organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[Bis(2-amino­ethyl)amino]ethanaminium chloride di­chloro­methane solvate

aLudwig-Maximilians-Universität, Department Chemie und Biochemie, Butenandtstrasse 5–13 (Haus D), 81377 München, Germany
*Correspondence e-mail: kluef@cup.uni-muenchen.de

(Received 20 November 2008; accepted 25 November 2008; online 29 November 2008)

In the title compound, C6H19N4+·Cl·CH2Cl2, the non-H atoms of the ammonium ion show non-crystallographic C3 symmetry. The chloride ion is embedded in a framework of seven crystallographically independent hydrogen bonds (five N—H⋯Cl and two C—H⋯Cl), which form layers parallel to the (100) plane. Two N---H...N bonds also occur.

Related literature

For the crystal structure of N,N,N-tris­(2-ammonio­ethyl)amine trichloride, see: Rasmussen & Hazell (1963[Rasmussen, S. E. & Hazell, R. G. (1963). Acta Chem. Scand. 17, 832-842.]); Hazell & Rasmussen (1968[Hazell, R. G. & Rasmussen, S. E. (1968). Acta Chem. Scand. 22, 348-350.]); Ilioudis et al. (2000[Ilioudis, C. A., Hancock, K. S. B., Georganopoulou, D. G. & Steed, J. W. (2000). New J. Chem. 24, 787-798.]).

[Scheme 1]

Experimental

Crystal data
  • C6H19N4+·Cl·CH2Cl2

  • Mr = 267.63

  • Monoclinic, P 21 /c

  • a = 12.1512 (4) Å

  • b = 8.5686 (2) Å

  • c = 13.5497 (3) Å

  • β = 104.273 (2)°

  • V = 1367.23 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.65 mm−1

  • T = 200 (2) K

  • 0.17 × 0.17 × 0.17 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: none

  • 10639 measured reflections

  • 3130 independent reflections

  • 2431 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.111

  • S = 1.03

  • 3130 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯Cl1 0.94 2.54 3.3897 (17) 151
N2—H2⋯Cl1i 0.97 2.58 3.4402 (16) 148
N3—H3⋯Cl1ii 0.88 2.57 3.4013 (16) 159
N3—H4⋯Cl1 0.96 2.55 3.4203 (17) 150
N4—H5⋯Cl1 0.90 2.42 3.2562 (15) 153
N4—H6⋯N3iii 0.93 1.96 2.862 (2) 165
N4—H7⋯N2iv 1.02 1.73 2.746 (2) 171
C4—H14⋯Cl1iii 0.99 2.82 3.7014 (18) 149
C7—H21⋯Cl1i 0.99 2.54 3.482 (3) 160
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) -x+1, -y, -z; (iv) -x+1, -y+1, -z.

Data collection: COLLECT (Hooft, 2004[Hooft, R. W. W. (2004). COLLECT. Bruker-Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 200[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Comment top

The title compounds molecular structure is shown in Fig. 1. The ammonium ion does not exhibit any crystallographic symmetry but, excluding the hydrogen atoms, it shows non-crystallographic C3 symmetry.

It has to be assumed that the chloride ion is formed by a nucleophilic substitution reaction between a part of the tris(2-aminoethyl)amine and the solvent dichloromethane.

In the crystal structure, hydrogen bonds between the ammonium and chloride ions and the solvate molecule form two-dimensional networks parallel to the (100) plane (see Fig. 2). The chloride ion is embedded in a framework of seven crystallographically independent hydrogen bonds (see Fig. 3).

Related literature top

For the crystal structure of N,N,N-tris(2-ammonioethyl)amine trichloride, see: Rasmussen & Hazell (1963); Hazell & Rasmussen (1968); Ilioudis et al. (2000).

Experimental top

Crystals of the title compound were obtained from a solution of tris(2-aminoethyl)amine (0.15 g, 5.0 mmol) and trimethylborate (0.52 g, 5.0 mmol) in dichloromethane (10 ml) upon slow evaporation of the solvent at room temperature.

Refinement top

All H atoms were found in difference maps. C-bonded H atoms were positioned geometrically (C—H = 0.99 Å) and treated as riding on their parent atoms [Uiso(H) = 1.2Ueq(C)]. N-bonded H atoms were assigned from difference maps and treated as riding on their parent atoms [Uiso(H) = 1.2Ueq(N)].

Computing details top

Data collection: COLLECT (Hooft, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 200) and Mercury (Macrae et al., 2006).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.
[Figure 2] Fig. 2. The packing and the hydrogen-bonded layers in the title compound, viewed along [0 1 0].
[Figure 3] Fig. 3. Hydrogen bonding to Cl1. [Symmetry codes: (i) 1 - x, 1/2 + y, 1/2 - z; (ii) 1 - x, -1/2 + y, 1/2 - z; (iii) 1 - x, -y, -z.]
2-[Bis(2-aminoethyl)amino]ethanaminium chloride dichloromethane solvate top
Crystal data top
C6H19N4+·Cl·CH2Cl2F(000) = 568
Mr = 267.63Dx = 1.300 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 17190 reflections
a = 12.1512 (4) Åθ = 3.1–27.5°
b = 8.5686 (2) ŵ = 0.65 mm1
c = 13.5497 (3) ÅT = 200 K
β = 104.273 (2)°Block, colourless
V = 1367.23 (6) Å30.17 × 0.17 × 0.17 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
2431 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.030
MONTEL, graded multilayered X-ray optics monochromatorθmax = 27.5°, θmin = 3.2°
Detector resolution: 9 pixels mm-1h = 1515
ϕ and ω scansk = 1110
10639 measured reflectionsl = 1717
3130 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: difference Fourier map
wR(F2) = 0.111H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0471P)2 + 0.7878P]
where P = (Fo2 + 2Fc2)/3
3130 reflections(Δ/σ)max < 0.001
127 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
C6H19N4+·Cl·CH2Cl2V = 1367.23 (6) Å3
Mr = 267.63Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.1512 (4) ŵ = 0.65 mm1
b = 8.5686 (2) ÅT = 200 K
c = 13.5497 (3) Å0.17 × 0.17 × 0.17 mm
β = 104.273 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2431 reflections with I > 2σ(I)
10639 measured reflectionsRint = 0.030
3130 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.03Δρmax = 0.51 e Å3
3130 reflectionsΔρmin = 0.57 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.28042 (13)0.26045 (16)0.00985 (11)0.0291 (3)
N20.40189 (14)0.52948 (18)0.11822 (12)0.0355 (4)
H10.43500.43120.11690.043*
H20.38880.54950.18460.043*
N30.36750 (14)0.01291 (18)0.14123 (12)0.0347 (4)
H30.37570.03260.20060.042*
H40.41110.10800.14870.042*
N40.48946 (13)0.20788 (18)0.07457 (11)0.0324 (3)
H50.49730.20550.00660.039*
H60.54350.13730.08430.039*
H70.52400.31190.08900.039*
C10.22269 (16)0.3910 (2)0.02691 (15)0.0362 (4)
H80.20520.36020.09180.043*
H90.14970.41130.02320.043*
C20.29173 (17)0.5407 (2)0.04382 (15)0.0364 (4)
H100.30490.57460.02220.044*
H110.24620.62280.06660.044*
C30.28825 (16)0.2874 (2)0.11498 (13)0.0342 (4)
H120.30850.39790.12260.041*
H130.21320.26780.16210.041*
C40.37594 (16)0.1831 (2)0.14384 (13)0.0343 (4)
H140.35340.07250.14050.041*
H150.37920.20580.21470.041*
C50.22065 (16)0.1131 (2)0.00284 (14)0.0355 (4)
H160.24240.03540.04870.043*
H170.13780.13090.02680.043*
C60.24633 (17)0.0466 (2)0.10427 (14)0.0362 (4)
H180.22300.12240.15040.043*
H190.20220.05050.10440.043*
Cl20.03789 (6)0.73386 (9)0.38860 (6)0.0703 (2)
Cl30.07369 (8)0.62211 (16)0.19725 (8)0.1163 (4)
C70.1040 (2)0.7685 (3)0.2895 (2)0.0630 (7)
H200.07800.87020.25740.076*
H210.18710.77460.31780.076*
Cl10.60198 (4)0.24526 (5)0.16855 (3)0.03439 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0323 (8)0.0290 (7)0.0272 (7)0.0003 (6)0.0093 (6)0.0019 (6)
N20.0442 (9)0.0298 (8)0.0320 (8)0.0009 (7)0.0082 (7)0.0019 (6)
N30.0409 (9)0.0321 (8)0.0333 (8)0.0032 (7)0.0132 (7)0.0056 (6)
N40.0375 (8)0.0331 (8)0.0276 (7)0.0026 (7)0.0101 (6)0.0001 (6)
C10.0329 (10)0.0361 (10)0.0412 (10)0.0026 (8)0.0123 (8)0.0008 (8)
C20.0398 (10)0.0306 (9)0.0403 (10)0.0042 (8)0.0127 (8)0.0019 (8)
C30.0372 (10)0.0371 (10)0.0285 (9)0.0024 (8)0.0082 (8)0.0051 (7)
C40.0394 (10)0.0344 (10)0.0296 (9)0.0016 (8)0.0095 (8)0.0031 (7)
C50.0350 (10)0.0347 (10)0.0355 (9)0.0069 (8)0.0065 (8)0.0000 (8)
C60.0383 (10)0.0352 (10)0.0382 (10)0.0026 (8)0.0151 (8)0.0037 (8)
Cl20.0586 (4)0.0835 (5)0.0745 (4)0.0079 (3)0.0269 (3)0.0044 (3)
Cl30.0780 (6)0.1752 (11)0.1012 (7)0.0436 (6)0.0326 (5)0.0730 (7)
C70.0437 (13)0.0711 (17)0.0787 (18)0.0073 (12)0.0239 (13)0.0116 (14)
Cl10.0357 (3)0.0366 (3)0.0302 (2)0.00045 (18)0.00691 (17)0.00011 (17)
Geometric parameters (Å, º) top
N1—C31.469 (2)C2—H100.9900
N1—C11.471 (2)C2—H110.9900
N1—C51.471 (2)C3—C41.514 (3)
N2—C21.467 (2)C3—H120.9900
N2—H10.9358C3—H130.9900
N2—H20.9660C4—H140.9900
N3—C61.462 (2)C4—H150.9900
N3—H30.8776C5—C61.518 (3)
N3—H40.9638C5—H160.9900
N4—C41.480 (2)C5—H170.9900
N4—H50.9019C6—H180.9900
N4—H60.9265C6—H190.9900
N4—H71.0244Cl2—C71.751 (3)
C1—C21.519 (3)Cl3—C71.745 (3)
C1—H80.9900C7—H200.9900
C1—H90.9900C7—H210.9900
C3—N1—C1111.05 (14)C4—C3—H12109.2
C3—N1—C5110.38 (14)N1—C3—H13109.2
C1—N1—C5110.28 (14)C4—C3—H13109.2
C2—N2—H1111.7H12—C3—H13107.9
C2—N2—H2107.2N4—C4—C3110.89 (15)
H1—N2—H2110.4N4—C4—H14109.5
C6—N3—H3106.2C3—C4—H14109.5
C6—N3—H4110.5N4—C4—H15109.5
H3—N3—H4110.1C3—C4—H15109.5
C4—N4—H5119.5H14—C4—H15108.0
C4—N4—H6113.5N1—C5—C6113.30 (15)
H5—N4—H6103.3N1—C5—H16108.9
C4—N4—H7111.5C6—C5—H16108.9
H5—N4—H7105.6N1—C5—H17108.9
H6—N4—H7101.7C6—C5—H17108.9
N1—C1—C2113.68 (15)H16—C5—H17107.7
N1—C1—H8108.8N3—C6—C5110.71 (15)
C2—C1—H8108.8N3—C6—H18109.5
N1—C1—H9108.8C5—C6—H18109.5
C2—C1—H9108.8N3—C6—H19109.5
H8—C1—H9107.7C5—C6—H19109.5
N2—C2—C1115.12 (15)H18—C6—H19108.1
N2—C2—H10108.5Cl3—C7—Cl2111.83 (15)
C1—C2—H10108.5Cl3—C7—H20109.2
N2—C2—H11108.5Cl2—C7—H20109.2
C1—C2—H11108.5Cl3—C7—H21109.2
H10—C2—H11107.5Cl2—C7—H21109.2
N1—C3—C4112.06 (15)H20—C7—H21107.9
N1—C3—H12109.2
C3—N1—C1—C269.7 (2)N1—C3—C4—N458.4 (2)
C5—N1—C1—C2167.57 (15)C3—N1—C5—C6158.47 (16)
N1—C1—C2—N259.7 (2)C1—N1—C5—C678.5 (2)
C1—N1—C3—C4162.77 (15)N1—C5—C6—N360.7 (2)
C5—N1—C3—C474.60 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···Cl10.942.543.3897 (17)151
N2—H2···Cl1i0.972.583.4402 (16)148
N3—H3···Cl1ii0.882.573.4013 (16)159
N3—H4···Cl10.962.553.4203 (17)150
N4—H5···Cl10.902.423.2562 (15)153
N4—H6···N3iii0.931.962.862 (2)165
N4—H7···N2iv1.021.732.746 (2)171
C4—H14···Cl1iii0.992.823.7014 (18)149
C7—H21···Cl1i0.992.543.482 (3)160
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y, z; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC6H19N4+·Cl·CH2Cl2
Mr267.63
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)12.1512 (4), 8.5686 (2), 13.5497 (3)
β (°) 104.273 (2)
V3)1367.23 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)0.17 × 0.17 × 0.17
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10639, 3130, 2431
Rint0.030
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.111, 1.03
No. of reflections3130
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.57

Computer programs: COLLECT (Hooft, 2004), SCALEPACK (Otwinowski & Minor, 1997), SCALEPACK and DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 200) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1···Cl10.942.543.3897 (17)151
N2—H2···Cl1i0.972.583.4402 (16)148
N3—H3···Cl1ii0.882.573.4013 (16)159
N3—H4···Cl10.962.553.4203 (17)150
N4—H5···Cl10.902.423.2562 (15)153
N4—H6···N3iii0.931.962.862 (2)165
N4—H7···N2iv1.021.732.746 (2)171
C4—H14···Cl1iii0.992.823.7014 (18)149
C7—H21···Cl1i0.992.543.482 (3)160
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x+1, y, z; (iv) x+1, y+1, z.
 

Acknowledgements

MMR thanks the Fonds der Chemischen Industrie (FCI) for a PhD fellowship.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHazell, R. G. & Rasmussen, S. E. (1968). Acta Chem. Scand. 22, 348–350.  CrossRef Web of Science Google Scholar
First citationHooft, R. W. W. (2004). COLLECT. Bruker–Nonius BV, Delft, The Netherlands.  Google Scholar
First citationIlioudis, C. A., Hancock, K. S. B., Georganopoulou, D. G. & Steed, J. W. (2000). New J. Chem. 24, 787–798.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRasmussen, S. E. & Hazell, R. G. (1963). Acta Chem. Scand. 17, 832–842.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds