organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Benzyl-5-butyl-1,3,5-thia­diazinane-2-thione

aInstitute of Chemical Sciences, University of Peshawar, Peshawar 25120, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cDepartment of Chemistry, Government College University, Lahore, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 30 January 2009; accepted 2 February 2009; online 6 February 2009)

In the title compound, C14H20N2S2, the 1,3,5-thia­diazinane-2-thione ring adopts an envelope conformation. The S=C bond length is 1.6776 (15) Å, whereas the S—C bond lengths are 1.7470 (15) and 1.8479 (17) Å. The intramolecular C—H⋯S hydrogen bond between the thione and the benzyl units along with the C—H⋯π interaction between the butyl group and the centroid of the benzene ring may be effective in stabilizing the molecule.

Related literature

For the synthesis of the 1,3,5-thia­diazinane-2-thione nucleus, see: Aboul-fadi et al. (2002[Aboul-fadi, T., Hussein, M. A., El-Shorbagi, A. N. & Khalil, A. R. (2002). Arch. Pharm. Med. Chem. 9, 438-442.]); Ertan et al. (1991[Ertan, M., Ayyildiz, H. G. & Yulug, N. (1991). Arzneim. Forsch. Drug Res. 41, 1182-1185.], 1996[Ertan, M., Tayman, A. B. & Yulung, N. (1996). Arch. Pharmacol. 323, 605-609.]). For its biological activity, see: Coro et al. (2005[Coro, J., Perez, R., Rodriguez, H., Suarez, M., Vega, C., Rolon, M., Montero, D., Nogal, J. J. & Gomez-Barrio, A. (2005). Bioorg. Med. Chem. 13, 3413-3421.]). For a related structure, see: Perez et al. (2001[Perez, R., Suarez, M., Ochoa, E., Rodriguez, H., Martin, N., Seoane, C., Novoa, H., Blaton, N., Peeters, O. M. & De Ranter, C. (2001). Tetrahedron, 57, 7361-7367.]). For bond-length data, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]);

[Scheme 1]

Experimental

Crystal data
  • C14H20N2S2

  • Mr = 280.44

  • Triclinic, [P \overline 1]

  • a = 7.6559 (2) Å

  • b = 9.9586 (3) Å

  • c = 11.1531 (4) Å

  • α = 66.917 (2)°

  • β = 70.649 (1)°

  • γ = 76.076 (2)°

  • V = 732.03 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.35 mm−1

  • T = 296 (2) K

  • 0.26 × 0.20 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.922, Tmax = 0.942

  • 15790 measured reflections

  • 3759 independent reflections

  • 2990 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.100

  • S = 1.03

  • 3759 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯S1 0.97 2.60 3.0978 (16) 112
C12—H12B⋯CgA 0.97 2.96 3.7937 (19) 145
CgA is the centroid of the C1–C6 ring.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

1,3,5-Thiadiazinane-2-thione nucleus is an important pharmacophoric nucleus and large number of its analogs have been synthesized through different synthetic approaches, including amines and carbon disulfide in aqueous KOH, via diathiocarbamate salt intermediate (Ertan et al., 1991), from isothiocyanates and amines (Ertan et al., 1996), and resin supported solid phase organic synthesis (Aboul-fadi et al., 2002). Diverse bioactivities including antibacterial, antifungal, antimycobactarial, antitubercular, antiprotozoal, leishmanicidal, nematocidal and antiviral are reported for this nucleus in the literature (Coro et al., 2005).

The crystal structure of 5-(2-carboxyethyl)-3-(fur-2-ylmethyl)-tetrahydro- 2H-1,3,5-thiadiazine-2-thione (Perez et al., 2001) contains the same heterocyclic ring as the title compound (I), (Fig 1). The heterocyclic ring is in envelop form with the group (N1/C8/S2/C10/C9) in plane and the N2 displaced by -0.6778 (17) Å from it. The dihedral angle between the benzene ring A(C1—C6) and this group is 81.22 (5)°. The CCDC search (Allen et al., 2002) showed that there are very few crystal structures having 1,3,5-thiadiazinane-2-thione nucleus, so some important bond lengths and bond angles are given in Table 1.

There are no indications of intermolecular contacts, however some weak intramolecular H-bonding is given in Table 2 [CgA is a centroid of the phenyl ring C1–C6].

Related literature top

For the synthesis of the 1,3,5-thiadiazinane-2-thione nucleus, see: Aboul-fadi et al. (2002); Ertan et al. (1991, 1996). For its biological activity, see: Coro et al. (2005). For a related structure, see: Perez et al. (2001). For bond-length data, see: Allen (2002);

Experimental top

The 1,3,5-thiadizinane thione was synthesized following the synthetic procedure reported by Ertan et al., 1991. Carbon disulfide (20 mmol) was added portion-wise to a magnetically stirred solution of benzylamine (2.18 ml, 20 mmol) and potassium hydroxide (20 mmol) in 30 ml of water. The contents were stirred for 4 h at room temperature. Formaldehyde (37%, 40 mmol) was added to the reaction mixture and stirred for further 1 h. The reaction content was filtered and the filtrate was added drop-wise to a suspension of n-butylamine (1.97 ml, 20 mmol) to the phosphate buffer (pH 7.8) and stirred for 1 h at ambient temperature. The filterate of the reaction mixture was exhaustively extracted with dichloromethane. The aqueous reaction content was acidified with 15% HCl. The precipitated product was filtered off under suction and thoroughly washed with water. The air dried product was re-crystallized from ethanol. A colourless crystalline product [yield: 76%, m.p.: 381–383 K] was obtained.

Refinement top

H-atoms were positioned geometrically, with C—H = 0.93, 0.96 and 0.97 Å for aromatic, methyl and methylene H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H, and x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinG (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title compound, with the atom numbering scheme. The thermal ellipsoids are drawn at the 30% probability level. H-atoms are shown by small circles of arbitrary radii. The intramolecular H-bonding is shown by dotted lines.
3-Benzyl-5-butyl-1,3,5-thiadiazinane-2-thione top
Crystal data top
C14H20N2S2Z = 2
Mr = 280.44F(000) = 300
Triclinic, P1Dx = 1.272 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6559 (2) ÅCell parameters from 2990 reflections
b = 9.9586 (3) Åθ = 2.1–28.7°
c = 11.1531 (4) ŵ = 0.35 mm1
α = 66.917 (2)°T = 296 K
β = 70.649 (1)°Prismatic, colourless
γ = 76.076 (2)°0.26 × 0.20 × 0.18 mm
V = 732.03 (4) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3759 independent reflections
Radiation source: fine-focus sealed tube2990 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 7.40 pixels mm-1θmax = 28.7°, θmin = 2.1°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1213
Tmin = 0.922, Tmax = 0.942l = 1514
15790 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.1133P]
where P = (Fo2 + 2Fc2)/3
3759 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C14H20N2S2γ = 76.076 (2)°
Mr = 280.44V = 732.03 (4) Å3
Triclinic, P1Z = 2
a = 7.6559 (2) ÅMo Kα radiation
b = 9.9586 (3) ŵ = 0.35 mm1
c = 11.1531 (4) ÅT = 296 K
α = 66.917 (2)°0.26 × 0.20 × 0.18 mm
β = 70.649 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3759 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2990 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.942Rint = 0.025
15790 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.03Δρmax = 0.22 e Å3
3759 reflectionsΔρmin = 0.20 e Å3
163 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.37143 (5)0.10537 (5)0.24801 (4)0.0559 (1)
S20.72763 (5)0.05293 (4)0.29926 (4)0.0542 (1)
N10.44875 (14)0.24375 (12)0.38422 (10)0.0392 (3)
N20.76229 (15)0.27317 (13)0.37678 (11)0.0446 (3)
C10.25768 (16)0.48352 (15)0.31596 (13)0.0404 (4)
C20.20907 (19)0.59310 (17)0.37238 (15)0.0501 (5)
C30.2155 (3)0.73893 (19)0.2912 (2)0.0663 (6)
C40.2704 (3)0.7760 (2)0.1528 (2)0.0733 (7)
C50.3168 (3)0.6681 (2)0.09567 (17)0.0680 (6)
C60.3104 (2)0.52245 (18)0.17638 (15)0.0525 (5)
C70.25828 (17)0.32402 (15)0.40427 (14)0.0447 (4)
C80.50163 (17)0.14720 (14)0.32035 (13)0.0408 (3)
C90.8377 (2)0.12518 (17)0.38223 (16)0.0541 (5)
C100.56811 (17)0.27834 (16)0.44744 (13)0.0431 (4)
C110.80744 (19)0.38248 (16)0.24024 (13)0.0449 (4)
C120.7732 (2)0.53983 (16)0.23571 (14)0.0488 (4)
C130.8309 (2)0.64508 (17)0.09273 (15)0.0560 (5)
C140.8034 (3)0.8041 (2)0.0821 (2)0.0821 (7)
H20.171730.568290.465890.0601*
H30.182750.811930.329930.0796*
H40.276030.874100.097820.0878*
H50.352700.693500.002100.0817*
H60.341430.450000.137120.0630*
H7A0.208280.317020.498310.0537*
H7B0.178440.278960.383140.0537*
H9A0.821250.062140.476070.0649*
H9B0.970690.121610.338910.0649*
H10A0.522720.375970.453080.0516*
H10B0.554800.209120.538980.0516*
H11A0.733750.373220.188580.0538*
H11B0.937880.360040.196400.0538*
H12A0.842920.549590.289690.0586*
H12B0.641620.565200.274720.0586*
H13A0.961610.617170.053630.0672*
H13B0.759500.635400.039770.0672*
H14A0.842860.864370.011090.1232*
H14B0.876060.815410.132280.1232*
H14C0.673800.833700.118280.1232*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0586 (2)0.0591 (2)0.0578 (2)0.0195 (2)0.0143 (2)0.0221 (2)
S20.0483 (2)0.0444 (2)0.0635 (3)0.0008 (1)0.0102 (2)0.0197 (2)
N10.0350 (5)0.0416 (6)0.0381 (6)0.0065 (4)0.0072 (4)0.0118 (5)
N20.0389 (5)0.0526 (7)0.0390 (6)0.0087 (5)0.0112 (4)0.0100 (5)
C10.0315 (5)0.0469 (7)0.0422 (7)0.0041 (5)0.0099 (5)0.0150 (6)
C20.0469 (7)0.0558 (9)0.0505 (8)0.0020 (6)0.0139 (6)0.0230 (7)
C30.0691 (10)0.0496 (9)0.0874 (13)0.0017 (7)0.0303 (9)0.0284 (9)
C40.0758 (11)0.0464 (9)0.0843 (14)0.0061 (8)0.0335 (10)0.0005 (9)
C50.0694 (10)0.0707 (11)0.0470 (9)0.0072 (8)0.0176 (8)0.0018 (8)
C60.0538 (8)0.0582 (9)0.0446 (8)0.0032 (6)0.0131 (6)0.0189 (7)
C70.0341 (6)0.0493 (8)0.0443 (7)0.0075 (5)0.0021 (5)0.0148 (6)
C80.0415 (6)0.0372 (6)0.0365 (6)0.0109 (5)0.0062 (5)0.0052 (5)
C90.0422 (7)0.0555 (9)0.0545 (8)0.0025 (6)0.0164 (6)0.0076 (7)
C100.0434 (6)0.0513 (8)0.0331 (6)0.0106 (5)0.0087 (5)0.0115 (6)
C110.0448 (6)0.0506 (8)0.0380 (7)0.0121 (5)0.0067 (5)0.0139 (6)
C120.0507 (7)0.0533 (8)0.0435 (8)0.0120 (6)0.0096 (6)0.0169 (6)
C130.0636 (9)0.0532 (9)0.0485 (8)0.0137 (7)0.0140 (7)0.0116 (7)
C140.0893 (13)0.0532 (10)0.0946 (15)0.0123 (9)0.0219 (11)0.0158 (10)
Geometric parameters (Å, º) top
S1—C81.6776 (15)C3—H30.9300
S2—C81.7470 (15)C4—H40.9300
S2—C91.8479 (17)C5—H50.9300
N1—C71.4760 (19)C6—H60.9300
N1—C81.3246 (18)C7—H7A0.9700
N1—C101.4899 (18)C7—H7B0.9700
N2—C91.433 (2)C9—H9A0.9700
N2—C101.4326 (19)C9—H9B0.9700
N2—C111.4683 (18)C10—H10A0.9700
C1—C21.383 (2)C10—H10B0.9700
C1—C61.387 (2)C11—H11A0.9700
C1—C71.505 (2)C11—H11B0.9700
C2—C31.380 (3)C12—H12A0.9700
C3—C41.376 (3)C12—H12B0.9700
C4—C51.375 (3)C13—H13A0.9700
C5—C61.378 (3)C13—H13B0.9700
C11—C121.509 (2)C14—H14A0.9600
C12—C131.511 (2)C14—H14B0.9600
C13—C141.508 (3)C14—H14C0.9600
C2—H20.9300
S1···H63.1400H9A···S1iii2.9300
S1···H7B2.6000H9B···S1vi2.8800
S1···H9Bi2.8800H9B···H11B2.2900
S1···H5ii3.1600H10A···C12.7100
S1···H9Aiii2.9300H10A···C22.9400
S1···H10Biii3.1600H10A···C122.7500
S2···H11A2.9400H10A···H7A2.4600
N1···H11A2.6800H10A···H12B2.2400
C6···C83.593 (2)H10B···H9A2.2800
C8···C113.374 (2)H10B···S1iii3.1600
C8···C63.593 (2)H11A···S22.9400
C11···C83.374 (2)H11A···N12.6800
C1···H12B3.0800H11A···C82.8300
C1···H10A2.7100H11A···H13B2.5000
C2···H10A2.9400H11B···H9B2.2900
C4···H14Bi3.0200H11B···H13A2.4400
C5···H13Ai3.0900H11B···H13Avii2.5700
C8···H11A2.8300H12A···H14B2.5600
C10···H12B2.8200H12A···H2v2.4800
C12···H10A2.7500H12B···C13.0800
C14···H4iv3.0800H12B···C102.8200
H2···H7A2.3400H12B···H10A2.2400
H2···H12Av2.4800H12B···H14C2.5700
H4···C14iv3.0800H13A···C5vi3.0900
H4···H14Aiv2.4500H13A···H11B2.4400
H5···S1ii3.1600H13A···H11Bvii2.5700
H6···S13.1400H13B···H11A2.5000
H7A···H22.3400H14A···H4iv2.4500
H7A···H10A2.4600H14B···C4vi3.0200
H7B···S12.6000H14B···H12A2.5600
H9A···H10B2.2800H14C···H12B2.5700
C8—S2—C9103.11 (7)N1—C7—H7B109.00
C7—N1—C8122.01 (12)C1—C7—H7A109.00
C7—N1—C10113.20 (11)C1—C7—H7B109.00
C8—N1—C10124.74 (12)H7A—C7—H7B108.00
C9—N2—C10109.50 (12)S2—C9—H9A109.00
C9—N2—C11113.75 (12)S2—C9—H9B109.00
C10—N2—C11115.24 (12)N2—C9—H9A109.00
C2—C1—C6119.00 (14)N2—C9—H9B109.00
C2—C1—C7120.70 (12)H9A—C9—H9B108.00
C6—C1—C7120.29 (14)N1—C10—H10A109.00
C1—C2—C3120.62 (15)N1—C10—H10B109.00
C2—C3—C4119.82 (18)N2—C10—H10A109.00
C3—C4—C5120.03 (18)N2—C10—H10B109.00
C4—C5—C6120.31 (16)H10A—C10—H10B108.00
C1—C6—C5120.21 (16)N2—C11—H11A109.00
N1—C7—C1111.22 (11)N2—C11—H11B109.00
S1—C8—S2112.92 (8)C12—C11—H11A109.00
S1—C8—N1126.10 (11)C12—C11—H11B109.00
S2—C8—N1120.94 (11)H11A—C11—H11B108.00
S2—C9—N2113.13 (11)C11—C12—H12A109.00
N1—C10—N2114.50 (11)C11—C12—H12B109.00
N2—C11—C12114.63 (12)C13—C12—H12A109.00
C11—C12—C13111.58 (12)C13—C12—H12B109.00
C12—C13—C14113.99 (14)H12A—C12—H12B108.00
C1—C2—H2120.00C12—C13—H13A109.00
C3—C2—H2120.00C12—C13—H13B109.00
C2—C3—H3120.00C14—C13—H13A109.00
C4—C3—H3120.00C14—C13—H13B109.00
C3—C4—H4120.00H13A—C13—H13B108.00
C5—C4—H4120.00C13—C14—H14A109.00
C4—C5—H5120.00C13—C14—H14B109.00
C6—C5—H5120.00C13—C14—H14C109.00
C1—C6—H6120.00H14A—C14—H14B109.00
C5—C6—H6120.00H14A—C14—H14C109.00
N1—C7—H7A109.00H14B—C14—H14C109.00
C9—S2—C8—S1178.01 (8)C9—N2—C11—C12165.23 (13)
C9—S2—C8—N10.05 (12)C10—N2—C11—C1267.14 (17)
C8—S2—C9—N229.53 (12)C6—C1—C2—C31.0 (2)
C8—N1—C7—C1108.21 (14)C7—C1—C2—C3177.50 (17)
C10—N1—C7—C174.18 (14)C2—C1—C6—C51.0 (2)
C7—N1—C8—S12.68 (19)C7—C1—C6—C5177.45 (17)
C7—N1—C8—S2179.54 (10)C2—C1—C7—N1114.76 (15)
C10—N1—C8—S1180.00 (10)C6—C1—C7—N163.68 (17)
C10—N1—C8—S22.21 (18)C1—C2—C3—C40.1 (3)
C7—N1—C10—N2147.79 (12)C2—C3—C4—C50.7 (4)
C8—N1—C10—N234.68 (18)C3—C4—C5—C60.6 (4)
C10—N2—C9—S262.06 (13)C4—C5—C6—C10.2 (3)
C11—N2—C9—S268.49 (15)N2—C11—C12—C13177.42 (13)
C9—N2—C10—N165.65 (15)C11—C12—C13—C14178.86 (16)
C11—N2—C10—N164.09 (17)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z; (iii) x+1, y, z+1; (iv) x+1, y+2, z; (v) x+1, y+1, z+1; (vi) x+1, y, z; (vii) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···S10.972.603.0978 (16)112
C12—H12B···CgA0.972.963.7937 (19)145

Experimental details

Crystal data
Chemical formulaC14H20N2S2
Mr280.44
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.6559 (2), 9.9586 (3), 11.1531 (4)
α, β, γ (°)66.917 (2), 70.649 (1), 76.076 (2)
V3)732.03 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.26 × 0.20 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.922, 0.942
No. of measured, independent and
observed [I > 2σ(I)] reflections
15790, 3759, 2990
Rint0.025
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.100, 1.03
No. of reflections3759
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.20

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinG (Farrugia, 1999) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
S1—C81.6776 (15)N1—C101.4899 (18)
S2—C81.7470 (15)N2—C91.433 (2)
S2—C91.8479 (17)N2—C101.4326 (19)
N1—C71.4760 (19)N2—C111.4683 (18)
N1—C81.3246 (18)
C8—S2—C9103.11 (7)N1—C7—C1111.22 (11)
C7—N1—C8122.01 (12)S1—C8—S2112.92 (8)
C7—N1—C10113.20 (11)S1—C8—N1126.10 (11)
C8—N1—C10124.74 (12)S2—C8—N1120.94 (11)
C9—N2—C10109.50 (12)S2—C9—N2113.13 (11)
C9—N2—C11113.75 (12)N1—C10—N2114.50 (11)
C10—N2—C11115.24 (12)N2—C11—C12114.63 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···S10.972.603.0978 (16)112
C12—H12B···CgA0.972.963.7937 (19)145
 

Acknowledgements

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore.

References

First citationAboul-fadi, T., Hussein, M. A., El-Shorbagi, A. N. & Khalil, A. R. (2002). Arch. Pharm. Med. Chem. 9, 438–442.  Google Scholar
First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationCoro, J., Perez, R., Rodriguez, H., Suarez, M., Vega, C., Rolon, M., Montero, D., Nogal, J. J. & Gomez-Barrio, A. (2005). Bioorg. Med. Chem. 13, 3413–3421.  Web of Science CrossRef PubMed CAS Google Scholar
First citationErtan, M., Ayyildiz, H. G. & Yulug, N. (1991). Arzneim. Forsch. Drug Res. 41, 1182–1185.  CAS Google Scholar
First citationErtan, M., Tayman, A. B. & Yulung, N. (1996). Arch. Pharmacol. 323, 605–609.  CrossRef Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationPerez, R., Suarez, M., Ochoa, E., Rodriguez, H., Martin, N., Seoane, C., Novoa, H., Blaton, N., Peeters, O. M. & De Ranter, C. (2001). Tetrahedron, 57, 7361–7367.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds