organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 4-fluoro-3-nitro­benzoate

aSchool of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 12 February 2009; accepted 13 February 2009; online 21 February 2009)

In the title compound, C9H8FNO4, C—H⋯O inter­molecular inter­actions form dimers with R22(10) motifs. These dimers are arranged into chains parallel to the b axis and the chains are stacked down the c axis.

Related literature

For general background, see: Ishida et al. (2006[Ishida, T., Suzuki, T., Hirashima, S., Mizutani, K., Yoshida, A., Ando, I., Ikeda, S., Adachi, T. & Hashimoto, H. (2006). Bioorg. Med. Chem. Lett. 16, 1859-1863.]); Rida et al. (2005[Rida, S. M., Ashour, F. A., El-Hawash, S. A. M., ElSemary, M. M., Badr, M. H. & Shalaby, M. A. (2005). Eur. J. Med. Chem. 40, 949-959.]); Mohd. Maidin, Abdul Rahim, Abdul Hamid et al. (2008[Mohd. Maidin, S. M., Abdul Rahim, A. S., Abdul Hamid, S., Kia, R. & Fun, H.-K. (2008). Acta Cryst. E64, o1501-o1502.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Mohd. Maidin, Abdul Rahim, Osman et al. (2008[Mohd. Maidin, S. M., Abdul Rahim, A. S., Osman, H., Kia, R. & Fun, H.-K. (2008). Acta Cryst. E64, o1550-o1551.]); Li et al. (2008[Li, H.-Y., Liu, B.-N., Tang, S.-G., Xu, Y.-M. & Guo, C. (2008). Acta Cryst. E64, o523.], 2009[Li, H.-Y., Liu, B.-N., Tang, S.-G. & Guo, C. (2009). Acta Cryst. E65, o91.]). For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For details on the stability of the temperature controller, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C9H8FNO4

  • Mr = 213.16

  • Monoclinic, P 21 /c

  • a = 9.9246 (3) Å

  • b = 13.2883 (3) Å

  • c = 6.9310 (2) Å

  • β = 94.410 (2)°

  • V = 911.36 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 100 K

  • 0.55 × 0.22 × 0.09 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.929, Tmax = 0.988

  • 12540 measured reflections

  • 2913 independent reflections

  • 2411 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.139

  • S = 1.11

  • 2913 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O4i 0.93 2.44 3.2380 (15) 144
Symmetry code: (i) -x-1, -y, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The nitro benzoic acid intermediates are convenient starting materials for the synthesis of various biologically active heterocycles e.g. benzimidazoles (Ishida et al., 2006) and benzoxazoles (Rida et al., 2005). As a part of our ongoing studies on new nitro benzoic acid derivatives (Mohd. Maidin, Abdul Rahim, Abdul Hamid et al., 2008), we have synthesized the title compound as an intermediate and report its structure here.

The bond lengths (Allen et al., 1987) and angles observed in (I) are within normal ranges and are consistent with other related structures (Mohd. Maidin, Abdul Rahim, Osman et al., 2008; Li et al., 2009; Li et al., 2008). The C1—H1A···O4i intermolecular interactions (Table 2) linked the molecules into dimers forming 10-membered rings with R22(10) motifs (Bernstein et al., 1995). In the crystal structure, these dimers are arranged into chains parallel to the b axis. The chains are stacked down the c axis (Fig. 2).

Related literature top

For general background, see: Ishida et al. (2006); Rida et al. (2005); Mohd. Maidin, Abdul Rahim, Abdul Hamid et al. (2008). For bond-length data, see: Allen et al. (1987). For related structures, see: Mohd. Maidin, Abdul Rahim, Osman et al. (2008); Li et al. (2008, 2009). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For details on the stability of the temperature controller, see: Cosier & Glazer (1986).

Experimental top

For the preparation of the title compound, 4-fluoro-3-nitro-benzoic acid (5.0 g, 0.027 mol) was refluxed in absolute ethanol (50 ml) and conc. H2SO4 (2.0 ml) for 8 h. Upon reaction completion, ethanol was evaporated and the reaction mixture was diluted with water. The aqueous layer was extracted with ethyl acetate (25 x 2 ml). The combined organic layer was collected and dried over anhydrous MgSO4. The solvent was removed under reduced pressure to afford yellow oil as the crude product. Recrystallization with hot ethyl acetate and petroleum ether (60–80) yielded colourless crystals that were found suitable for X-ray analysis.

Refinement top

All the H atoms were positioned geometrically and refined using a riding model with C—H = 0.93Å for aromatic and 0.96Å for CH3. The Uiso values were constrained to be -1.5Ueq of the carrier atom for the methyl H atoms and -1.2Uequ for the remaining hydrogen atoms. The rotating model group was considered for the methyl group.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the c axis. Intermolecular hydrogen bondings are shown as dotted lines.
Ethyl 4-fluoro-3-nitrobenzoate top
Crystal data top
C9H8FNO4F(000) = 440
Mr = 213.16Dx = 1.554 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5027 reflections
a = 9.9246 (3) Åθ = 2.6–30.8°
b = 13.2883 (3) ŵ = 0.14 mm1
c = 6.9310 (2) ÅT = 100 K
β = 94.410 (2)°Block, colourless
V = 911.36 (4) Å30.55 × 0.22 × 0.09 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2913 independent reflections
Radiation source: sealed tube2411 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 31.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1414
Tmin = 0.929, Tmax = 0.988k = 1819
12540 measured reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.0772P)2 + 0.1955P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
2913 reflectionsΔρmax = 0.55 e Å3
138 parametersΔρmin = 0.36 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.018 (4)
Crystal data top
C9H8FNO4V = 911.36 (4) Å3
Mr = 213.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.9246 (3) ŵ = 0.14 mm1
b = 13.2883 (3) ÅT = 100 K
c = 6.9310 (2) Å0.55 × 0.22 × 0.09 mm
β = 94.410 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2913 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2411 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.988Rint = 0.028
12540 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.11Δρmax = 0.55 e Å3
2913 reflectionsΔρmin = 0.36 e Å3
138 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.04351 (7)0.10679 (6)0.18019 (12)0.0241 (2)
O10.07165 (9)0.29746 (7)0.29028 (14)0.0240 (2)
O20.04092 (9)0.39394 (6)0.08249 (15)0.0247 (2)
O30.52330 (8)0.30897 (6)0.00372 (14)0.0203 (2)
O40.58597 (9)0.14638 (7)0.02358 (16)0.0276 (2)
N10.02296 (10)0.31401 (7)0.16902 (15)0.0172 (2)
C10.31523 (12)0.08546 (9)0.06256 (18)0.0197 (2)
H1A0.38040.03560.04100.024*
C20.18146 (12)0.05833 (9)0.10726 (19)0.0211 (3)
H2A0.15660.00910.11390.025*
C30.08581 (11)0.13301 (9)0.14173 (17)0.0181 (2)
C40.12280 (11)0.23409 (8)0.12960 (16)0.0154 (2)
C50.25648 (11)0.26145 (8)0.08154 (16)0.0154 (2)
H5A0.28070.32900.07100.018*
C60.35338 (11)0.18648 (8)0.04945 (17)0.0161 (2)
C70.49936 (11)0.21032 (9)0.00323 (18)0.0179 (2)
C80.66549 (12)0.33789 (10)0.0398 (2)0.0231 (3)
H8A0.71700.31450.06480.028*
H8B0.70350.30810.15970.028*
C90.67127 (13)0.45039 (10)0.0529 (2)0.0280 (3)
H9A0.76380.47160.07130.042*
H9B0.62330.47250.16030.042*
H9C0.63040.47910.06460.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0168 (3)0.0239 (4)0.0312 (4)0.0077 (3)0.0003 (3)0.0020 (3)
O10.0153 (4)0.0295 (5)0.0264 (5)0.0006 (3)0.0037 (3)0.0008 (4)
O20.0228 (4)0.0174 (4)0.0333 (5)0.0018 (3)0.0025 (4)0.0042 (4)
O30.0123 (4)0.0155 (4)0.0324 (5)0.0009 (3)0.0017 (3)0.0002 (3)
O40.0191 (4)0.0176 (4)0.0453 (6)0.0038 (3)0.0041 (4)0.0012 (4)
N10.0141 (4)0.0180 (5)0.0196 (5)0.0007 (3)0.0017 (3)0.0015 (4)
C10.0201 (5)0.0148 (5)0.0242 (6)0.0008 (4)0.0010 (4)0.0002 (4)
C20.0229 (6)0.0140 (5)0.0263 (6)0.0037 (4)0.0015 (5)0.0004 (4)
C30.0166 (5)0.0185 (5)0.0192 (5)0.0049 (4)0.0015 (4)0.0006 (4)
C40.0144 (5)0.0158 (5)0.0159 (5)0.0007 (4)0.0010 (4)0.0001 (4)
C50.0144 (5)0.0149 (5)0.0169 (5)0.0018 (4)0.0014 (4)0.0005 (4)
C60.0148 (5)0.0152 (5)0.0181 (5)0.0005 (4)0.0004 (4)0.0001 (4)
C70.0157 (5)0.0162 (5)0.0216 (5)0.0003 (4)0.0005 (4)0.0003 (4)
C80.0119 (5)0.0218 (6)0.0350 (7)0.0007 (4)0.0013 (4)0.0022 (5)
C90.0188 (6)0.0213 (6)0.0426 (8)0.0040 (4)0.0050 (5)0.0051 (5)
Geometric parameters (Å, º) top
F1—C31.3368 (13)C3—C41.3932 (16)
O1—N11.2308 (13)C4—C51.3912 (14)
O2—N11.2261 (13)C5—C61.3906 (15)
O3—C71.3326 (14)C5—H5A0.9300
O3—C81.4653 (13)C6—C71.4935 (15)
O4—C71.2127 (14)C8—C91.4984 (19)
N1—C41.4638 (15)C8—H8A0.9700
C1—C21.3876 (16)C8—H8B0.9700
C1—C61.3959 (16)C9—H9A0.9600
C1—H1A0.9300C9—H9B0.9600
C2—C31.3814 (17)C9—H9C0.9600
C2—H2A0.9300
C7—O3—C8115.52 (9)C5—C6—C1119.85 (10)
O2—N1—O1124.29 (10)C5—C6—C7122.00 (10)
O2—N1—C4117.80 (9)C1—C6—C7118.14 (10)
O1—N1—C4117.89 (10)O4—C7—O3124.15 (11)
C2—C1—C6120.96 (11)O4—C7—C6123.28 (11)
C2—C1—H1A119.5O3—C7—C6112.57 (9)
C6—C1—H1A119.5O3—C8—C9107.69 (9)
C3—C2—C1119.01 (11)O3—C8—H8A110.2
C3—C2—H2A120.5C9—C8—H8A110.2
C1—C2—H2A120.5O3—C8—H8B110.2
F1—C3—C2118.93 (10)C9—C8—H8B110.2
F1—C3—C4120.52 (10)H8A—C8—H8B108.5
C2—C3—C4120.51 (10)C8—C9—H9A109.5
C5—C4—C3120.56 (10)C8—C9—H9B109.5
C5—C4—N1118.32 (10)H9A—C9—H9B109.5
C3—C4—N1121.11 (10)C8—C9—H9C109.5
C6—C5—C4119.08 (10)H9A—C9—H9C109.5
C6—C5—H5A120.5H9B—C9—H9C109.5
C4—C5—H5A120.5
C6—C1—C2—C30.93 (19)N1—C4—C5—C6178.04 (10)
C1—C2—C3—F1178.41 (11)C4—C5—C6—C11.07 (18)
C1—C2—C3—C40.74 (19)C4—C5—C6—C7178.12 (10)
F1—C3—C4—C5177.27 (10)C2—C1—C6—C50.02 (19)
C2—C3—C4—C50.36 (18)C2—C1—C6—C7179.25 (11)
F1—C3—C4—N13.44 (17)C8—O3—C7—O42.20 (18)
C2—C3—C4—N1178.93 (11)C8—O3—C7—C6177.35 (10)
O2—N1—C4—C531.36 (16)C5—C6—C7—O4179.29 (12)
O1—N1—C4—C5146.88 (11)C1—C6—C7—O40.09 (19)
O2—N1—C4—C3149.33 (12)C5—C6—C7—O30.26 (16)
O1—N1—C4—C332.42 (16)C1—C6—C7—O3179.47 (11)
C3—C4—C5—C61.27 (17)C7—O3—C8—C9177.07 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O4i0.932.443.2380 (15)144
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC9H8FNO4
Mr213.16
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.9246 (3), 13.2883 (3), 6.9310 (2)
β (°) 94.410 (2)
V3)911.36 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.55 × 0.22 × 0.09
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.929, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
12540, 2913, 2411
Rint0.028
(sin θ/λ)max1)0.727
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.139, 1.11
No. of reflections2913
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.36

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
F1—C31.3368 (13)O3—C81.4653 (13)
O1—N11.2308 (13)O4—C71.2127 (14)
O2—N11.2261 (13)N1—C41.4638 (15)
O3—C71.3326 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O4i0.932.443.2380 (15)144
Symmetry code: (i) x1, y, z.
 

Footnotes

Additional correspondence author, e-mail: aisyah@usm.my.

Acknowledgements

HKF and IAR thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. Funding from the Malaysian Government and Universiti Sains Malaysia (USM) under USM Research University grant (1001/PFARMASI/815026) is gratefully acknowledged. SNNB thanks Universiti Sains Malaysia for a Postdoctoral Research Fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationIshida, T., Suzuki, T., Hirashima, S., Mizutani, K., Yoshida, A., Ando, I., Ikeda, S., Adachi, T. & Hashimoto, H. (2006). Bioorg. Med. Chem. Lett. 16, 1859–1863.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, H.-Y., Liu, B.-N., Tang, S.-G. & Guo, C. (2009). Acta Cryst. E65, o91.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, H.-Y., Liu, B.-N., Tang, S.-G., Xu, Y.-M. & Guo, C. (2008). Acta Cryst. E64, o523.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohd. Maidin, S. M., Abdul Rahim, A. S., Abdul Hamid, S., Kia, R. & Fun, H.-K. (2008). Acta Cryst. E64, o1501–o1502.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMohd. Maidin, S. M., Abdul Rahim, A. S., Osman, H., Kia, R. & Fun, H.-K. (2008). Acta Cryst. E64, o1550–o1551.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRida, S. M., Ashour, F. A., El-Hawash, S. A. M., ElSemary, M. M., Badr, M. H. & Shalaby, M. A. (2005). Eur. J. Med. Chem. 40, 949–959.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds