig. 3. Hydrogen bonding to Cl1. [Symmetry codes: (i) 1 - x, 1/2 + y, 1/2 - z; (ii) 1 - x, -1/2 + y, 1/2 - z; (iii) 1 - x, -y, -z.] |
C6H19N4+·Cl−·CH2Cl2 | F(000) = 568 |
Mr = 267.63 | Dx = 1.300 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 17190 reflections |
a = 12.1512 (4) Å | θ = 3.1–27.5° |
b = 8.5686 (2) Å | µ = 0.65 mm−1 |
c = 13.5497 (3) Å | T = 200 K |
β = 104.273 (2)° | Block, colourless |
V = 1367.23 (6) Å3 | 0.17 × 0.17 × 0.17 mm |
Z = 4 |
Nonius KappaCCD area-detector diffractometer | 2431 reflections with I > 2σ(I) |
Radiation source: rotating anode | Rint = 0.030 |
MONTEL, graded multilayered X-ray optics monochromator | θmax = 27.5°, θmin = 3.2° |
Detector resolution: 9 pixels mm-1 | h = −15→15 |
ϕ and ω scans | k = −11→10 |
10639 measured reflections | l = −17→17 |
3130 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.111 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0471P)2 + 0.7878P] where P = (Fo2 + 2Fc2)/3 |
3130 reflections | (Δ/σ)max < 0.001 |
127 parameters | Δρmax = 0.51 e Å−3 |
0 restraints | Δρmin = −0.57 e Å−3 |
C6H19N4+·Cl−·CH2Cl2 | V = 1367.23 (6) Å3 |
Mr = 267.63 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.1512 (4) Å | µ = 0.65 mm−1 |
b = 8.5686 (2) Å | T = 200 K |
c = 13.5497 (3) Å | 0.17 × 0.17 × 0.17 mm |
β = 104.273 (2)° |
Nonius KappaCCD area-detector diffractometer | 2431 reflections with I > 2σ(I) |
10639 measured reflections | Rint = 0.030 |
3130 independent reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.111 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.51 e Å−3 |
3130 reflections | Δρmin = −0.57 e Å−3 |
127 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on all data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.28042 (13) | 0.26045 (16) | −0.00985 (11) | 0.0291 (3) | |
N2 | 0.40189 (14) | 0.52948 (18) | 0.11822 (12) | 0.0355 (4) | |
H1 | 0.4350 | 0.4312 | 0.1169 | 0.043* | |
H2 | 0.3888 | 0.5495 | 0.1846 | 0.043* | |
N3 | 0.36750 (14) | 0.01291 (18) | 0.14123 (12) | 0.0347 (4) | |
H3 | 0.3757 | −0.0326 | 0.2006 | 0.042* | |
H4 | 0.4111 | 0.1080 | 0.1487 | 0.042* | |
N4 | 0.48946 (13) | 0.20788 (18) | −0.07457 (11) | 0.0324 (3) | |
H5 | 0.4973 | 0.2055 | −0.0066 | 0.039* | |
H6 | 0.5435 | 0.1373 | −0.0843 | 0.039* | |
H7 | 0.5240 | 0.3119 | −0.0890 | 0.039* | |
C1 | 0.22269 (16) | 0.3910 (2) | 0.02691 (15) | 0.0362 (4) | |
H8 | 0.2052 | 0.3602 | 0.0918 | 0.043* | |
H9 | 0.1497 | 0.4113 | −0.0232 | 0.043* | |
C2 | 0.29173 (17) | 0.5407 (2) | 0.04382 (15) | 0.0364 (4) | |
H10 | 0.3049 | 0.5746 | −0.0222 | 0.044* | |
H11 | 0.2462 | 0.6228 | 0.0666 | 0.044* | |
C3 | 0.28825 (16) | 0.2874 (2) | −0.11498 (13) | 0.0342 (4) | |
H12 | 0.3085 | 0.3979 | −0.1226 | 0.041* | |
H13 | 0.2132 | 0.2678 | −0.1621 | 0.041* | |
C4 | 0.37594 (16) | 0.1831 (2) | −0.14384 (13) | 0.0343 (4) | |
H14 | 0.3534 | 0.0725 | −0.1405 | 0.041* | |
H15 | 0.3792 | 0.2058 | −0.2147 | 0.041* | |
C5 | 0.22065 (16) | 0.1131 (2) | −0.00284 (14) | 0.0355 (4) | |
H16 | 0.2424 | 0.0354 | −0.0487 | 0.043* | |
H17 | 0.1378 | 0.1309 | −0.0268 | 0.043* | |
C6 | 0.24633 (17) | 0.0466 (2) | 0.10427 (14) | 0.0362 (4) | |
H18 | 0.2230 | 0.1224 | 0.1504 | 0.043* | |
H19 | 0.2022 | −0.0505 | 0.1044 | 0.043* | |
Cl2 | 0.03789 (6) | 0.73386 (9) | 0.38860 (6) | 0.0703 (2) | |
Cl3 | 0.07369 (8) | 0.62211 (16) | 0.19725 (8) | 0.1163 (4) | |
C7 | 0.1040 (2) | 0.7685 (3) | 0.2895 (2) | 0.0630 (7) | |
H20 | 0.0780 | 0.8702 | 0.2574 | 0.076* | |
H21 | 0.1871 | 0.7746 | 0.3178 | 0.076* | |
Cl1 | 0.60198 (4) | 0.24526 (5) | 0.16855 (3) | 0.03439 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0323 (8) | 0.0290 (7) | 0.0272 (7) | −0.0003 (6) | 0.0093 (6) | 0.0019 (6) |
N2 | 0.0442 (9) | 0.0298 (8) | 0.0320 (8) | 0.0009 (7) | 0.0082 (7) | −0.0019 (6) |
N3 | 0.0409 (9) | 0.0321 (8) | 0.0333 (8) | 0.0032 (7) | 0.0132 (7) | 0.0056 (6) |
N4 | 0.0375 (8) | 0.0331 (8) | 0.0276 (7) | 0.0026 (7) | 0.0101 (6) | 0.0001 (6) |
C1 | 0.0329 (10) | 0.0361 (10) | 0.0412 (10) | 0.0026 (8) | 0.0123 (8) | −0.0008 (8) |
C2 | 0.0398 (10) | 0.0306 (9) | 0.0403 (10) | 0.0042 (8) | 0.0127 (8) | 0.0019 (8) |
C3 | 0.0372 (10) | 0.0371 (10) | 0.0285 (9) | 0.0024 (8) | 0.0082 (8) | 0.0051 (7) |
C4 | 0.0394 (10) | 0.0344 (10) | 0.0296 (9) | −0.0016 (8) | 0.0095 (8) | −0.0031 (7) |
C5 | 0.0350 (10) | 0.0347 (10) | 0.0355 (9) | −0.0069 (8) | 0.0065 (8) | 0.0000 (8) |
C6 | 0.0383 (10) | 0.0352 (10) | 0.0382 (10) | −0.0026 (8) | 0.0151 (8) | 0.0037 (8) |
Cl2 | 0.0586 (4) | 0.0835 (5) | 0.0745 (4) | 0.0079 (3) | 0.0269 (3) | 0.0044 (3) |
Cl3 | 0.0780 (6) | 0.1752 (11) | 0.1012 (7) | −0.0436 (6) | 0.0326 (5) | −0.0730 (7) |
C7 | 0.0437 (13) | 0.0711 (17) | 0.0787 (18) | −0.0073 (12) | 0.0239 (13) | −0.0116 (14) |
Cl1 | 0.0357 (3) | 0.0366 (3) | 0.0302 (2) | −0.00045 (18) | 0.00691 (17) | −0.00011 (17) |
N1—C3 | 1.469 (2) | C2—H10 | 0.9900 |
N1—C1 | 1.471 (2) | C2—H11 | 0.9900 |
N1—C5 | 1.471 (2) | C3—C4 | 1.514 (3) |
N2—C2 | 1.467 (2) | C3—H12 | 0.9900 |
N2—H1 | 0.9358 | C3—H13 | 0.9900 |
N2—H2 | 0.9660 | C4—H14 | 0.9900 |
N3—C6 | 1.462 (2) | C4—H15 | 0.9900 |
N3—H3 | 0.8776 | C5—C6 | 1.518 (3) |
N3—H4 | 0.9638 | C5—H16 | 0.9900 |
N4—C4 | 1.480 (2) | C5—H17 | 0.9900 |
N4—H5 | 0.9019 | C6—H18 | 0.9900 |
N4—H6 | 0.9265 | C6—H19 | 0.9900 |
N4—H7 | 1.0244 | Cl2—C7 | 1.751 (3) |
C1—C2 | 1.519 (3) | Cl3—C7 | 1.745 (3) |
C1—H8 | 0.9900 | C7—H20 | 0.9900 |
C1—H9 | 0.9900 | C7—H21 | 0.9900 |
C3—N1—C1 | 111.05 (14) | C4—C3—H12 | 109.2 |
C3—N1—C5 | 110.38 (14) | N1—C3—H13 | 109.2 |
C1—N1—C5 | 110.28 (14) | C4—C3—H13 | 109.2 |
C2—N2—H1 | 111.7 | H12—C3—H13 | 107.9 |
C2—N2—H2 | 107.2 | N4—C4—C3 | 110.89 (15) |
H1—N2—H2 | 110.4 | N4—C4—H14 | 109.5 |
C6—N3—H3 | 106.2 | C3—C4—H14 | 109.5 |
C6—N3—H4 | 110.5 | N4—C4—H15 | 109.5 |
H3—N3—H4 | 110.1 | C3—C4—H15 | 109.5 |
C4—N4—H5 | 119.5 | H14—C4—H15 | 108.0 |
C4—N4—H6 | 113.5 | N1—C5—C6 | 113.30 (15) |
H5—N4—H6 | 103.3 | N1—C5—H16 | 108.9 |
C4—N4—H7 | 111.5 | C6—C5—H16 | 108.9 |
H5—N4—H7 | 105.6 | N1—C5—H17 | 108.9 |
H6—N4—H7 | 101.7 | C6—C5—H17 | 108.9 |
N1—C1—C2 | 113.68 (15) | H16—C5—H17 | 107.7 |
N1—C1—H8 | 108.8 | N3—C6—C5 | 110.71 (15) |
C2—C1—H8 | 108.8 | N3—C6—H18 | 109.5 |
N1—C1—H9 | 108.8 | C5—C6—H18 | 109.5 |
C2—C1—H9 | 108.8 | N3—C6—H19 | 109.5 |
H8—C1—H9 | 107.7 | C5—C6—H19 | 109.5 |
N2—C2—C1 | 115.12 (15) | H18—C6—H19 | 108.1 |
N2—C2—H10 | 108.5 | Cl3—C7—Cl2 | 111.83 (15) |
C1—C2—H10 | 108.5 | Cl3—C7—H20 | 109.2 |
N2—C2—H11 | 108.5 | Cl2—C7—H20 | 109.2 |
C1—C2—H11 | 108.5 | Cl3—C7—H21 | 109.2 |
H10—C2—H11 | 107.5 | Cl2—C7—H21 | 109.2 |
N1—C3—C4 | 112.06 (15) | H20—C7—H21 | 107.9 |
N1—C3—H12 | 109.2 | ||
C3—N1—C1—C2 | −69.7 (2) | N1—C3—C4—N4 | −58.4 (2) |
C5—N1—C1—C2 | 167.57 (15) | C3—N1—C5—C6 | 158.47 (16) |
N1—C1—C2—N2 | −59.7 (2) | C1—N1—C5—C6 | −78.5 (2) |
C1—N1—C3—C4 | 162.77 (15) | N1—C5—C6—N3 | −60.7 (2) |
C5—N1—C3—C4 | −74.60 (19) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1···Cl1 | 0.94 | 2.54 | 3.3897 (17) | 151 |
N2—H2···Cl1i | 0.97 | 2.58 | 3.4402 (16) | 148 |
N3—H3···Cl1ii | 0.88 | 2.57 | 3.4013 (16) | 159 |
N3—H4···Cl1 | 0.96 | 2.55 | 3.4203 (17) | 150 |
N4—H5···Cl1 | 0.90 | 2.42 | 3.2562 (15) | 153 |
N4—H6···N3iii | 0.93 | 1.96 | 2.862 (2) | 165 |
N4—H7···N2iv | 1.02 | 1.73 | 2.746 (2) | 171 |
C4—H14···Cl1iii | 0.99 | 2.82 | 3.7014 (18) | 149 |
C7—H21···Cl1i | 0.99 | 2.54 | 3.482 (3) | 160 |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+1, −y, −z; (iv) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | C6H19N4+·Cl−·CH2Cl2 |
Mr | 267.63 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 200 |
a, b, c (Å) | 12.1512 (4), 8.5686 (2), 13.5497 (3) |
β (°) | 104.273 (2) |
V (Å3) | 1367.23 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.65 |
Crystal size (mm) | 0.17 × 0.17 × 0.17 |
Data collection | |
Diffractometer | Nonius KappaCCD area-detector diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10639, 3130, 2431 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.111, 1.03 |
No. of reflections | 3130 |
No. of parameters | 127 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.51, −0.57 |
Computer programs: COLLECT (Hooft, 2004), SCALEPACK (Otwinowski & Minor, 1997), SCALEPACK and DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 200) and Mercury (Macrae et al., 2006).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H1···Cl1 | 0.94 | 2.54 | 3.3897 (17) | 151 |
N2—H2···Cl1i | 0.97 | 2.58 | 3.4402 (16) | 148 |
N3—H3···Cl1ii | 0.88 | 2.57 | 3.4013 (16) | 159 |
N3—H4···Cl1 | 0.96 | 2.55 | 3.4203 (17) | 150 |
N4—H5···Cl1 | 0.90 | 2.42 | 3.2562 (15) | 153 |
N4—H6···N3iii | 0.93 | 1.96 | 2.862 (2) | 165 |
N4—H7···N2iv | 1.02 | 1.73 | 2.746 (2) | 171 |
C4—H14···Cl1iii | 0.99 | 2.82 | 3.7014 (18) | 149 |
C7—H21···Cl1i | 0.99 | 2.54 | 3.482 (3) | 160 |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) −x+1, −y, −z; (iv) −x+1, −y+1, −z. |
Acknowledgements
MMR thanks the Fonds der Chemischen Industrie (FCI) for a PhD fellowship.
References
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hazell, R. G. & Rasmussen, S. E. (1968). Acta Chem. Scand. 22, 348–350. CrossRef Web of Science Google Scholar
Hooft, R. W. W. (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands. Google Scholar
Ilioudis, C. A., Hancock, K. S. B., Georganopoulou, D. G. & Steed, J. W. (2000). New J. Chem. 24, 787–798. Web of Science CSD CrossRef CAS Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Rasmussen, S. E. & Hazell, R. G. (1963). Acta Chem. Scand. 17, 832–842. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compounds molecular structure is shown in Fig. 1. The ammonium ion does not exhibit any crystallographic symmetry but, excluding the hydrogen atoms, it shows non-crystallographic C3 symmetry.
It has to be assumed that the chloride ion is formed by a nucleophilic substitution reaction between a part of the tris(2-aminoethyl)amine and the solvent dichloromethane.
In the crystal structure, hydrogen bonds between the ammonium and chloride ions and the solvate molecule form two-dimensional networks parallel to the (100) plane (see Fig. 2). The chloride ion is embedded in a framework of seven crystallographically independent hydrogen bonds (see Fig. 3).