organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages o452-o453

4-Bromo-N-(di-n-propyl­carbamo­thioyl)­benzamide

aDepartment of Chemistry, Faculty of Arts and Science, Mersin University, Mersin, TR 33343, Turkey, bDepartment of Chemistry, University of Paderborn, Paderborn D-33098, Germany, cDepartment of Natural Sciences, Fayetteville State University, Fayetteville, NC 28301, USA, and dDepartment of Chemistry, Faculty of Pharmacy, Mersin University, Mersin, TR 33169, Turkey
*Correspondence e-mail: hakan.arslan.acad@gmail.com

(Received 26 January 2009; accepted 28 January 2009; online 4 February 2009)

The synthesis of the title compound, C14H19BrN2OS, involves the reaction of 4-bromo­benzoyl chloride with potassium thio­cyanate in acetone followed by condensation of the resulting 4-bromo­benzoyl isothio­cyanate with di-n-propyl­amine. Typical thio­urea carbonyl and thio­carbonyl double bonds, as well as shortened C—N bonds, are observed in the title compound. The short C—N bond lengths in the centre of the mol­ecule reveal the effects of resonance in this part of the mol­ecule. The asymmetric unit of the title compound contains two crystallographically independent mol­ecules, A and B. There is very little difference between the bond lengths and angles of these mol­ecules. In mol­ecule B, one di-n-propyl group is twisted in a −anti­periplanar conformation with C—C—C—H = −179.1 (3)° and the other adopts a −synclinal conformation with C—C—C—H = −56.7 (4)°; in mol­ecule A the two di-n-propyl groups are twisted in + and −anti­periplanar conformations, with C—C—C—H = −179.9 (3) and 178.2 (3)°, respectively. In the crystal, the mol­ecules are linked into dimeric pairs via pairs of N—H⋯S hydrogen bonds.

Related literature

For synthesis, see: Özer et al. (2009[Özer, C. K., Arslan, H., VanDerveer, D. & Binzet, G. (2009). J. Coord. Chem. 62, 266-276.]); Mansuroğlu et al. (2008[Mansuroğlu, D. S., Arslan, H., Flörke, U. & Külcü, N. (2008). J. Coord. Chem. 61, 3134-3146.]); Uğur et al. (2006[Uğur, D., Arslan, H. & Külcü, N. (2006). Russ. J. Coord. Chem. 32, 669-675.]); Arslan et al. (2003b[Arslan, H., Külcü, N. & Flörke, U. (2003b). Transition Met. Chem. 28, 816-819.], 2006[Arslan, H., Külcü, N. & Flörke, U. (2006). Spectrochim. Acta A, 64, 1065-1071.]), and references therein. For general background, see: Koch (2001[Koch, K. R. (2001). Coord. Chem. Rev. 216, 473-488.]); El Aamrani et al. (1998[El Aamrani, F. Z., Kumar, A., Beyer, L., Cortina, J. L. & Sastre, A. M. (1998). Solvent Extr. Ion Exch. 16, 1389-1406.], 1999[El Aamrani, F. Z., Kumar, A., Cortina, J. L. & Sastre, A. M. (1999). Anal. Chim. Acta, 382, 205-231.]); Arslan et al. (2006[Arslan, H., Külcü, N. & Flörke, U. (2006). Spectrochim. Acta A, 64, 1065-1071.], 2007a[Arslan, H., Flörke, U. & Külcü, N. (2007a). Spectrochim. Acta A, 67, 936-943.],b[Arslan, H., Flörke, U., Külcü, N. & Binzet, G. (2007b). Spectrochim. Acta A, 68, 1347-1355.]). For related compounds, see: Khawar Rauf et al. (2009a[Khawar Rauf, M., Bolte, M. & Anwar, S. (2009a). Acta Cryst. E65, o249.],b[Khawar Rauf, M., Bolte, M. & Badshah, A. (2009b). Acta Cryst. E65, o143.],c[Khawar Rauf, M., Bolte, M. & Badshah, A. (2009c). Acta Cryst. E65, o240.],d[Khawar Rauf, M., Bolte, M. & Rauf, A. (2009d). Acta Cryst. E65, o234.]); Arslan et al. (2003a[Arslan, H., Flörke, U. & Külcü, N. (2003a). Acta Cryst. E59, o641-o642.], 2004[Arslan, H., Flörke, U. & Külcü, N. (2004). Turk. J. Chem. 28, 673-678.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H19BrN2OS

  • Mr = 343.28

  • Monoclinic, P 21 /c

  • a = 21.104 (3) Å

  • b = 9.6940 (12) Å

  • c = 16.208 (2) Å

  • β = 108.956 (3)°

  • V = 3135.9 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.75 mm−1

  • T = 120 (2) K

  • 0.48 × 0.18 × 0.17 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.352, Tmax = 0.652

  • 27091 measured reflections

  • 7470 independent reflections

  • 4686 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.094

  • S = 0.97

  • 7470 reflections

  • 340 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.70 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H1⋯S2 0.896 (15) 2.600 (19) 3.460 (3) 161 (3)
N21—H2⋯S1 0.899 (14) 2.566 (17) 3.452 (3) 169 (2)

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiourea derivative ligands and their metal complexes have been one of the highlights in coordination chemistry. The thiourea ligands which contain carbonyl and thiocarbonyl groups are used as reactant for extraction of some transition metal ions (Koch, 2001; El Aamrani et al., 1998, 1999). The structures of thiourea derivatives and its metal complexes have been determined during the last years. The title compound derivative acts as a bidentate ligand coordinating through the S atom and the O atom.

The similar structures of these derivatives palladium, nickel, cobalt, and copper complexes and ligands have been determined in previous studies (Özer et al., 2009; Arslan et al., 2003b, 2006; Mansuroğlu et al., 2008; Uğur et al., 2006). The title compound, 4-bromo-N-(di-n-propylcarbamothioyl)benzamide, (I), is another example of our newly synthesized thiourea derivatives that contains both aryl and alkyl groups.

The molecular structure of the title compound is depicted in Fig. 1. The asymmetric unit of the title compound contains two crystallographically independent molecules A (atom numbering 1xx) and B (2xx). There is very little difference between the bond lengths and angles of these molecules.

The typical thiourea carbonyl and thiocarbonyl double bonds as well as shortened C—N bond lengths are observed in the title compound. These bond lengths in the title compound are comparable to those of related structures; 1-(4-chlorobenzoyl)-3-(2,4,6-trichlorophenyl)thiourea (Khawar Rauf et al., 2009b), 1-(3-chlorophenyl)-3-(2,6-dichlorobenzoyl)thiourea (Khawar Rauf et al., 2009d), 1-(3-chlorobenzoyl)-3-(2,3-dimethylphenyl)thiourea (Khawar Rauf et al., 2009c), 1-(2,6-dichlorobenzoyl)-3-(2,3,5,6-tetrachlorophenyl)thiourea (Khawar Rauf et al., 2009a), N'-(4-chlorobenzoyl)-N,N-diphenylthiourea (Arslan et al., 2003a), 1-(2-chloro-benzoyl)-3-p-tolyl-thiourea (Arslan et al., 2004), N,N-dimethyl-N-(2-chlorobenzoyl)thiourea (Arslan et al., 2006), o-ethylbenzoylthiocarbamate (Arslan et al., 2007a), 2-chloro-N-(diethylcarbamothioyl)benzamide (Arslan et al., 2007b). The other bond lengths in (I) show normal values (Allen et al., 1987).

The conformation of the title molecule with respect to the thiocarbonyl and carbonyl moieties is twisted, as reflected by the C101—N11—C108—O1, C108—N11—C101—S1, C108—N11—C101—N12, C201—N21—C208—O2, C208—N21—C201—S2, and C208—N21—C201—N22 torsion angles of 11.9 (5), 110.7 (3), -69.6 (4), -13.6 (5), -109.6 (3), and 70.5 (4)°, respectively. In addition, the difference in the torsion angles can be attributed to the different conformations of the two independent molecules.

The two di-n-propyl groups in independent molecules A (atom numbering 1xx) are twisted in a + and - antiperiplanar conformation with -179.9 (3)° and 178.2 (3)°. In the independent molecule B (atom numbering 2xx), one di-n-propyl group is twisted in a - antiperiplanar conformation with -179.1 (3)° and the other di-n-propyl group adopts a - synclinal conformation with -56.7 (4)°.

The phenyl rings and central thiourea S1—N11—N12—C101 [largest dev. 0.002 (3) Å for C101] and S2—N21—N22—C201 [largest dev. -0.001 (3) Å for C201] fragments are each essentially planar. The dihedral angle between the 4-bromophenyl ring and the plane S1/N11/N12/C101 is 84.88 (15)°, and the dihedral angle between the 4-bromophenyl ring and the plane S2/N21/N22/C201 is 82.53 (16)°.

The molecules of title compound are linked by paired N—H···S hydrogen bonds into centrosymmetric dimers. Details of the symmetry codes and hydrogen bonding are given in Table 1 and Fig. 2.

Related literature top

For synthesis, see: Özer et al. (2009); Mansuroğlu et al. (2008); Uğur et al. (2006); Arslan et al. (2003b, 2006), and references therein. For general background, see: Koch (2001); El Aamrani et al. (1998, 1999); Arslan et al. (2006, 2007a,b). For related compounds, see: Khawar Rauf et al. (2009a,b,c,d); Arslan et al. (2003a, 2004). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared with a procedure similar to that reported in the literature (Arslan et al., 2003b; Özer et al., 2009). A solution of 4-bromobenzoyl chloride (0.01 mol) in acetone (50 ml) was added dropwise to a suspension of potassium thiocyanate (0.01 mol) in acetone (30 ml) (Fig. 3). The reaction mixture was heated under reflux for 30 min, and then cooled to room temperature. A solution of di-n-propylamine (0.01 mol) in acetone (10 ml) was added and the resulting mixture was stirred for 2 h. Hydrochloric acid (0.1 N, 300 ml) was added to the solution, which was then filtered. The solid product was washed with water and purifed by recrystallization from an ethanol–dichloromethane mixture (1:2). Anal. Calcd. for C14H19N2OSBr: C, 48.9; H, 5.6; N, 8.2. Found: C, 48.7; H, 5.4; N, 8.4%.

Refinement top

H atoms were clearly identified in difference syntheses. H atoms attached to nitrogens were located from a difference Fourier map and refined freely. The rest H atoms refined at idealized positions riding on the C atoms with C—H = 0.95–0.99 Å, and Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

All CH3 H atoms were allowed to rotate but not to tip. For C203 and C204 neither anisotropic refinement nor split model provided successful results, so an isotropic model was used that gave sensible geometries but some electron density residuals nearby.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. The formation of the title compound.
4-Bromo-N-(di-n-propylcarbamothioyl)benzamide top
Crystal data top
C14H19BrN2OSF(000) = 1408
Mr = 343.28Dx = 1.454 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 948 reflections
a = 21.104 (3) Åθ = 2.5–26.5°
b = 9.6940 (12) ŵ = 2.75 mm1
c = 16.208 (2) ÅT = 120 K
β = 108.956 (3)°Needle, colourless
V = 3135.9 (7) Å30.48 × 0.18 × 0.17 mm
Z = 8
Data collection top
Bruker SMART APEX
diffractometer
7470 independent reflections
Radiation source: sealed tube4686 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
ϕ and ω scansθmax = 27.9°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 2727
Tmin = 0.352, Tmax = 0.652k = 1212
27091 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: difference Fourier map
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 0.97 w = 1/[σ2(Fo2) + (0.0334P)2]
where P = (Fo2 + 2Fc2)/3
7470 reflections(Δ/σ)max = 0.001
340 parametersΔρmax = 1.70 e Å3
2 restraintsΔρmin = 0.71 e Å3
Crystal data top
C14H19BrN2OSV = 3135.9 (7) Å3
Mr = 343.28Z = 8
Monoclinic, P21/cMo Kα radiation
a = 21.104 (3) ŵ = 2.75 mm1
b = 9.6940 (12) ÅT = 120 K
c = 16.208 (2) Å0.48 × 0.18 × 0.17 mm
β = 108.956 (3)°
Data collection top
Bruker SMART APEX
diffractometer
7470 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
4686 reflections with I > 2σ(I)
Tmin = 0.352, Tmax = 0.652Rint = 0.074
27091 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0432 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 1.70 e Å3
7470 reflectionsΔρmin = 0.71 e Å3
340 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.721214 (18)1.21378 (4)0.60004 (2)0.03477 (11)
S10.83552 (4)0.37951 (8)0.86296 (5)0.02170 (19)
O10.93367 (10)0.7028 (2)0.81254 (14)0.0262 (5)
N110.84288 (12)0.5668 (3)0.74656 (17)0.0183 (6)
H10.7986 (4)0.576 (3)0.735 (2)0.028 (7)*
N120.92646 (12)0.4005 (3)0.78106 (16)0.0204 (6)
C1010.87200 (14)0.4481 (3)0.79479 (19)0.0184 (7)
C1020.94737 (15)0.4434 (3)0.7063 (2)0.0236 (7)
H10A0.99650.43200.72160.028*
H10B0.93680.54230.69400.028*
C1030.91272 (16)0.3599 (4)0.6251 (2)0.0277 (8)
H10C0.92270.26080.63780.033*
H10D0.86370.37240.60930.033*
C1040.93463 (18)0.4015 (4)0.5486 (2)0.0384 (10)
H10E0.91110.34490.49780.058*
H10F0.98310.38770.56350.058*
H10G0.92390.49900.53490.058*
C1050.96618 (15)0.2880 (3)0.8356 (2)0.0263 (8)
H10H0.99280.24150.80340.032*
H10I0.93530.21900.84670.032*
C1061.01386 (16)0.3413 (4)0.9236 (2)0.0321 (9)
H10J0.98680.37880.95810.039*
H10K1.04020.26270.95640.039*
C1071.06118 (17)0.4506 (4)0.9145 (2)0.0366 (9)
H10L1.08970.48010.97260.055*
H10M1.03560.52980.88310.055*
H10N1.08930.41360.88200.055*
C1080.87557 (15)0.6931 (3)0.76526 (19)0.0190 (7)
C1090.83589 (14)0.8153 (3)0.7228 (2)0.0177 (7)
C1100.85099 (15)0.9410 (3)0.7660 (2)0.0206 (7)
H11A0.88510.94520.82120.025*
C1110.81746 (15)1.0591 (3)0.7303 (2)0.0235 (7)
H11B0.82711.14440.76060.028*
C1120.76883 (16)1.0505 (3)0.6482 (2)0.0231 (7)
C1130.75382 (16)0.9288 (3)0.6034 (2)0.0242 (7)
H11C0.72110.92580.54710.029*
C1140.78710 (15)0.8097 (3)0.6416 (2)0.0217 (7)
H11D0.77640.72400.61180.026*
Br20.784401 (18)0.25845 (4)0.91522 (2)0.03427 (11)
S20.67033 (4)0.57023 (9)0.65301 (5)0.02282 (19)
O20.57058 (10)0.2585 (2)0.71095 (15)0.0286 (5)
N210.66312 (12)0.3906 (3)0.77447 (17)0.0205 (6)
H20.7080 (3)0.387 (3)0.7894 (19)0.028 (7)*
N220.58075 (12)0.5590 (3)0.73746 (17)0.0211 (6)
C2010.63477 (15)0.5074 (3)0.7239 (2)0.0198 (7)
C2020.53743 (15)0.6593 (4)0.6759 (2)0.0269 (8)
H20A0.56400.71360.64700.032*
H20B0.51670.72360.70720.032*
C2030.4815 (2)0.5730 (5)0.6062 (3)0.0590 (12)*
H20C0.50280.50820.57600.071*
H20D0.45570.51840.63590.071*
C2040.4363 (2)0.6658 (5)0.5424 (3)0.0759 (15)*
H20E0.40230.61140.49900.114*
H20F0.46200.72010.51330.114*
H20G0.41430.72800.57230.114*
C2050.55988 (16)0.5263 (3)0.8138 (2)0.0265 (8)
H20H0.57520.43230.83480.032*
H20I0.51040.52810.79650.032*
C2060.58920 (17)0.6295 (4)0.8863 (2)0.0324 (9)
H20J0.57520.72360.86430.039*
H20K0.63870.62530.90450.039*
C2070.56663 (19)0.6012 (4)0.9654 (2)0.0459 (11)
H20L0.58610.67051.01050.069*
H20M0.58170.50920.98850.069*
H20N0.51760.60590.94770.069*
C2080.62915 (15)0.2660 (3)0.7571 (2)0.0211 (7)
C2090.66820 (15)0.1411 (3)0.7984 (2)0.0204 (7)
C2100.65274 (16)0.0172 (3)0.7536 (2)0.0224 (7)
H21A0.61840.01430.69850.027*
C2110.68704 (16)0.1023 (3)0.7884 (2)0.0238 (7)
H21B0.67730.18700.75740.029*
C2120.73567 (16)0.0953 (3)0.8693 (2)0.0243 (8)
C2130.75084 (16)0.0257 (3)0.9163 (2)0.0253 (8)
H21C0.78360.02720.97270.030*
C2140.71721 (15)0.1455 (3)0.8796 (2)0.0234 (7)
H21D0.72780.23040.91020.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0403 (2)0.0273 (2)0.0392 (2)0.01111 (16)0.01621 (18)0.01217 (16)
S10.0196 (4)0.0208 (5)0.0249 (4)0.0010 (3)0.0076 (4)0.0011 (3)
O10.0162 (12)0.0206 (13)0.0367 (14)0.0004 (9)0.0017 (11)0.0033 (10)
N110.0116 (13)0.0164 (15)0.0267 (15)0.0002 (11)0.0060 (12)0.0009 (12)
N120.0174 (14)0.0166 (15)0.0272 (15)0.0022 (11)0.0073 (12)0.0000 (12)
C1010.0158 (16)0.0162 (17)0.0204 (16)0.0021 (13)0.0017 (13)0.0050 (13)
C1020.0209 (17)0.0221 (19)0.0317 (19)0.0003 (14)0.0137 (15)0.0016 (15)
C1030.0283 (19)0.025 (2)0.0284 (19)0.0011 (15)0.0067 (16)0.0041 (15)
C1040.039 (2)0.048 (3)0.029 (2)0.0021 (18)0.0125 (18)0.0080 (18)
C1050.0205 (17)0.022 (2)0.035 (2)0.0064 (14)0.0067 (15)0.0009 (15)
C1060.0219 (18)0.033 (2)0.038 (2)0.0077 (16)0.0042 (17)0.0048 (17)
C1070.0246 (19)0.040 (2)0.042 (2)0.0011 (17)0.0066 (17)0.0095 (18)
C1080.0212 (18)0.0187 (18)0.0202 (17)0.0016 (14)0.0112 (15)0.0038 (13)
C1090.0157 (16)0.0189 (18)0.0224 (17)0.0002 (13)0.0118 (14)0.0021 (13)
C1100.0195 (17)0.0199 (19)0.0227 (17)0.0040 (14)0.0074 (14)0.0020 (14)
C1110.0244 (18)0.0206 (19)0.0284 (18)0.0001 (14)0.0126 (15)0.0041 (15)
C1120.0275 (18)0.0176 (19)0.0282 (19)0.0062 (14)0.0147 (16)0.0082 (14)
C1130.0221 (18)0.029 (2)0.0201 (17)0.0004 (15)0.0053 (14)0.0002 (15)
C1140.0231 (18)0.0190 (19)0.0259 (18)0.0035 (13)0.0119 (15)0.0024 (14)
Br20.0420 (2)0.0286 (2)0.0375 (2)0.01163 (17)0.02020 (18)0.01355 (17)
S20.0195 (4)0.0242 (5)0.0263 (4)0.0003 (3)0.0095 (4)0.0001 (4)
O20.0177 (12)0.0221 (14)0.0438 (14)0.0028 (10)0.0068 (11)0.0020 (11)
N210.0155 (14)0.0159 (15)0.0304 (16)0.0008 (11)0.0076 (13)0.0001 (12)
N220.0177 (14)0.0178 (15)0.0284 (15)0.0032 (11)0.0085 (12)0.0002 (12)
C2010.0156 (16)0.0183 (18)0.0231 (17)0.0028 (13)0.0030 (14)0.0053 (14)
C2020.0212 (18)0.033 (2)0.0246 (19)0.0117 (15)0.0048 (15)0.0006 (15)
C2050.0226 (18)0.026 (2)0.037 (2)0.0044 (14)0.0175 (16)0.0030 (16)
C2060.031 (2)0.040 (2)0.0271 (19)0.0021 (17)0.0097 (16)0.0020 (17)
C2070.044 (2)0.062 (3)0.036 (2)0.002 (2)0.020 (2)0.001 (2)
C2080.0196 (17)0.0200 (19)0.0270 (17)0.0001 (14)0.0121 (15)0.0032 (14)
C2090.0196 (17)0.0163 (18)0.0287 (18)0.0016 (13)0.0123 (15)0.0001 (14)
C2100.0209 (18)0.024 (2)0.0232 (17)0.0030 (14)0.0080 (15)0.0005 (14)
C2110.0298 (19)0.0175 (19)0.0277 (19)0.0000 (14)0.0140 (16)0.0014 (14)
C2120.0262 (18)0.021 (2)0.0311 (19)0.0042 (15)0.0171 (16)0.0084 (15)
C2130.0262 (19)0.025 (2)0.0249 (18)0.0016 (15)0.0079 (15)0.0005 (15)
C2140.0271 (19)0.0182 (19)0.0278 (19)0.0034 (14)0.0130 (16)0.0031 (15)
Geometric parameters (Å, º) top
Br1—C1121.901 (3)Br2—C2121.902 (3)
S1—C1011.676 (3)S2—C2011.678 (3)
O1—C1081.220 (3)O2—C2081.221 (3)
N11—C1081.389 (4)N21—C2081.386 (4)
N11—C1011.415 (4)N21—C2011.412 (4)
N11—H10.896 (15)N21—H20.899 (14)
N12—C1011.323 (4)N22—C2011.327 (4)
N12—C1021.478 (4)N22—C2051.476 (4)
N12—C1051.481 (4)N22—C2021.477 (4)
C102—C1031.515 (4)C202—C2031.582 (5)
C102—H10A0.9900C202—H20A0.9900
C102—H10B0.9900C202—H20B0.9900
C103—C1041.512 (4)C203—C2041.465 (6)
C103—H10C0.9900C203—H20C0.9900
C103—H10D0.9900C203—H20D0.9900
C104—H10E0.9800C204—H20E0.9800
C104—H10F0.9800C204—H20F0.9800
C104—H10G0.9800C204—H20G0.9800
C105—C1061.543 (4)C205—C2061.515 (4)
C105—H10H0.9900C205—H20H0.9900
C105—H10I0.9900C205—H20I0.9900
C106—C1071.495 (5)C206—C2071.529 (4)
C106—H10J0.9900C206—H20J0.9900
C106—H10K0.9900C206—H20K0.9900
C107—H10L0.9800C207—H20L0.9800
C107—H10M0.9800C207—H20M0.9800
C107—H10N0.9800C207—H20N0.9800
C108—C1091.484 (4)C208—C2091.495 (4)
C109—C1141.384 (4)C209—C2141.385 (4)
C109—C1101.390 (4)C209—C2101.387 (4)
C110—C1111.371 (4)C210—C2111.386 (4)
C110—H11A0.9500C210—H21A0.9500
C111—C1121.394 (4)C211—C2121.380 (4)
C111—H11B0.9500C211—H21B0.9500
C112—C1131.367 (4)C212—C2131.379 (4)
C113—C1141.388 (4)C213—C2141.390 (4)
C113—H11C0.9500C213—H21C0.9500
C114—H11D0.9500C214—H21D0.9500
C108—N11—C101120.0 (2)C208—N21—C201119.2 (3)
C108—N11—H1112 (2)C208—N21—H2117 (2)
C101—N11—H1116 (2)C201—N21—H2114 (2)
C101—N12—C102123.2 (3)C201—N22—C205124.3 (3)
C101—N12—C105120.7 (3)C201—N22—C202120.9 (3)
C102—N12—C105115.8 (2)C205—N22—C202114.8 (2)
N12—C101—N11115.8 (3)N22—C201—N21115.6 (3)
N12—C101—S1125.7 (2)N22—C201—S2125.2 (2)
N11—C101—S1118.5 (2)N21—C201—S2119.3 (2)
N12—C102—C103111.9 (2)N22—C202—C203106.8 (3)
N12—C102—H10A109.2N22—C202—H20A110.4
C103—C102—H10A109.2C203—C202—H20A110.4
N12—C102—H10B109.2N22—C202—H20B110.4
C103—C102—H10B109.2C203—C202—H20B110.4
H10A—C102—H10B107.9H20A—C202—H20B108.6
C104—C103—C102112.3 (3)C204—C203—C202110.1 (4)
C104—C103—H10C109.1C204—C203—H20C109.6
C102—C103—H10C109.1C202—C203—H20C109.6
C104—C103—H10D109.1C204—C203—H20D109.6
C102—C103—H10D109.1C202—C203—H20D109.6
H10C—C103—H10D107.9H20C—C203—H20D108.2
C103—C104—H10E109.5C203—C204—H20E109.5
C103—C104—H10F109.5C203—C204—H20F109.5
H10E—C104—H10F109.5H20E—C204—H20F109.5
C103—C104—H10G109.5C203—C204—H20G109.5
H10E—C104—H10G109.5H20E—C204—H20G109.5
H10F—C104—H10G109.5H20F—C204—H20G109.5
N12—C105—C106112.2 (3)N22—C205—C206110.5 (3)
N12—C105—H10H109.2N22—C205—H20H109.5
C106—C105—H10H109.2C206—C205—H20H109.5
N12—C105—H10I109.2N22—C205—H20I109.5
C106—C105—H10I109.2C206—C205—H20I109.5
H10H—C105—H10I107.9H20H—C205—H20I108.1
C107—C106—C105113.8 (3)C205—C206—C207111.9 (3)
C107—C106—H10J108.8C205—C206—H20J109.2
C105—C106—H10J108.8C207—C206—H20J109.2
C107—C106—H10K108.8C205—C206—H20K109.2
C105—C106—H10K108.8C207—C206—H20K109.2
H10J—C106—H10K107.7H20J—C206—H20K107.9
C106—C107—H10L109.5C206—C207—H20L109.5
C106—C107—H10M109.5C206—C207—H20M109.5
H10L—C107—H10M109.5H20L—C207—H20M109.5
C106—C107—H10N109.5C206—C207—H20N109.5
H10L—C107—H10N109.5H20L—C207—H20N109.5
H10M—C107—H10N109.5H20M—C207—H20N109.5
O1—C108—N11122.1 (3)O2—C208—N21122.1 (3)
O1—C108—C109122.0 (3)O2—C208—C209121.8 (3)
N11—C108—C109115.9 (3)N21—C208—C209116.2 (3)
C114—C109—C110119.4 (3)C214—C209—C210120.0 (3)
C114—C109—C108122.9 (3)C214—C209—C208122.3 (3)
C110—C109—C108117.6 (3)C210—C209—C208117.7 (3)
C111—C110—C109121.1 (3)C211—C210—C209120.5 (3)
C111—C110—H11A119.4C211—C210—H21A119.7
C109—C110—H11A119.4C209—C210—H21A119.7
C110—C111—C112118.2 (3)C212—C211—C210118.4 (3)
C110—C111—H11B120.9C212—C211—H21B120.8
C112—C111—H11B120.9C210—C211—H21B120.8
C113—C112—C111122.0 (3)C213—C212—C211122.3 (3)
C113—C112—Br1120.0 (2)C213—C212—Br2119.5 (3)
C111—C112—Br1117.9 (2)C211—C212—Br2118.1 (2)
C112—C113—C114119.0 (3)C212—C213—C214118.7 (3)
C112—C113—H11C120.5C212—C213—H21C120.7
C114—C113—H11C120.5C214—C213—H21C120.7
C109—C114—C113120.2 (3)C209—C214—C213120.1 (3)
C109—C114—H11D119.9C209—C214—H21D120.0
C113—C114—H11D119.9C213—C214—H21D120.0
C102—N12—C101—N1114.7 (4)C205—N22—C201—N2115.9 (4)
C105—N12—C101—N11172.2 (3)C202—N22—C201—N21165.8 (3)
C102—N12—C101—S1165.0 (2)C205—N22—C201—S2164.0 (2)
C105—N12—C101—S18.1 (4)C202—N22—C201—S214.2 (4)
C108—N11—C101—N1269.6 (4)C208—N21—C201—N2270.4 (4)
C108—N11—C101—S1110.7 (3)C208—N21—C201—S2109.6 (3)
C101—N12—C102—C10384.6 (4)C201—N22—C202—C20391.1 (3)
C105—N12—C102—C10388.8 (3)C205—N22—C202—C20390.5 (3)
N12—C102—C103—C104179.1 (3)N22—C202—C203—C204179.9 (3)
C101—N12—C105—C10681.1 (4)C201—N22—C205—C20691.7 (4)
C102—N12—C105—C106105.3 (3)C202—N22—C205—C20686.6 (3)
N12—C105—C106—C10756.6 (4)N22—C205—C206—C207178.1 (3)
C101—N11—C108—O111.9 (4)C201—N21—C208—O213.6 (4)
C101—N11—C108—C109169.3 (2)C201—N21—C208—C209166.7 (3)
O1—C108—C109—C114147.1 (3)O2—C208—C209—C214146.2 (3)
N11—C108—C109—C11431.8 (4)N21—C208—C209—C21433.6 (4)
O1—C108—C109—C11030.3 (4)O2—C208—C209—C21032.2 (4)
N11—C108—C109—C110150.9 (3)N21—C208—C209—C210148.1 (3)
C114—C109—C110—C1111.3 (4)C214—C209—C210—C2111.5 (4)
C108—C109—C110—C111178.7 (3)C208—C209—C210—C211179.9 (3)
C109—C110—C111—C1121.6 (4)C209—C210—C211—C2121.4 (4)
C110—C111—C112—C1130.4 (5)C210—C211—C212—C2130.3 (5)
C110—C111—C112—Br1178.7 (2)C210—C211—C212—Br2178.1 (2)
C111—C112—C113—C1141.2 (5)C211—C212—C213—C2141.9 (5)
Br1—C112—C113—C114177.1 (2)Br2—C212—C213—C214176.5 (2)
C110—C109—C114—C1130.3 (4)C210—C209—C214—C2130.1 (4)
C108—C109—C114—C113177.0 (3)C208—C209—C214—C213178.2 (3)
C112—C113—C114—C1091.6 (4)C212—C213—C214—C2091.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H1···S20.90 (2)2.60 (2)3.460 (3)161 (3)
N21—H2···S10.90 (1)2.57 (2)3.452 (3)169 (2)

Experimental details

Crystal data
Chemical formulaC14H19BrN2OS
Mr343.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)21.104 (3), 9.6940 (12), 16.208 (2)
β (°) 108.956 (3)
V3)3135.9 (7)
Z8
Radiation typeMo Kα
µ (mm1)2.75
Crystal size (mm)0.48 × 0.18 × 0.17
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.352, 0.652
No. of measured, independent and
observed [I > 2σ(I)] reflections
27091, 7470, 4686
Rint0.074
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.094, 0.97
No. of reflections7470
No. of parameters340
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.70, 0.71

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H1···S20.896 (15)2.600 (19)3.460 (3)161 (3)
N21—H2···S10.899 (14)2.566 (17)3.452 (3)169 (2)
 

Acknowledgements

This work was supported by Mersin University Research Fund [Project Nos. BAP-ECZ-F-TBB-(HA) 2004-3 and BAP-FEF-KB-(NK) 2006-3]. This study is part of the PhD thesis of GB.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationArslan, H., Flörke, U. & Külcü, N. (2003a). Acta Cryst. E59, o641–o642.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArslan, H., Flörke, U. & Külcü, N. (2004). Turk. J. Chem. 28, 673–678.  CAS Google Scholar
First citationArslan, H., Flörke, U. & Külcü, N. (2007a). Spectrochim. Acta A, 67, 936–943.  CrossRef Google Scholar
First citationArslan, H., Flörke, U., Külcü, N. & Binzet, G. (2007b). Spectrochim. Acta A, 68, 1347–1355.  CrossRef Google Scholar
First citationArslan, H., Külcü, N. & Flörke, U. (2003b). Transition Met. Chem. 28, 816–819.  Web of Science CSD CrossRef CAS Google Scholar
First citationArslan, H., Külcü, N. & Flörke, U. (2006). Spectrochim. Acta A, 64, 1065–1071.  CrossRef Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl Aamrani, F. Z., Kumar, A., Beyer, L., Cortina, J. L. & Sastre, A. M. (1998). Solvent Extr. Ion Exch. 16, 1389–1406.  CAS Google Scholar
First citationEl Aamrani, F. Z., Kumar, A., Cortina, J. L. & Sastre, A. M. (1999). Anal. Chim. Acta, 382, 205–231.  Web of Science CrossRef CAS Google Scholar
First citationKhawar Rauf, M., Bolte, M. & Anwar, S. (2009a). Acta Cryst. E65, o249.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhawar Rauf, M., Bolte, M. & Badshah, A. (2009b). Acta Cryst. E65, o143.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhawar Rauf, M., Bolte, M. & Badshah, A. (2009c). Acta Cryst. E65, o240.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhawar Rauf, M., Bolte, M. & Rauf, A. (2009d). Acta Cryst. E65, o234.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKoch, K. R. (2001). Coord. Chem. Rev. 216, 473–488.  Web of Science CrossRef Google Scholar
First citationMansuroğlu, D. S., Arslan, H., Flörke, U. & Külcü, N. (2008). J. Coord. Chem. 61, 3134–3146.  Google Scholar
First citationÖzer, C. K., Arslan, H., VanDerveer, D. & Binzet, G. (2009). J. Coord. Chem. 62, 266–276.  Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUğur, D., Arslan, H. & Külcü, N. (2006). Russ. J. Coord. Chem. 32, 669–675.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages o452-o453
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds