organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­methyl [hydr­­oxy(2-nitro­phen­yl)meth­yl]phospho­nate

aDepartment of Physics, University of Sargodha, Sargodha, Pakistan, bDepartment of Chemistry, Faculty of Science, University of Ankara, Ankara, Turkey, cDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, and dDepartment of Physics Engineering, Hacettepe University, Beytepe 06532, Ankara, Turkey
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 14 February 2009; accepted 16 February 2009; online 21 February 2009)

In the title compound, C9H12NO6P, intra­molecular C—H⋯O hydrogen bonds form five- and six-membered rings. In the crystal, inversion dimers lined by pairs of C—H⋯O hydrogen bonds occur with ring motifs R22(10). The O atom of the hydr­oxy group behaves as an accepter and the benzene ring as donor. Adjacent dimers are connected through O—H⋯O links.

Related literature

For related structures, see: Acar et al. (2009[Acar, N., Tahir, M. N., Yılmaz, H., Chishti, M. S. A. & Malik, M. A. (2009). Acta Cryst. E65, o481.]); Tahir et al. (2007[Tahir, M. N., Acar, N., Yilmaz, H., Danish, M. & Ülkü, D. (2007). Acta Cryst. E63, o3817-o3818.]); Chen et al. (2008[Chen, C., Jin, W. & Li, X. (2008). Acta Cryst. E64, o144.]); Maliha et al. (2009[Maliha, B., Tariq, M. I., Tahir, M. N., Hussain, I. & Siddiqui, H. L. (2009). Acta Cryst. E65, o448.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C9H12NO6P

  • Mr = 261.17

  • Monoclinic, P 21 /c

  • a = 9.8685 (12) Å

  • b = 7.5081 (11) Å

  • c = 16.1052 (12) Å

  • β = 90.341 (1)°

  • V = 1193.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.26 × 0.20 × 0.18 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (MolEN; Fair, 1990[Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.]) Tmin = 0.939, Tmax = 0.959

  • 2222 measured reflections

  • 2093 independent reflections

  • 1873 reflections with I > 2σ(I)

  • Rint = 0.017

  • 3 standard reflections frequency: 120 min intensity decay: −1.6%

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.231

  • S = 1.00

  • 2093 reflections

  • 162 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.87 (3) 1.81 (3) 2.674 (3) 171 (4)
C6—H6⋯O1 0.93 2.30 2.688 (3) 104
C6—H6⋯O1ii 0.93 2.58 3.343 (4) 140
C7—H7⋯O2 0.93 (3) 2.29 (3) 2.827 (4) 116 (2)
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1992[Enraf-Nonius (1992). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990[Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.]); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

(R)-Dimethyl [(2-chlorophenyl)hydroxymethyl]phosphonate (Tahir et al., 2007) and Dimethyl (1-hydroxy-1,2-diphenylethyl)phosphonate (Acar et al., 2009) have been reported by us. In continuation to the study of phosphonate compounds, we herein report the preparation and crystal structure of the title compound (I), (Fig 1).

Diethyl [hydroxy(2-nitrophenyl)methyl]phosphonate (II) (Chen et al., 2008) have also been published which have similar coordination around the C-atom having α-hydroxy group. But it is observed that the change of diethylphosphonate (II) with dimethylphosphonate (I) results in the S-conformation at the methine. In (I), the PO is 1.467 (2) Å, whereas P–O and P–C have values of [1.557 (2), 1.563 (2) Å] and 1.829 (2) Å, respectively. The nitro group is oriented at an angle of 27.96 (23)° with the benzene ring A(C1—C6). There exist two intramolecular H-bondings which form five B(O1/C7/C1/C6/H6···O1) and six C(O2/N1/C2/C1/C7/H7···O2) membered rings. The title compound is dimerized (Fig 2) forming ring motifs R22(10) (Bernstein et al., 1995) if only intermolecular H-bonding is concerned. This ten membered ring is splitted into three rings through intramolecular H-bonding resulting in the formation of central four membered ring [O···H···O···H···O]. A similar ring has already been observed in 3-[(methylcarbamoyl)amino]-1H-isoindolium chloride (Maliha et al., 2009). The O-atom of hydroxy group behaves as an accepter and the benzene ring as donar. The adjacent dimers are connected through intermolecular H-bonds of O–H···O type, where the accepter is doubly bonded O the phosphonate group.

Related literature top

For related structures, see: Acar et al. (2009); Tahir et al. (2007); Chen et al. (2008); Maliha et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A solution of O-nitrobenzaldehide (3.01 g, 20 mmole) and dimethylphosphonate (2.20 g, 20 mmole) was prepared in THF (50 ml). To this solution, a powder mixture of an equal amount of KF and commercial Al2O3 (2.5 g + 2.5 g) was added slowly and stirred for 48 h at 273 K. The product was filtered and the filtrate was evaporated at room temperature. The crystalline material obtained after two days was washed with ether and recrystallized in a solution mixture of petroleum ether and THF(1:1), [m.p: 383 K].

Refinement top

All H-atoms appeared in Difference Fourier Map. The coordinations of the atom H7 bounded to the atom C7 and the atom H1 of the hydroxyl group were refined isotropically.

Thermal parameter of these H atoms was taken 1.2 and 1.5 times of the corresponding atoms, respectively.

The H atom (H7) bound to the atom C7 and the H atom (H1) of the hydroxyl group were located in a diffrerence map and their positions refined, with C—H = 0.93 (3) Å and 0.87 (3) Å. The other H atoms were positioned with idealized geometry and refined using a riding model, with C—H distances 0.93–0.96 Å. All H atoms were refined with isotropic displacement parameters (set to 1.2 times of the Ueq of the parent atom). For methyl and hydroxyl group Uiso(H) = 1.5 Ueq.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1992); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1992); data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title compound, (C9H12NO6P), with the atom numbering scheme. The thermal ellpsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii. The broken lines indicate the intermolecular H-bondings.
[Figure 2] Fig. 2. The partial packing figure (PLATON: Spek, 2009) shows the formation of ring motifs through hydrogen bonding.
Dimethyl [(S)-hydroxy(2-nitrophenyl)methyl]phosphonate top
Crystal data top
C9H12NO6PF(000) = 544
Mr = 261.17Dx = 1.454 Mg m3
Monoclinic, P21/cMelting point: 383 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.8685 (12) ÅCell parameters from 25 reflections
b = 7.5081 (11) Åθ = 11.7–21.0°
c = 16.1052 (12) ŵ = 0.25 mm1
β = 90.341 (1)°T = 296 K
V = 1193.3 (2) Å3Prismatic, brown
Z = 40.26 × 0.20 × 0.18 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.017
ω/2θ scansθmax = 25.0°, θmin = 2.5°
Absorption correction: ψ scan
(MolEN; Fair, 1990)
h = 110
Tmin = 0.939, Tmax = 0.959k = 80
2222 measured reflectionsl = 1919
2093 independent reflections3 standard reflections every 120 min
1873 reflections with I > 2σ(I) intensity decay: 1.6%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.231 w = 1/[σ2(Fo2) + (0.199P)2 + 0.3221P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2093 reflectionsΔρmax = 0.70 e Å3
162 parametersΔρmin = 0.50 e Å3
0 restraints
Crystal data top
C9H12NO6PV = 1193.3 (2) Å3
Mr = 261.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.8685 (12) ŵ = 0.25 mm1
b = 7.5081 (11) ÅT = 296 K
c = 16.1052 (12) Å0.26 × 0.20 × 0.18 mm
β = 90.341 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1873 reflections with I > 2σ(I)
Absorption correction: ψ scan
(MolEN; Fair, 1990)
Rint = 0.017
Tmin = 0.939, Tmax = 0.9593 standard reflections every 120 min
2222 measured reflections intensity decay: 1.6%
2093 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.231H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.70 e Å3
2093 reflectionsΔρmin = 0.50 e Å3
162 parameters
Special details top

Experimental. the structure was solved by Patterson method using SHELX86 (Sheldrick, 2008); the whole molecule was recognized

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.11199 (7)0.14188 (9)0.16915 (4)0.0429 (3)
O10.0588 (2)0.4641 (3)0.12234 (12)0.0541 (7)
O20.4424 (3)0.3284 (5)0.20368 (16)0.0854 (12)
O30.5644 (3)0.1418 (5)0.1375 (2)0.0989 (14)
O40.0391 (2)0.1450 (3)0.24822 (14)0.0574 (8)
O50.0264 (2)0.0741 (3)0.09399 (13)0.0590 (8)
O60.2419 (2)0.0229 (3)0.16653 (17)0.0679 (9)
N10.4732 (2)0.2487 (4)0.14047 (16)0.0590 (9)
C10.2651 (3)0.3507 (3)0.06417 (15)0.0380 (8)
C20.3983 (3)0.2905 (4)0.06340 (16)0.0449 (8)
C30.4703 (3)0.2673 (5)0.0095 (2)0.0580 (10)
C40.4101 (4)0.3092 (5)0.08461 (19)0.0639 (11)
C50.2801 (3)0.3732 (5)0.08579 (19)0.0590 (11)
C60.2083 (3)0.3926 (4)0.01258 (16)0.0485 (9)
C70.1759 (3)0.3618 (3)0.14019 (16)0.0394 (8)
C80.1193 (4)0.0865 (7)0.0912 (3)0.0860 (16)
C90.2422 (4)0.1632 (5)0.1836 (3)0.0822 (14)
H10.031 (4)0.514 (5)0.168 (2)0.0650*
H30.558500.223810.007870.0697*
H40.457320.294220.133920.0768*
H50.239570.403820.136090.0710*
H60.119790.434740.014890.0582*
H70.220 (3)0.409 (4)0.186 (2)0.0472*
H8A0.152770.025780.042760.1289*
H8B0.145670.209440.088890.1289*
H8C0.156500.032370.140010.1289*
H9A0.333630.202630.192800.1231*
H9B0.203870.226320.137270.1231*
H9C0.189390.186180.232330.1231*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0397 (5)0.0498 (6)0.0394 (6)0.0010 (3)0.0118 (3)0.0050 (2)
O10.0612 (13)0.0632 (12)0.0381 (11)0.0208 (10)0.0100 (9)0.0029 (8)
O20.0730 (17)0.135 (3)0.0482 (14)0.0101 (15)0.0100 (12)0.0049 (14)
O30.0687 (19)0.134 (3)0.094 (2)0.0365 (17)0.0079 (17)0.0130 (18)
O40.0558 (13)0.0733 (14)0.0432 (12)0.0081 (10)0.0176 (10)0.0110 (9)
O50.0521 (13)0.0700 (14)0.0551 (13)0.0075 (10)0.0116 (9)0.0146 (10)
O60.0453 (12)0.0551 (13)0.1034 (19)0.0036 (9)0.0211 (11)0.0248 (12)
N10.0437 (13)0.0792 (18)0.0541 (15)0.0038 (12)0.0011 (11)0.0101 (13)
C10.0422 (14)0.0397 (13)0.0322 (13)0.0045 (9)0.0082 (10)0.0001 (8)
C20.0403 (13)0.0502 (14)0.0443 (14)0.0063 (11)0.0059 (10)0.0011 (11)
C30.0421 (15)0.073 (2)0.0590 (17)0.0008 (13)0.0181 (13)0.0008 (14)
C40.0621 (19)0.086 (2)0.0439 (16)0.0039 (17)0.0213 (13)0.0057 (15)
C50.065 (2)0.080 (2)0.0322 (14)0.0026 (15)0.0077 (12)0.0027 (12)
C60.0500 (16)0.0613 (16)0.0341 (14)0.0044 (12)0.0052 (11)0.0036 (11)
C70.0442 (14)0.0449 (14)0.0291 (13)0.0009 (10)0.0065 (10)0.0001 (9)
C80.056 (2)0.114 (3)0.088 (3)0.004 (2)0.0030 (18)0.033 (2)
C90.068 (2)0.060 (2)0.119 (3)0.0109 (16)0.025 (2)0.025 (2)
Geometric parameters (Å, º) top
P1—O41.467 (2)C3—C41.381 (5)
P1—O51.557 (2)C4—C51.370 (5)
P1—O61.563 (2)C5—C61.387 (4)
P1—C71.829 (2)C3—H30.9300
O1—C71.416 (3)C4—H40.9300
O2—N11.221 (4)C5—H50.9300
O3—N11.207 (4)C6—H60.9300
O5—C81.441 (4)C7—H70.93 (3)
O6—C91.424 (4)C8—H8A0.9600
O1—H10.87 (3)C8—H8B0.9600
N1—C21.475 (4)C8—H8C0.9600
C1—C61.390 (4)C9—H9A0.9600
C1—C71.515 (4)C9—H9B0.9600
C1—C21.390 (4)C9—H9C0.9600
C2—C31.387 (4)
P1···H1i3.14 (3)N1···O62.876 (3)
O1···O43.145 (3)N1···H72.87 (3)
O1···O52.981 (3)C2···O63.035 (4)
O1···C83.372 (5)C2···C4ix3.566 (5)
O1···O4ii2.674 (3)C3···C3ix3.556 (5)
O1···C6iii3.343 (4)C4···C2ix3.566 (5)
O2···C72.827 (4)C6···O1iii3.343 (4)
O2···O63.086 (4)C7···O22.827 (4)
O3···C8iv3.240 (5)C8···O13.372 (5)
O4···O13.145 (3)C8···O3x3.240 (5)
O4···O1i2.674 (3)C8···O5v3.350 (5)
O4···C9ii3.320 (5)C9···O4i3.320 (5)
O5···C8v3.350 (5)H1···P1ii3.14 (3)
O5···O12.981 (3)H1···O4ii1.81 (3)
O6···O23.086 (4)H3···O32.4200
O6···C23.035 (4)H4···H9Axi2.3800
O6···N12.876 (3)H4···O2xii2.7800
O1···H6iii2.5800H5···O4xii2.7300
O1···H62.3000H6···O12.3000
O1···H8B2.8300H6···O1iii2.5800
O1···H9Bvi2.7400H7···O22.29 (3)
O2···H72.29 (3)H7···N12.87 (3)
O2···H9Avii2.7700H8A···O5v2.6500
O2···H4viii2.7800H8B···O12.8300
O3···H32.4200H8C···O3x2.8700
O3···H8Civ2.8700H8C···O42.7300
O4···H5viii2.7300H9A···O2xiii2.7700
O4···H9C2.9100H9A···H4xi2.3800
O4···H9Cii2.6100H9B···O1xiv2.7400
O4···H8C2.7300H9C···O42.9100
O4···H1i1.81 (3)H9C···O4i2.6100
O5···H8Av2.6500
O4—P1—O5114.43 (12)P1—C7—O1105.03 (19)
O4—P1—O6116.05 (14)C2—C3—H3120.00
O4—P1—C7112.25 (13)C4—C3—H3120.00
O5—P1—O6103.49 (13)C3—C4—H4120.00
O5—P1—C7106.44 (12)C5—C4—H4120.00
O6—P1—C7103.00 (13)C4—C5—H5120.00
P1—O5—C8122.7 (2)C6—C5—H5120.00
P1—O6—C9123.8 (2)C1—C6—H6119.00
C7—O1—H1109 (2)C5—C6—H6119.00
O2—N1—O3123.3 (3)P1—C7—H7107.7 (19)
O3—N1—C2118.6 (3)O1—C7—H7109.5 (18)
O2—N1—C2118.1 (3)C1—C7—H7113.1 (19)
C2—C1—C7125.4 (2)O5—C8—H8A109.00
C6—C1—C7118.2 (3)O5—C8—H8B109.00
C2—C1—C6116.2 (2)O5—C8—H8C109.00
N1—C2—C3115.4 (3)H8A—C8—H8B109.00
C1—C2—C3122.5 (3)H8A—C8—H8C109.00
N1—C2—C1122.1 (2)H8B—C8—H8C110.00
C2—C3—C4119.5 (3)O6—C9—H9A109.00
C3—C4—C5119.3 (3)O6—C9—H9B110.00
C4—C5—C6120.5 (3)O6—C9—H9C109.00
C1—C6—C5121.8 (3)H9A—C9—H9B109.00
P1—C7—C1111.07 (16)H9A—C9—H9C109.00
O1—C7—C1110.1 (2)H9B—C9—H9C109.00
O4—P1—O5—C825.6 (3)C6—C1—C2—N1177.3 (3)
O6—P1—O5—C8152.8 (3)C6—C1—C2—C32.1 (4)
C7—P1—O5—C899.0 (3)C7—C1—C2—N17.1 (4)
O4—P1—O6—C958.0 (3)C7—C1—C2—C3173.6 (3)
O5—P1—O6—C968.2 (3)C2—C1—C6—C50.8 (4)
C7—P1—O6—C9179.0 (3)C7—C1—C6—C5175.2 (3)
O4—P1—C7—O168.02 (19)C2—C1—C7—P176.9 (3)
O4—P1—C7—C1173.00 (18)C2—C1—C7—O1167.2 (2)
O5—P1—C7—O157.90 (19)C6—C1—C7—P198.6 (2)
O5—P1—C7—C161.1 (2)C6—C1—C7—O117.3 (3)
O6—P1—C7—O1166.43 (17)N1—C2—C3—C4177.7 (3)
O6—P1—C7—C147.5 (2)C1—C2—C3—C41.7 (5)
O2—N1—C2—C128.4 (4)C2—C3—C4—C50.1 (5)
O2—N1—C2—C3151.0 (3)C3—C4—C5—C61.3 (6)
O3—N1—C2—C1153.8 (3)C4—C5—C6—C10.9 (5)
O3—N1—C2—C326.8 (4)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x, y+1, z; (iv) x+1, y, z; (v) x, y, z; (vi) x, y+1, z; (vii) x+1, y+1/2, z+1/2; (viii) x, y+1/2, z+1/2; (ix) x+1, y+1, z; (x) x1, y, z; (xi) x+1, y, z; (xii) x, y+1/2, z1/2; (xiii) x+1, y1/2, z+1/2; (xiv) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4ii0.87 (3)1.81 (3)2.674 (3)171 (4)
C6—H6···O10.93002.30002.688 (3)104.00
C6—H6···O1iii0.93002.58003.343 (4)140.00
C7—H7···O20.93 (3)2.29 (3)2.827 (4)116 (2)
Symmetry codes: (ii) x, y+1/2, z+1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC9H12NO6P
Mr261.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.8685 (12), 7.5081 (11), 16.1052 (12)
β (°) 90.341 (1)
V3)1193.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.26 × 0.20 × 0.18
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(MolEN; Fair, 1990)
Tmin, Tmax0.939, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
2222, 2093, 1873
Rint0.017
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.231, 1.00
No. of reflections2093
No. of parameters162
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.70, 0.50

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1992), MolEN (Fair, 1990), SHELXS86 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.87 (3)1.81 (3)2.674 (3)171 (4)
C6—H6···O10.93002.30002.688 (3)104.00
C6—H6···O1ii0.93002.58003.343 (4)140.00
C7—H7···O20.93 (3)2.29 (3)2.827 (4)116 (2)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1, z.
 

References

First citationAcar, N., Tahir, M. N., Yılmaz, H., Chishti, M. S. A. & Malik, M. A. (2009). Acta Cryst. E65, o481.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationChen, C., Jin, W. & Li, X. (2008). Acta Cryst. E64, o144.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEnraf–Nonius (1992). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFair, C. K. (1990). MolEN. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMaliha, B., Tariq, M. I., Tahir, M. N., Hussain, I. & Siddiqui, H. L. (2009). Acta Cryst. E65, o448.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTahir, M. N., Acar, N., Yilmaz, H., Danish, M. & Ülkü, D. (2007). Acta Cryst. E63, o3817–o3818.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds