organic compounds
4-Bromo-N-(di-n-propylcarbamothioyl)benzamide
aDepartment of Chemistry, Faculty of Arts and Science, Mersin University, Mersin, TR 33343, Turkey, bDepartment of Chemistry, University of Paderborn, Paderborn D-33098, Germany, cDepartment of Natural Sciences, Fayetteville State University, Fayetteville, NC 28301, USA, and dDepartment of Chemistry, Faculty of Pharmacy, Mersin University, Mersin, TR 33169, Turkey
*Correspondence e-mail: hakan.arslan.acad@gmail.com
The synthesis of the title compound, C14H19BrN2OS, involves the reaction of 4-bromobenzoyl chloride with potassium thiocyanate in acetone followed by condensation of the resulting 4-bromobenzoyl isothiocyanate with di-n-propylamine. Typical thiourea carbonyl and thiocarbonyl double bonds, as well as shortened C—N bonds, are observed in the title compound. The short C—N bond lengths in the centre of the molecule reveal the effects of resonance in this part of the molecule. The of the title compound contains two crystallographically independent molecules, A and B. There is very little difference between the bond lengths and angles of these molecules. In molecule B, one di-n-propyl group is twisted in a −antiperiplanar conformation with C—C—C—H = −179.1 (3)° and the other adopts a −synclinal conformation with C—C—C—H = −56.7 (4)°; in molecule A the two di-n-propyl groups are twisted in + and −antiperiplanar conformations, with C—C—C—H = −179.9 (3) and 178.2 (3)°, respectively. In the crystal, the molecules are linked into dimeric pairs via pairs of N—H⋯S hydrogen bonds.
Related literature
For synthesis, see: Özer et al. (2009); Mansuroğlu et al. (2008); Uğur et al. (2006); Arslan et al. (2003b, 2006), and references therein. For general background, see: Koch (2001); El Aamrani et al. (1998, 1999); Arslan et al. (2006, 2007a,b). For related compounds, see: Khawar Rauf et al. (2009a,b,c,d); Arslan et al. (2003a, 2004). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536809003511/at2717sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809003511/at2717Isup2.hkl
The title compound was prepared with a procedure similar to that reported in the literature (Arslan et al., 2003b; Özer et al., 2009). A solution of 4-bromobenzoyl chloride (0.01 mol) in acetone (50 ml) was added dropwise to a suspension of potassium thiocyanate (0.01 mol) in acetone (30 ml) (Fig. 3). The reaction mixture was heated under reflux for 30 min, and then cooled to room temperature. A solution of di-n-propylamine (0.01 mol) in acetone (10 ml) was added and the resulting mixture was stirred for 2 h. Hydrochloric acid (0.1 N, 300 ml) was added to the solution, which was then filtered. The solid product was washed with water and purifed by recrystallization from an ethanol–dichloromethane mixture (1:2). Anal. Calcd. for C14H19N2OSBr: C, 48.9; H, 5.6; N, 8.2. Found: C, 48.7; H, 5.4; N, 8.4%.
H atoms were clearly identified in difference syntheses. H atoms attached to nitrogens were located from a difference Fourier map and refined freely. The rest H atoms refined at idealized positions riding on the C atoms with C—H = 0.95–0.99 Å, and Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.
All CH3 H atoms were allowed to rotate but not to tip. For C203 and C204 neither anisotropic
nor split model provided successful results, so an isotropic model was used that gave sensible geometries but some electron density residuals nearby.Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C14H19BrN2OS | F(000) = 1408 |
Mr = 343.28 | Dx = 1.454 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 948 reflections |
a = 21.104 (3) Å | θ = 2.5–26.5° |
b = 9.6940 (12) Å | µ = 2.75 mm−1 |
c = 16.208 (2) Å | T = 120 K |
β = 108.956 (3)° | Needle, colourless |
V = 3135.9 (7) Å3 | 0.48 × 0.18 × 0.17 mm |
Z = 8 |
Bruker SMART APEX diffractometer | 7470 independent reflections |
Radiation source: sealed tube | 4686 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.074 |
ϕ and ω scans | θmax = 27.9°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −27→27 |
Tmin = 0.352, Tmax = 0.652 | k = −12→12 |
27091 measured reflections | l = −21→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.094 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.97 | w = 1/[σ2(Fo2) + (0.0334P)2] where P = (Fo2 + 2Fc2)/3 |
7470 reflections | (Δ/σ)max = 0.001 |
340 parameters | Δρmax = 1.70 e Å−3 |
2 restraints | Δρmin = −0.71 e Å−3 |
C14H19BrN2OS | V = 3135.9 (7) Å3 |
Mr = 343.28 | Z = 8 |
Monoclinic, P21/c | Mo Kα radiation |
a = 21.104 (3) Å | µ = 2.75 mm−1 |
b = 9.6940 (12) Å | T = 120 K |
c = 16.208 (2) Å | 0.48 × 0.18 × 0.17 mm |
β = 108.956 (3)° |
Bruker SMART APEX diffractometer | 7470 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 4686 reflections with I > 2σ(I) |
Tmin = 0.352, Tmax = 0.652 | Rint = 0.074 |
27091 measured reflections |
R[F2 > 2σ(F2)] = 0.043 | 2 restraints |
wR(F2) = 0.094 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.97 | Δρmax = 1.70 e Å−3 |
7470 reflections | Δρmin = −0.71 e Å−3 |
340 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.721214 (18) | 1.21378 (4) | 0.60004 (2) | 0.03477 (11) | |
S1 | 0.83552 (4) | 0.37951 (8) | 0.86296 (5) | 0.02170 (19) | |
O1 | 0.93367 (10) | 0.7028 (2) | 0.81254 (14) | 0.0262 (5) | |
N11 | 0.84288 (12) | 0.5668 (3) | 0.74656 (17) | 0.0183 (6) | |
H1 | 0.7986 (4) | 0.576 (3) | 0.735 (2) | 0.028 (7)* | |
N12 | 0.92646 (12) | 0.4005 (3) | 0.78106 (16) | 0.0204 (6) | |
C101 | 0.87200 (14) | 0.4481 (3) | 0.79479 (19) | 0.0184 (7) | |
C102 | 0.94737 (15) | 0.4434 (3) | 0.7063 (2) | 0.0236 (7) | |
H10A | 0.9965 | 0.4320 | 0.7216 | 0.028* | |
H10B | 0.9368 | 0.5423 | 0.6940 | 0.028* | |
C103 | 0.91272 (16) | 0.3599 (4) | 0.6251 (2) | 0.0277 (8) | |
H10C | 0.9227 | 0.2608 | 0.6378 | 0.033* | |
H10D | 0.8637 | 0.3724 | 0.6093 | 0.033* | |
C104 | 0.93463 (18) | 0.4015 (4) | 0.5486 (2) | 0.0384 (10) | |
H10E | 0.9111 | 0.3449 | 0.4978 | 0.058* | |
H10F | 0.9831 | 0.3877 | 0.5635 | 0.058* | |
H10G | 0.9239 | 0.4990 | 0.5349 | 0.058* | |
C105 | 0.96618 (15) | 0.2880 (3) | 0.8356 (2) | 0.0263 (8) | |
H10H | 0.9928 | 0.2415 | 0.8034 | 0.032* | |
H10I | 0.9353 | 0.2190 | 0.8467 | 0.032* | |
C106 | 1.01386 (16) | 0.3413 (4) | 0.9236 (2) | 0.0321 (9) | |
H10J | 0.9868 | 0.3788 | 0.9581 | 0.039* | |
H10K | 1.0402 | 0.2627 | 0.9564 | 0.039* | |
C107 | 1.06118 (17) | 0.4506 (4) | 0.9145 (2) | 0.0366 (9) | |
H10L | 1.0897 | 0.4801 | 0.9726 | 0.055* | |
H10M | 1.0356 | 0.5298 | 0.8831 | 0.055* | |
H10N | 1.0893 | 0.4136 | 0.8820 | 0.055* | |
C108 | 0.87557 (15) | 0.6931 (3) | 0.76526 (19) | 0.0190 (7) | |
C109 | 0.83589 (14) | 0.8153 (3) | 0.7228 (2) | 0.0177 (7) | |
C110 | 0.85099 (15) | 0.9410 (3) | 0.7660 (2) | 0.0206 (7) | |
H11A | 0.8851 | 0.9452 | 0.8212 | 0.025* | |
C111 | 0.81746 (15) | 1.0591 (3) | 0.7303 (2) | 0.0235 (7) | |
H11B | 0.8271 | 1.1444 | 0.7606 | 0.028* | |
C112 | 0.76883 (16) | 1.0505 (3) | 0.6482 (2) | 0.0231 (7) | |
C113 | 0.75382 (16) | 0.9288 (3) | 0.6034 (2) | 0.0242 (7) | |
H11C | 0.7211 | 0.9258 | 0.5471 | 0.029* | |
C114 | 0.78710 (15) | 0.8097 (3) | 0.6416 (2) | 0.0217 (7) | |
H11D | 0.7764 | 0.7240 | 0.6118 | 0.026* | |
Br2 | 0.784401 (18) | −0.25845 (4) | 0.91522 (2) | 0.03427 (11) | |
S2 | 0.67033 (4) | 0.57023 (9) | 0.65301 (5) | 0.02282 (19) | |
O2 | 0.57058 (10) | 0.2585 (2) | 0.71095 (15) | 0.0286 (5) | |
N21 | 0.66312 (12) | 0.3906 (3) | 0.77447 (17) | 0.0205 (6) | |
H2 | 0.7080 (3) | 0.387 (3) | 0.7894 (19) | 0.028 (7)* | |
N22 | 0.58075 (12) | 0.5590 (3) | 0.73746 (17) | 0.0211 (6) | |
C201 | 0.63477 (15) | 0.5074 (3) | 0.7239 (2) | 0.0198 (7) | |
C202 | 0.53743 (15) | 0.6593 (4) | 0.6759 (2) | 0.0269 (8) | |
H20A | 0.5640 | 0.7136 | 0.6470 | 0.032* | |
H20B | 0.5167 | 0.7236 | 0.7072 | 0.032* | |
C203 | 0.4815 (2) | 0.5730 (5) | 0.6062 (3) | 0.0590 (12)* | |
H20C | 0.5028 | 0.5082 | 0.5760 | 0.071* | |
H20D | 0.4557 | 0.5184 | 0.6359 | 0.071* | |
C204 | 0.4363 (2) | 0.6658 (5) | 0.5424 (3) | 0.0759 (15)* | |
H20E | 0.4023 | 0.6114 | 0.4990 | 0.114* | |
H20F | 0.4620 | 0.7201 | 0.5133 | 0.114* | |
H20G | 0.4143 | 0.7280 | 0.5723 | 0.114* | |
C205 | 0.55988 (16) | 0.5263 (3) | 0.8138 (2) | 0.0265 (8) | |
H20H | 0.5752 | 0.4323 | 0.8348 | 0.032* | |
H20I | 0.5104 | 0.5281 | 0.7965 | 0.032* | |
C206 | 0.58920 (17) | 0.6295 (4) | 0.8863 (2) | 0.0324 (9) | |
H20J | 0.5752 | 0.7236 | 0.8643 | 0.039* | |
H20K | 0.6387 | 0.6253 | 0.9045 | 0.039* | |
C207 | 0.56663 (19) | 0.6012 (4) | 0.9654 (2) | 0.0459 (11) | |
H20L | 0.5861 | 0.6705 | 1.0105 | 0.069* | |
H20M | 0.5817 | 0.5092 | 0.9885 | 0.069* | |
H20N | 0.5176 | 0.6059 | 0.9477 | 0.069* | |
C208 | 0.62915 (15) | 0.2660 (3) | 0.7571 (2) | 0.0211 (7) | |
C209 | 0.66820 (15) | 0.1411 (3) | 0.7984 (2) | 0.0204 (7) | |
C210 | 0.65274 (16) | 0.0172 (3) | 0.7536 (2) | 0.0224 (7) | |
H21A | 0.6184 | 0.0143 | 0.6985 | 0.027* | |
C211 | 0.68704 (16) | −0.1023 (3) | 0.7884 (2) | 0.0238 (7) | |
H21B | 0.6773 | −0.1870 | 0.7574 | 0.029* | |
C212 | 0.73567 (16) | −0.0953 (3) | 0.8693 (2) | 0.0243 (8) | |
C213 | 0.75084 (16) | 0.0257 (3) | 0.9163 (2) | 0.0253 (8) | |
H21C | 0.7836 | 0.0272 | 0.9727 | 0.030* | |
C214 | 0.71721 (15) | 0.1455 (3) | 0.8796 (2) | 0.0234 (7) | |
H21D | 0.7278 | 0.2304 | 0.9102 | 0.028* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0403 (2) | 0.0273 (2) | 0.0392 (2) | 0.01111 (16) | 0.01621 (18) | 0.01217 (16) |
S1 | 0.0196 (4) | 0.0208 (5) | 0.0249 (4) | −0.0010 (3) | 0.0076 (4) | 0.0011 (3) |
O1 | 0.0162 (12) | 0.0206 (13) | 0.0367 (14) | −0.0004 (9) | 0.0017 (11) | −0.0033 (10) |
N11 | 0.0116 (13) | 0.0164 (15) | 0.0267 (15) | −0.0002 (11) | 0.0060 (12) | 0.0009 (12) |
N12 | 0.0174 (14) | 0.0166 (15) | 0.0272 (15) | 0.0022 (11) | 0.0073 (12) | 0.0000 (12) |
C101 | 0.0158 (16) | 0.0162 (17) | 0.0204 (16) | −0.0021 (13) | 0.0017 (13) | −0.0050 (13) |
C102 | 0.0209 (17) | 0.0221 (19) | 0.0317 (19) | 0.0003 (14) | 0.0137 (15) | −0.0016 (15) |
C103 | 0.0283 (19) | 0.025 (2) | 0.0284 (19) | −0.0011 (15) | 0.0067 (16) | −0.0041 (15) |
C104 | 0.039 (2) | 0.048 (3) | 0.029 (2) | −0.0021 (18) | 0.0125 (18) | −0.0080 (18) |
C105 | 0.0205 (17) | 0.022 (2) | 0.035 (2) | 0.0064 (14) | 0.0067 (15) | 0.0009 (15) |
C106 | 0.0219 (18) | 0.033 (2) | 0.038 (2) | 0.0077 (16) | 0.0042 (17) | 0.0048 (17) |
C107 | 0.0246 (19) | 0.040 (2) | 0.042 (2) | 0.0011 (17) | 0.0066 (17) | −0.0095 (18) |
C108 | 0.0212 (18) | 0.0187 (18) | 0.0202 (17) | −0.0016 (14) | 0.0112 (15) | −0.0038 (13) |
C109 | 0.0157 (16) | 0.0189 (18) | 0.0224 (17) | −0.0002 (13) | 0.0118 (14) | 0.0021 (13) |
C110 | 0.0195 (17) | 0.0199 (19) | 0.0227 (17) | −0.0040 (14) | 0.0074 (14) | −0.0020 (14) |
C111 | 0.0244 (18) | 0.0206 (19) | 0.0284 (18) | 0.0001 (14) | 0.0126 (15) | −0.0041 (15) |
C112 | 0.0275 (18) | 0.0176 (19) | 0.0282 (19) | 0.0062 (14) | 0.0147 (16) | 0.0082 (14) |
C113 | 0.0221 (18) | 0.029 (2) | 0.0201 (17) | 0.0004 (15) | 0.0053 (14) | 0.0002 (15) |
C114 | 0.0231 (18) | 0.0190 (19) | 0.0259 (18) | −0.0035 (13) | 0.0119 (15) | −0.0024 (14) |
Br2 | 0.0420 (2) | 0.0286 (2) | 0.0375 (2) | 0.01163 (17) | 0.02020 (18) | 0.01355 (17) |
S2 | 0.0195 (4) | 0.0242 (5) | 0.0263 (4) | 0.0003 (3) | 0.0095 (4) | −0.0001 (4) |
O2 | 0.0177 (12) | 0.0221 (14) | 0.0438 (14) | −0.0028 (10) | 0.0068 (11) | −0.0020 (11) |
N21 | 0.0155 (14) | 0.0159 (15) | 0.0304 (16) | 0.0008 (11) | 0.0076 (13) | −0.0001 (12) |
N22 | 0.0177 (14) | 0.0178 (15) | 0.0284 (15) | 0.0032 (11) | 0.0085 (12) | −0.0002 (12) |
C201 | 0.0156 (16) | 0.0183 (18) | 0.0231 (17) | −0.0028 (13) | 0.0030 (14) | −0.0053 (14) |
C202 | 0.0212 (18) | 0.033 (2) | 0.0246 (19) | 0.0117 (15) | 0.0048 (15) | 0.0006 (15) |
C205 | 0.0226 (18) | 0.026 (2) | 0.037 (2) | 0.0044 (14) | 0.0175 (16) | 0.0030 (16) |
C206 | 0.031 (2) | 0.040 (2) | 0.0271 (19) | −0.0021 (17) | 0.0097 (16) | −0.0020 (17) |
C207 | 0.044 (2) | 0.062 (3) | 0.036 (2) | 0.002 (2) | 0.020 (2) | −0.001 (2) |
C208 | 0.0196 (17) | 0.0200 (19) | 0.0270 (17) | 0.0001 (14) | 0.0121 (15) | −0.0032 (14) |
C209 | 0.0196 (17) | 0.0163 (18) | 0.0287 (18) | −0.0016 (13) | 0.0123 (15) | −0.0001 (14) |
C210 | 0.0209 (18) | 0.024 (2) | 0.0232 (17) | −0.0030 (14) | 0.0080 (15) | −0.0005 (14) |
C211 | 0.0298 (19) | 0.0175 (19) | 0.0277 (19) | 0.0000 (14) | 0.0140 (16) | −0.0014 (14) |
C212 | 0.0262 (18) | 0.021 (2) | 0.0311 (19) | 0.0042 (15) | 0.0171 (16) | 0.0084 (15) |
C213 | 0.0262 (19) | 0.025 (2) | 0.0249 (18) | −0.0016 (15) | 0.0079 (15) | 0.0005 (15) |
C214 | 0.0271 (19) | 0.0182 (19) | 0.0278 (19) | −0.0034 (14) | 0.0130 (16) | −0.0031 (15) |
Br1—C112 | 1.901 (3) | Br2—C212 | 1.902 (3) |
S1—C101 | 1.676 (3) | S2—C201 | 1.678 (3) |
O1—C108 | 1.220 (3) | O2—C208 | 1.221 (3) |
N11—C108 | 1.389 (4) | N21—C208 | 1.386 (4) |
N11—C101 | 1.415 (4) | N21—C201 | 1.412 (4) |
N11—H1 | 0.896 (15) | N21—H2 | 0.899 (14) |
N12—C101 | 1.323 (4) | N22—C201 | 1.327 (4) |
N12—C102 | 1.478 (4) | N22—C205 | 1.476 (4) |
N12—C105 | 1.481 (4) | N22—C202 | 1.477 (4) |
C102—C103 | 1.515 (4) | C202—C203 | 1.582 (5) |
C102—H10A | 0.9900 | C202—H20A | 0.9900 |
C102—H10B | 0.9900 | C202—H20B | 0.9900 |
C103—C104 | 1.512 (4) | C203—C204 | 1.465 (6) |
C103—H10C | 0.9900 | C203—H20C | 0.9900 |
C103—H10D | 0.9900 | C203—H20D | 0.9900 |
C104—H10E | 0.9800 | C204—H20E | 0.9800 |
C104—H10F | 0.9800 | C204—H20F | 0.9800 |
C104—H10G | 0.9800 | C204—H20G | 0.9800 |
C105—C106 | 1.543 (4) | C205—C206 | 1.515 (4) |
C105—H10H | 0.9900 | C205—H20H | 0.9900 |
C105—H10I | 0.9900 | C205—H20I | 0.9900 |
C106—C107 | 1.495 (5) | C206—C207 | 1.529 (4) |
C106—H10J | 0.9900 | C206—H20J | 0.9900 |
C106—H10K | 0.9900 | C206—H20K | 0.9900 |
C107—H10L | 0.9800 | C207—H20L | 0.9800 |
C107—H10M | 0.9800 | C207—H20M | 0.9800 |
C107—H10N | 0.9800 | C207—H20N | 0.9800 |
C108—C109 | 1.484 (4) | C208—C209 | 1.495 (4) |
C109—C114 | 1.384 (4) | C209—C214 | 1.385 (4) |
C109—C110 | 1.390 (4) | C209—C210 | 1.387 (4) |
C110—C111 | 1.371 (4) | C210—C211 | 1.386 (4) |
C110—H11A | 0.9500 | C210—H21A | 0.9500 |
C111—C112 | 1.394 (4) | C211—C212 | 1.380 (4) |
C111—H11B | 0.9500 | C211—H21B | 0.9500 |
C112—C113 | 1.367 (4) | C212—C213 | 1.379 (4) |
C113—C114 | 1.388 (4) | C213—C214 | 1.390 (4) |
C113—H11C | 0.9500 | C213—H21C | 0.9500 |
C114—H11D | 0.9500 | C214—H21D | 0.9500 |
C108—N11—C101 | 120.0 (2) | C208—N21—C201 | 119.2 (3) |
C108—N11—H1 | 112 (2) | C208—N21—H2 | 117 (2) |
C101—N11—H1 | 116 (2) | C201—N21—H2 | 114 (2) |
C101—N12—C102 | 123.2 (3) | C201—N22—C205 | 124.3 (3) |
C101—N12—C105 | 120.7 (3) | C201—N22—C202 | 120.9 (3) |
C102—N12—C105 | 115.8 (2) | C205—N22—C202 | 114.8 (2) |
N12—C101—N11 | 115.8 (3) | N22—C201—N21 | 115.6 (3) |
N12—C101—S1 | 125.7 (2) | N22—C201—S2 | 125.2 (2) |
N11—C101—S1 | 118.5 (2) | N21—C201—S2 | 119.3 (2) |
N12—C102—C103 | 111.9 (2) | N22—C202—C203 | 106.8 (3) |
N12—C102—H10A | 109.2 | N22—C202—H20A | 110.4 |
C103—C102—H10A | 109.2 | C203—C202—H20A | 110.4 |
N12—C102—H10B | 109.2 | N22—C202—H20B | 110.4 |
C103—C102—H10B | 109.2 | C203—C202—H20B | 110.4 |
H10A—C102—H10B | 107.9 | H20A—C202—H20B | 108.6 |
C104—C103—C102 | 112.3 (3) | C204—C203—C202 | 110.1 (4) |
C104—C103—H10C | 109.1 | C204—C203—H20C | 109.6 |
C102—C103—H10C | 109.1 | C202—C203—H20C | 109.6 |
C104—C103—H10D | 109.1 | C204—C203—H20D | 109.6 |
C102—C103—H10D | 109.1 | C202—C203—H20D | 109.6 |
H10C—C103—H10D | 107.9 | H20C—C203—H20D | 108.2 |
C103—C104—H10E | 109.5 | C203—C204—H20E | 109.5 |
C103—C104—H10F | 109.5 | C203—C204—H20F | 109.5 |
H10E—C104—H10F | 109.5 | H20E—C204—H20F | 109.5 |
C103—C104—H10G | 109.5 | C203—C204—H20G | 109.5 |
H10E—C104—H10G | 109.5 | H20E—C204—H20G | 109.5 |
H10F—C104—H10G | 109.5 | H20F—C204—H20G | 109.5 |
N12—C105—C106 | 112.2 (3) | N22—C205—C206 | 110.5 (3) |
N12—C105—H10H | 109.2 | N22—C205—H20H | 109.5 |
C106—C105—H10H | 109.2 | C206—C205—H20H | 109.5 |
N12—C105—H10I | 109.2 | N22—C205—H20I | 109.5 |
C106—C105—H10I | 109.2 | C206—C205—H20I | 109.5 |
H10H—C105—H10I | 107.9 | H20H—C205—H20I | 108.1 |
C107—C106—C105 | 113.8 (3) | C205—C206—C207 | 111.9 (3) |
C107—C106—H10J | 108.8 | C205—C206—H20J | 109.2 |
C105—C106—H10J | 108.8 | C207—C206—H20J | 109.2 |
C107—C106—H10K | 108.8 | C205—C206—H20K | 109.2 |
C105—C106—H10K | 108.8 | C207—C206—H20K | 109.2 |
H10J—C106—H10K | 107.7 | H20J—C206—H20K | 107.9 |
C106—C107—H10L | 109.5 | C206—C207—H20L | 109.5 |
C106—C107—H10M | 109.5 | C206—C207—H20M | 109.5 |
H10L—C107—H10M | 109.5 | H20L—C207—H20M | 109.5 |
C106—C107—H10N | 109.5 | C206—C207—H20N | 109.5 |
H10L—C107—H10N | 109.5 | H20L—C207—H20N | 109.5 |
H10M—C107—H10N | 109.5 | H20M—C207—H20N | 109.5 |
O1—C108—N11 | 122.1 (3) | O2—C208—N21 | 122.1 (3) |
O1—C108—C109 | 122.0 (3) | O2—C208—C209 | 121.8 (3) |
N11—C108—C109 | 115.9 (3) | N21—C208—C209 | 116.2 (3) |
C114—C109—C110 | 119.4 (3) | C214—C209—C210 | 120.0 (3) |
C114—C109—C108 | 122.9 (3) | C214—C209—C208 | 122.3 (3) |
C110—C109—C108 | 117.6 (3) | C210—C209—C208 | 117.7 (3) |
C111—C110—C109 | 121.1 (3) | C211—C210—C209 | 120.5 (3) |
C111—C110—H11A | 119.4 | C211—C210—H21A | 119.7 |
C109—C110—H11A | 119.4 | C209—C210—H21A | 119.7 |
C110—C111—C112 | 118.2 (3) | C212—C211—C210 | 118.4 (3) |
C110—C111—H11B | 120.9 | C212—C211—H21B | 120.8 |
C112—C111—H11B | 120.9 | C210—C211—H21B | 120.8 |
C113—C112—C111 | 122.0 (3) | C213—C212—C211 | 122.3 (3) |
C113—C112—Br1 | 120.0 (2) | C213—C212—Br2 | 119.5 (3) |
C111—C112—Br1 | 117.9 (2) | C211—C212—Br2 | 118.1 (2) |
C112—C113—C114 | 119.0 (3) | C212—C213—C214 | 118.7 (3) |
C112—C113—H11C | 120.5 | C212—C213—H21C | 120.7 |
C114—C113—H11C | 120.5 | C214—C213—H21C | 120.7 |
C109—C114—C113 | 120.2 (3) | C209—C214—C213 | 120.1 (3) |
C109—C114—H11D | 119.9 | C209—C214—H21D | 120.0 |
C113—C114—H11D | 119.9 | C213—C214—H21D | 120.0 |
C102—N12—C101—N11 | −14.7 (4) | C205—N22—C201—N21 | 15.9 (4) |
C105—N12—C101—N11 | 172.2 (3) | C202—N22—C201—N21 | −165.8 (3) |
C102—N12—C101—S1 | 165.0 (2) | C205—N22—C201—S2 | −164.0 (2) |
C105—N12—C101—S1 | −8.1 (4) | C202—N22—C201—S2 | 14.2 (4) |
C108—N11—C101—N12 | −69.6 (4) | C208—N21—C201—N22 | 70.4 (4) |
C108—N11—C101—S1 | 110.7 (3) | C208—N21—C201—S2 | −109.6 (3) |
C101—N12—C102—C103 | −84.6 (4) | C201—N22—C202—C203 | 91.1 (3) |
C105—N12—C102—C103 | 88.8 (3) | C205—N22—C202—C203 | −90.5 (3) |
N12—C102—C103—C104 | −179.1 (3) | N22—C202—C203—C204 | −179.9 (3) |
C101—N12—C105—C106 | −81.1 (4) | C201—N22—C205—C206 | 91.7 (4) |
C102—N12—C105—C106 | 105.3 (3) | C202—N22—C205—C206 | −86.6 (3) |
N12—C105—C106—C107 | −56.6 (4) | N22—C205—C206—C207 | 178.1 (3) |
C101—N11—C108—O1 | 11.9 (4) | C201—N21—C208—O2 | −13.6 (4) |
C101—N11—C108—C109 | −169.3 (2) | C201—N21—C208—C209 | 166.7 (3) |
O1—C108—C109—C114 | 147.1 (3) | O2—C208—C209—C214 | −146.2 (3) |
N11—C108—C109—C114 | −31.8 (4) | N21—C208—C209—C214 | 33.6 (4) |
O1—C108—C109—C110 | −30.3 (4) | O2—C208—C209—C210 | 32.2 (4) |
N11—C108—C109—C110 | 150.9 (3) | N21—C208—C209—C210 | −148.1 (3) |
C114—C109—C110—C111 | 1.3 (4) | C214—C209—C210—C211 | −1.5 (4) |
C108—C109—C110—C111 | 178.7 (3) | C208—C209—C210—C211 | −179.9 (3) |
C109—C110—C111—C112 | −1.6 (4) | C209—C210—C211—C212 | 1.4 (4) |
C110—C111—C112—C113 | 0.4 (5) | C210—C211—C212—C213 | 0.3 (5) |
C110—C111—C112—Br1 | 178.7 (2) | C210—C211—C212—Br2 | −178.1 (2) |
C111—C112—C113—C114 | 1.2 (5) | C211—C212—C213—C214 | −1.9 (5) |
Br1—C112—C113—C114 | −177.1 (2) | Br2—C212—C213—C214 | 176.5 (2) |
C110—C109—C114—C113 | 0.3 (4) | C210—C209—C214—C213 | −0.1 (4) |
C108—C109—C114—C113 | −177.0 (3) | C208—C209—C214—C213 | 178.2 (3) |
C112—C113—C114—C109 | −1.6 (4) | C212—C213—C214—C209 | 1.8 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
N11—H1···S2 | 0.90 (2) | 2.60 (2) | 3.460 (3) | 161 (3) |
N21—H2···S1 | 0.90 (1) | 2.57 (2) | 3.452 (3) | 169 (2) |
Experimental details
Crystal data | |
Chemical formula | C14H19BrN2OS |
Mr | 343.28 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 120 |
a, b, c (Å) | 21.104 (3), 9.6940 (12), 16.208 (2) |
β (°) | 108.956 (3) |
V (Å3) | 3135.9 (7) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 2.75 |
Crystal size (mm) | 0.48 × 0.18 × 0.17 |
Data collection | |
Diffractometer | Bruker SMART APEX diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.352, 0.652 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 27091, 7470, 4686 |
Rint | 0.074 |
(sin θ/λ)max (Å−1) | 0.658 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.094, 0.97 |
No. of reflections | 7470 |
No. of parameters | 340 |
No. of restraints | 2 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.70, −0.71 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N11—H1···S2 | 0.896 (15) | 2.600 (19) | 3.460 (3) | 161 (3) |
N21—H2···S1 | 0.899 (14) | 2.566 (17) | 3.452 (3) | 169 (2) |
Acknowledgements
This work was supported by Mersin University Research Fund [Project Nos. BAP-ECZ-F-TBB-(HA) 2004-3 and BAP-FEF-KB-(NK) 2006-3]. This study is part of the PhD thesis of GB.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Arslan, H., Flörke, U. & Külcü, N. (2003a). Acta Cryst. E59, o641–o642. Web of Science CSD CrossRef IUCr Journals Google Scholar
Arslan, H., Flörke, U. & Külcü, N. (2004). Turk. J. Chem. 28, 673–678. CAS Google Scholar
Arslan, H., Flörke, U. & Külcü, N. (2007a). Spectrochim. Acta A, 67, 936–943. CrossRef Google Scholar
Arslan, H., Flörke, U., Külcü, N. & Binzet, G. (2007b). Spectrochim. Acta A, 68, 1347–1355. CrossRef Google Scholar
Arslan, H., Külcü, N. & Flörke, U. (2003b). Transition Met. Chem. 28, 816–819. Web of Science CSD CrossRef CAS Google Scholar
Arslan, H., Külcü, N. & Flörke, U. (2006). Spectrochim. Acta A, 64, 1065–1071. CrossRef Google Scholar
Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
El Aamrani, F. Z., Kumar, A., Beyer, L., Cortina, J. L. & Sastre, A. M. (1998). Solvent Extr. Ion Exch. 16, 1389–1406. CAS Google Scholar
El Aamrani, F. Z., Kumar, A., Cortina, J. L. & Sastre, A. M. (1999). Anal. Chim. Acta, 382, 205–231. Web of Science CrossRef CAS Google Scholar
Khawar Rauf, M., Bolte, M. & Anwar, S. (2009a). Acta Cryst. E65, o249. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khawar Rauf, M., Bolte, M. & Badshah, A. (2009b). Acta Cryst. E65, o143. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khawar Rauf, M., Bolte, M. & Badshah, A. (2009c). Acta Cryst. E65, o240. Web of Science CSD CrossRef IUCr Journals Google Scholar
Khawar Rauf, M., Bolte, M. & Rauf, A. (2009d). Acta Cryst. E65, o234. Web of Science CSD CrossRef IUCr Journals Google Scholar
Koch, K. R. (2001). Coord. Chem. Rev. 216, 473–488. Web of Science CrossRef Google Scholar
Mansuroğlu, D. S., Arslan, H., Flörke, U. & Külcü, N. (2008). J. Coord. Chem. 61, 3134–3146. Google Scholar
Özer, C. K., Arslan, H., VanDerveer, D. & Binzet, G. (2009). J. Coord. Chem. 62, 266–276. Google Scholar
Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Uğur, D., Arslan, H. & Külcü, N. (2006). Russ. J. Coord. Chem. 32, 669–675. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thiourea derivative ligands and their metal complexes have been one of the highlights in coordination chemistry. The thiourea ligands which contain carbonyl and thiocarbonyl groups are used as reactant for extraction of some transition metal ions (Koch, 2001; El Aamrani et al., 1998, 1999). The structures of thiourea derivatives and its metal complexes have been determined during the last years. The title compound derivative acts as a bidentate ligand coordinating through the S atom and the O atom.
The similar structures of these derivatives palladium, nickel, cobalt, and copper complexes and ligands have been determined in previous studies (Özer et al., 2009; Arslan et al., 2003b, 2006; Mansuroğlu et al., 2008; Uğur et al., 2006). The title compound, 4-bromo-N-(di-n-propylcarbamothioyl)benzamide, (I), is another example of our newly synthesized thiourea derivatives that contains both aryl and alkyl groups.
The molecular structure of the title compound is depicted in Fig. 1. The asymmetric unit of the title compound contains two crystallographically independent molecules A (atom numbering 1xx) and B (2xx). There is very little difference between the bond lengths and angles of these molecules.
The typical thiourea carbonyl and thiocarbonyl double bonds as well as shortened C—N bond lengths are observed in the title compound. These bond lengths in the title compound are comparable to those of related structures; 1-(4-chlorobenzoyl)-3-(2,4,6-trichlorophenyl)thiourea (Khawar Rauf et al., 2009b), 1-(3-chlorophenyl)-3-(2,6-dichlorobenzoyl)thiourea (Khawar Rauf et al., 2009d), 1-(3-chlorobenzoyl)-3-(2,3-dimethylphenyl)thiourea (Khawar Rauf et al., 2009c), 1-(2,6-dichlorobenzoyl)-3-(2,3,5,6-tetrachlorophenyl)thiourea (Khawar Rauf et al., 2009a), N'-(4-chlorobenzoyl)-N,N-diphenylthiourea (Arslan et al., 2003a), 1-(2-chloro-benzoyl)-3-p-tolyl-thiourea (Arslan et al., 2004), N,N-dimethyl-N-(2-chlorobenzoyl)thiourea (Arslan et al., 2006), o-ethylbenzoylthiocarbamate (Arslan et al., 2007a), 2-chloro-N-(diethylcarbamothioyl)benzamide (Arslan et al., 2007b). The other bond lengths in (I) show normal values (Allen et al., 1987).
The conformation of the title molecule with respect to the thiocarbonyl and carbonyl moieties is twisted, as reflected by the C101—N11—C108—O1, C108—N11—C101—S1, C108—N11—C101—N12, C201—N21—C208—O2, C208—N21—C201—S2, and C208—N21—C201—N22 torsion angles of 11.9 (5), 110.7 (3), -69.6 (4), -13.6 (5), -109.6 (3), and 70.5 (4)°, respectively. In addition, the difference in the torsion angles can be attributed to the different conformations of the two independent molecules.
The two di-n-propyl groups in independent molecules A (atom numbering 1xx) are twisted in a + and - antiperiplanar conformation with -179.9 (3)° and 178.2 (3)°. In the independent molecule B (atom numbering 2xx), one di-n-propyl group is twisted in a - antiperiplanar conformation with -179.1 (3)° and the other di-n-propyl group adopts a - synclinal conformation with -56.7 (4)°.
The phenyl rings and central thiourea S1—N11—N12—C101 [largest dev. 0.002 (3) Å for C101] and S2—N21—N22—C201 [largest dev. -0.001 (3) Å for C201] fragments are each essentially planar. The dihedral angle between the 4-bromophenyl ring and the plane S1/N11/N12/C101 is 84.88 (15)°, and the dihedral angle between the 4-bromophenyl ring and the plane S2/N21/N22/C201 is 82.53 (16)°.
The molecules of title compound are linked by paired N—H···S hydrogen bonds into centrosymmetric dimers. Details of the symmetry codes and hydrogen bonding are given in Table 1 and Fig. 2.