organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Bromo-17-nitro-26,28-prop-2-en­­oxy-25,27-dipropoxycalix[4]arene

aInstitut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: bolte@chemie.uni-frankfurt.de

(Received 16 February 2009; accepted 23 February 2009; online 28 February 2009)

Mol­ecules of the title compound, C40H42BrNO6, are located on a crystallographic twofold rotation axis. As a result, the nitro group and bromine residue are mutually disordered with equal occupancies. The prop­oxy-substituted aromatic rings are close to parallel to each other [dihedral angle = 21.24 (1)°], whereas the propen­oxy-substituted rings enclose a dihedral angle of 70.44 (1)°. The dihedral angles between the methyl­ene C atoms and the aromatic rings shows that the propen­oxy substituted rings are bent away from the calixarene cavity [dihedral angle between the planes = 35.22 (8)°], whereas the prop­oxy-substituted rings are almost perpendicular [79.38 (10)°] to the plane of the methyl­ene C atoms.

Related literature

For related literature on calix[4]arenes, see: Asfari et al. (2001[Asfari, Z., Böhmer, V. & Harrowfield, J. (2001). Calixarenes 2001. Dordrecht: Kluwer Academic Publishers.]); Böhmer (1995[Böhmer, V. (1995). Angew. Chem. Int. Ed. Engl. 34, 713-745.]); Gutsche (1998[Gutsche, C. D. (1998). Calixarenes Revisited. Letchworth: The Royal Society of Chemistry.]); Mandolini & Ungaro (2000[Mandolini, L. & Ungaro, R. (2000). Calixarenes in Action. London: Imperial College Press.]). For the synthesis of the title compound, see: Sansone et al. (2004[Sansone, F., Baldini, L., Casnati, A., Chierici, E., Faimani, G., Ugozzoli, F. & Ungaro, R. (2004). J. Am. Chem. Soc. 126, 6204-6205.]).

[Scheme 1]

Experimental

Crystal data
  • C40H42BrNO6

  • Mr = 712.66

  • Monoclinic, C 2/c

  • a = 25.001 (3) Å

  • b = 8.4963 (14) Å

  • c = 19.909 (3) Å

  • β = 121.530 (8)°

  • V = 3604.6 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.19 mm−1

  • T = 173 K

  • 0.26 × 0.12 × 0.11 mm

Data collection
  • Stoe IPDS-II two-circle diffractometer

  • Absorption correction: multi-scan (MULABS; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.748, Tmax = 0.881

  • 9833 measured reflections

  • 3366 independent reflections

  • 1538 reflections with I > 2σ(I)

  • Rint = 0.081

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.130

  • S = 0.92

  • 3366 reflections

  • 286 parameters

  • 47 restraints

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Calix[4]arenes are macrocycles which provide an ideal scaffold to preorganize functional units for application in catalysis or molecular recognition. They are available in large quantities and can be easily modified by selective reactions involving the wide or narrow rim of the molecule (Asfari et al., 2001; Mandolini & Ungaro, 2000; Gutsche, 1998; Böhmer, 1995). Accordingly, compound 1 was obtained by bromination of 5-mononitro-26,28-dipropyloxycalix[4]arene in CH2Cl2 with 59% yield (Sansone et al., 2004). Subsequent reaction of 1 with allyl bromide and NaH in DMF at room temperature afforded the respective monoalkylated derivative 2. Further reaction of compound 2 with a large excess of allyl bromide afforded compound 3 with 22% yield.

Molecules of the title compound 3 (Fig. 1) are located on a crystallographic twofold rotation axis. As a result of that, the nitro group and bromine residue are mutually disordered. The propoxy substituted aromatic rings are almost parallel to each other [dihedral angle 21.24 (1)°], whereas the propenoxy substituted rings enclose a dihedral angle of 70.44 (1)°. The dihedral angles between the methylene C atoms and the aromatic rings shows that the propenoxy substituted rings are bent away from the calixarene cavity [dihedral angle between the planes 35.22 (8)°] whereas the propoxy substituted rings are almost perpendicular [79.38 (10)°] to the plane of the methylene C atoms.

Related literature top

For related literature on calix[4]arenes, see: Asfari et al. (2001); Böhmer (1995); Gutsche (1998); Mandolini & Ungaro (2000). For the synthesis of the title compound, see: Sansone et al. (2004).

Experimental top

5-Mononitro-26,28-dipropyloxycalix[4]arene was synthesized according to literature (Sansone et al., 2004). Under an argon atmosphere 29 mg (0.045 mmol, 1 equiv.) of compound 2 and 26 mg (1.12 mmol, 25 equiv.) of NaH were suspended in 2 ml of dry DMF and stirred for some minutes. Afterwards, 135 mg (1.12 mmol, 25 equiv.) of allyl bromide in 0.7 ml DMF were slowly added to the mixture and the latter stirred for additional 12 h at room temperature. Subsequently, the reaction suspension was slowly stirred into a mixture of 20 ml CH2Cl2 and 10 ml 1 N HCl. The obtained organic phase was separated, washed with water and brine and dried over MgSO4. The solvent was evaporated and the resulting crude product was purified by column chromatography with CH2Cl2/pentane 40:60 and subsequent crystallization from CHCl3/methanol. Compound 3 was obtained as white crystals (7 mg, yield 22%). C40H42BrNO6 (712.67). Mp = 203–206°C. CH2Cl2/Hexan 40:60; Rf=0.30. 1H-NMR (400 MHz, CDCl3, TMS, 25°C) δ (p.p.m.): 7.80 (s, 2H; Ar-H); 6.96 (s, 2H; Ar-H); 6.50–6.39 (m, 6H; Ar-H); 6.37 - 6.26 (m, 2H; AllylC=H); 5.21–5.16 (m, 4H; AllylC=H2); 4.66 and 4.64 (dt, 2H, 3J=6.0 Hz, 4J=0.98 Hz; OCH2Allyl); 4.52 and 4.50 (dt, 2H, 3J=6.5 Hz, 4J=1.1 Hz; OCH2Allyl); 4.65 and 3.26 (AB, total 4H, 2J=13.6; Ar—CH2-Ar); 4.36 and 3.11 (AB, total 4H, 2J=13.5; Ar—CH2-Ar); 3.79 - 3.73 (m, 4H; O—CH2); 1.93 - 1.85 (m, 4H; propyl), 1.03 (t, 6H, 3J=7.5 Hz; propyl). MS (EI) calc. for C40H42BrNO6: m/z= 711.22; found m/z= 711.1 [M]+.

Refinement top

H atoms were geometrically positioned and refined using a riding model with fixed individual displacement parameters [U(H) = 1.2 Ueq(C) or U(H) = 1.5 Ueq(Cmethyl)] using a riding model with C—H(aromatic) = 0.95 Å, CH(methyl) = 0.98 Å, or CH(methylene) = 0.99 Å, respectively. Due to the crystallographic symmetry of the molecule, the Br atom and the nitro group are mutually disordered with equal occupancies. The N atom of the nitro group is so close to the bromine atom that its U value could not be refined and was fixed to 0.05. The following restraints were applied to the nitro group: N—C bond distance 1.470 (1) Å, N—O bond distances 1.220 (1) Å, N···Cα distances 2.450 (1) Å. The propenyloxy and propoxy groups are disordered over two sites each with site occupation factors of 0.63 (1) and 0.72 (1), respectively, for the major occupied site. Bond lengths and angles in these groups were restrained to be equal and the displacement ellipsoids of the minor occupied atoms were restrained to an isotropic behaviour.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound with the atom numbering; displacement ellipsoids are at the 50% probability level. Only the major occupied site of the disordered moieties is shown. [Symmetry operator for generating equivalent atoms: 1 - x, y, 1/2 - z. ]
[Figure 2] Fig. 2. The formation of the title compound.
5-Bromo-17-nitro-26,28-prop-2-enoxy-25,27-dipropoxycalix[4]arene top
Crystal data top
C40H42BrNO6F(000) = 1488
Mr = 712.66Dx = 1.313 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3120 reflections
a = 25.001 (3) Åθ = 3.5–25.6°
b = 8.4963 (14) ŵ = 1.19 mm1
c = 19.909 (3) ÅT = 173 K
β = 121.530 (8)°Plate, colourless
V = 3604.6 (9) Å30.26 × 0.12 × 0.11 mm
Z = 4
Data collection top
Stoe IPDS-II two-circle
diffractometer
3366 independent reflections
Radiation source: fine-focus sealed tube1538 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.081
ω scansθmax = 25.7°, θmin = 3.5°
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
h = 3025
Tmin = 0.748, Tmax = 0.881k = 1010
9833 measured reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.130 w = 1/[σ2(Fo2) + (0.0307P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.92(Δ/σ)max < 0.001
3366 reflectionsΔρmax = 0.26 e Å3
286 parametersΔρmin = 0.29 e Å3
47 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0020 (3)
Crystal data top
C40H42BrNO6V = 3604.6 (9) Å3
Mr = 712.66Z = 4
Monoclinic, C2/cMo Kα radiation
a = 25.001 (3) ŵ = 1.19 mm1
b = 8.4963 (14) ÅT = 173 K
c = 19.909 (3) Å0.26 × 0.12 × 0.11 mm
β = 121.530 (8)°
Data collection top
Stoe IPDS-II two-circle
diffractometer
3366 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
1538 reflections with I > 2σ(I)
Tmin = 0.748, Tmax = 0.881Rint = 0.081
9833 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06547 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 0.92Δρmax = 0.26 e Å3
3366 reflectionsΔρmin = 0.29 e Å3
286 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.73186 (7)1.08989 (19)0.62438 (6)0.0654 (5)0.50
N10.7175 (3)1.0605 (11)0.6027 (4)0.050*0.50
O110.7045 (4)1.0828 (14)0.6532 (4)0.110 (4)0.50
O120.7628 (3)1.1127 (11)0.6024 (5)0.086 (3)0.50
O10.55519 (13)0.6827 (4)0.34459 (15)0.0402 (8)
O20.58956 (14)0.6443 (4)0.19972 (16)0.0444 (8)
C10.5086 (2)0.8009 (6)0.4372 (2)0.0474 (13)
H1A0.50300.83920.48010.057*
H1B0.49930.68670.43030.057*
C20.6667 (2)0.7893 (6)0.3528 (2)0.0438 (12)
H2A0.66240.67520.34100.053*
H2B0.71040.82050.37110.053*
C110.5757 (2)0.8291 (5)0.4588 (2)0.0395 (12)
C120.5960 (2)0.7747 (5)0.4091 (2)0.0356 (11)
C130.6528 (2)0.8223 (5)0.4169 (2)0.0358 (11)
C140.69268 (19)0.9186 (5)0.48264 (18)0.0402 (11)
H140.73170.95360.49060.048*
C150.6751 (2)0.9614 (4)0.53478 (18)0.0416 (12)
C160.61726 (18)0.9227 (5)0.5234 (2)0.0450 (12)
H160.60570.95920.55920.054*
C170.5514 (5)0.5159 (14)0.3672 (9)0.071 (4)0.625 (13)
H17A0.54870.51630.41500.086*0.625 (13)
H17B0.51280.46590.32410.086*0.625 (13)
C180.6064 (5)0.4232 (11)0.3824 (6)0.066 (4)0.625 (13)
H180.61610.42000.34220.079*0.625 (13)
C190.6430 (7)0.3450 (13)0.4472 (7)0.082 (4)0.625 (13)
H19A0.63480.34540.48880.098*0.625 (13)
H19B0.67770.28770.45280.098*0.625 (13)
C17'0.5755 (9)0.526 (2)0.3452 (9)0.053 (5)0.375 (13)
H17C0.62080.52470.36410.064*0.375 (13)
H17D0.55220.48120.29130.064*0.375 (13)
C18'0.5636 (8)0.4314 (19)0.3980 (8)0.057 (6)0.375 (13)
H18'0.52240.43260.38910.068*0.375 (13)
C19'0.6059 (12)0.346 (2)0.4563 (10)0.080 (7)0.375 (13)
H19C0.64760.34190.46690.096*0.375 (13)
H19D0.59490.28780.48810.096*0.375 (13)
C210.62150 (19)0.8809 (6)0.2786 (2)0.0368 (11)
C220.5834 (2)0.8061 (6)0.2053 (2)0.0370 (11)
C230.53622 (19)0.8876 (6)0.1391 (2)0.0404 (12)
C240.5298 (2)1.0487 (6)0.1459 (2)0.0458 (13)
H240.49851.10610.10180.055*
C250.5683 (2)1.1257 (6)0.2160 (3)0.0557 (15)
H250.56391.23600.21950.067*
C260.6134 (2)1.0433 (6)0.2817 (2)0.0450 (13)
H260.63931.09820.32970.054*
C270.6382 (4)0.6220 (8)0.1775 (6)0.038 (2)0.717 (14)
H27A0.67930.66490.21890.045*0.717 (14)
H27B0.62520.67510.12700.045*0.717 (14)
C280.6421 (3)0.4457 (8)0.1700 (5)0.042 (2)0.717 (14)
H28A0.60120.40590.12680.051*0.717 (14)
H28B0.65130.39410.21950.051*0.717 (14)
C290.6936 (5)0.4045 (18)0.1529 (7)0.048 (3)0.717 (14)
H29A0.69640.28980.15020.072*0.717 (14)
H29B0.73390.44600.19510.072*0.717 (14)
H29C0.68330.45110.10250.072*0.717 (14)
C27'0.6423 (11)0.562 (4)0.2081 (11)0.052 (7)0.283 (14)
H27C0.65140.46960.24270.063*0.283 (14)
H27D0.67950.63180.23340.063*0.283 (14)
C28'0.6306 (10)0.509 (3)0.1297 (11)0.052 (6)0.283 (14)
H28C0.61130.59550.09120.062*0.283 (14)
H28D0.60070.41930.11050.062*0.283 (14)
C29'0.6917 (16)0.457 (5)0.135 (2)0.066 (13)0.283 (14)
H29D0.68170.39000.09010.108*0.283 (14)
H29E0.71760.39790.18420.108*0.283 (14)
H29F0.71470.55010.13500.108*0.283 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0603 (10)0.0649 (9)0.0360 (6)0.0170 (8)0.0009 (5)0.0200 (6)
O110.083 (7)0.167 (10)0.067 (5)0.003 (7)0.029 (5)0.061 (6)
O120.092 (7)0.092 (7)0.059 (5)0.022 (6)0.030 (5)0.017 (4)
O10.0349 (18)0.037 (2)0.0406 (16)0.0036 (15)0.0140 (13)0.0072 (13)
O20.0324 (19)0.054 (2)0.0501 (17)0.0019 (16)0.0238 (14)0.0162 (14)
C10.044 (3)0.062 (3)0.038 (2)0.004 (3)0.022 (2)0.006 (2)
C20.028 (3)0.056 (3)0.042 (2)0.008 (2)0.014 (2)0.009 (2)
C110.042 (3)0.045 (3)0.0243 (19)0.005 (2)0.0122 (18)0.0079 (18)
C120.035 (3)0.034 (3)0.031 (2)0.007 (2)0.0121 (19)0.0046 (18)
C130.035 (3)0.033 (3)0.031 (2)0.009 (2)0.0109 (18)0.0032 (18)
C140.032 (3)0.036 (3)0.036 (2)0.006 (2)0.0057 (18)0.005 (2)
C150.048 (3)0.037 (3)0.0243 (19)0.009 (2)0.0082 (19)0.0009 (18)
C160.045 (3)0.055 (3)0.032 (2)0.017 (3)0.0178 (19)0.006 (2)
C170.064 (9)0.043 (7)0.103 (10)0.023 (7)0.041 (7)0.014 (7)
C180.083 (8)0.036 (6)0.078 (7)0.001 (6)0.042 (6)0.022 (5)
C190.117 (12)0.035 (6)0.085 (8)0.008 (7)0.047 (8)0.005 (5)
C17'0.037 (11)0.047 (11)0.068 (10)0.004 (9)0.021 (8)0.005 (7)
C18'0.063 (12)0.019 (9)0.069 (10)0.007 (9)0.021 (9)0.004 (7)
C19'0.103 (18)0.052 (11)0.077 (11)0.015 (12)0.043 (12)0.000 (8)
C210.029 (2)0.054 (3)0.038 (2)0.004 (2)0.0253 (17)0.009 (2)
C220.038 (3)0.048 (3)0.041 (2)0.003 (2)0.031 (2)0.009 (2)
C230.030 (2)0.072 (4)0.031 (2)0.003 (3)0.0232 (18)0.005 (2)
C240.047 (3)0.056 (4)0.039 (2)0.001 (2)0.025 (2)0.004 (2)
C250.066 (4)0.049 (4)0.051 (3)0.008 (3)0.030 (2)0.000 (2)
C260.043 (3)0.049 (3)0.037 (2)0.005 (2)0.017 (2)0.006 (2)
C270.039 (4)0.041 (5)0.049 (5)0.001 (4)0.034 (4)0.011 (3)
C280.035 (4)0.040 (5)0.045 (5)0.000 (4)0.017 (3)0.016 (4)
C290.039 (5)0.054 (9)0.049 (5)0.005 (5)0.022 (4)0.016 (6)
C27'0.053 (13)0.070 (19)0.057 (13)0.012 (13)0.045 (12)0.006 (12)
C28'0.071 (15)0.059 (15)0.043 (11)0.005 (11)0.044 (11)0.003 (10)
C29'0.09 (2)0.05 (2)0.08 (2)0.031 (16)0.059 (16)0.006 (16)
Geometric parameters (Å, º) top
Br1—C151.934 (3)C17'—H17C0.9900
N1—O121.2200 (11)C17'—H17D0.9900
N1—O111.2203 (10)C18'—C19'1.307 (16)
N1—C151.4704 (10)C18'—H18'0.9500
O1—C121.390 (5)C19'—H19C0.9500
O1—C17'1.426 (18)C19'—H19D0.9500
O1—C171.505 (13)C21—C261.401 (6)
O2—C221.394 (5)C21—C221.409 (5)
O2—C27'1.42 (3)C22—C231.408 (6)
O2—C271.508 (9)C23—C241.393 (7)
C1—C111.518 (6)C23—C1i1.525 (6)
C1—C23i1.525 (6)C24—C251.377 (6)
C1—H1A0.9900C24—H240.9500
C1—H1B0.9900C25—C261.389 (6)
C2—C131.514 (6)C25—H250.9500
C2—C211.523 (6)C26—H260.9500
C2—H2A0.9900C27—C281.513 (9)
C2—H2B0.9900C27—H27A0.9900
C11—C161.403 (5)C27—H27B0.9900
C11—C121.404 (6)C28—C291.533 (10)
C12—C131.404 (6)C28—H28A0.9900
C13—C141.418 (5)C28—H28B0.9900
C14—C151.372 (6)C29—H29A0.9800
C14—H140.9500C29—H29B0.9800
C15—C161.380 (5)C29—H29C0.9800
C16—H160.9500C27'—C28'1.500 (16)
C17—C181.473 (12)C27'—H27C0.9900
C17—H17A0.9900C27'—H27D0.9900
C17—H17B0.9900C28'—C29'1.537 (17)
C18—C191.307 (11)C28'—H28C0.9900
C18—H180.9500C28'—H28D0.9900
C19—H19A0.9500C29'—H29D0.9800
C19—H19B0.9500C29'—H29E0.9800
C17'—C18'1.470 (15)C29'—H29F0.9800
O12—N1—O11126.5 (6)C17'—C18'—H18'117.7
O12—N1—C15115.4 (5)C18'—C19'—H19C120.0
O11—N1—C15118.2 (5)C18'—C19'—H19D120.0
C12—O1—C17'115.6 (7)H19C—C19'—H19D120.0
C12—O1—C17112.6 (6)C26—C21—C22117.0 (4)
C22—O2—C27'127.5 (12)C26—C21—C2120.8 (4)
C22—O2—C27106.7 (4)C22—C21—C2122.1 (4)
C11—C1—C23i109.5 (4)O2—C22—C23118.9 (4)
C11—C1—H1A109.8O2—C22—C21118.9 (4)
C23i—C1—H1A109.8C23—C22—C21122.0 (4)
C11—C1—H1B109.8C24—C23—C22118.3 (4)
C23i—C1—H1B109.8C24—C23—C1i120.7 (4)
H1A—C1—H1B108.2C22—C23—C1i121.0 (5)
C13—C2—C21110.0 (4)C25—C24—C23120.7 (4)
C13—C2—H2A109.7C25—C24—H24119.6
C21—C2—H2A109.7C23—C24—H24119.6
C13—C2—H2B109.7C24—C25—C26120.5 (5)
C21—C2—H2B109.7C24—C25—H25119.7
H2A—C2—H2B108.2C26—C25—H25119.7
C16—C11—C12117.8 (4)C25—C26—C21121.3 (4)
C16—C11—C1121.8 (4)C25—C26—H26119.3
C12—C11—C1120.1 (4)C21—C26—H26119.3
O1—C12—C11118.4 (4)O2—C27—C28104.9 (7)
O1—C12—C13118.4 (4)O2—C27—H27A110.8
C11—C12—C13122.9 (4)C28—C27—H27A110.8
C12—C13—C14116.8 (4)O2—C27—H27B110.8
C12—C13—C2121.2 (4)C28—C27—H27B110.8
C14—C13—C2121.6 (4)H27A—C27—H27B108.8
C15—C14—C13120.1 (4)C27—C28—C29110.7 (8)
C15—C14—H14119.9C27—C28—H28A109.5
C13—C14—H14119.9C29—C28—H28A109.5
C14—C15—C16122.4 (3)C27—C28—H28B109.5
C14—C15—N1119.0 (4)C29—C28—H28B109.5
C16—C15—N1118.5 (4)H28A—C28—H28B108.1
C14—C15—Br1118.4 (3)C28—C29—H29A109.5
C16—C15—Br1119.1 (3)C28—C29—H29B109.5
C15—C16—C11119.6 (4)H29A—C29—H29B109.5
C15—C16—H16120.2C28—C29—H29C109.5
C11—C16—H16120.2H29A—C29—H29C109.5
C18—C17—O1111.6 (10)H29B—C29—H29C109.5
C18—C17—H17A109.3O2—C27'—C28'111.2 (19)
O1—C17—H17A109.3O2—C27'—H27C109.4
C18—C17—H17B109.3C28'—C27'—H27C109.4
O1—C17—H17B109.3O2—C27'—H27D109.4
H17A—C17—H17B108.0C28'—C27'—H27D109.4
C19—C18—C17124.8 (13)H27C—C27'—H27D108.0
C19—C18—H18117.6C27'—C28'—C29'111.5 (19)
C17—C18—H18117.6C27'—C28'—H28C109.3
C18—C19—H19A120.0C29'—C28'—H28C109.3
C18—C19—H19B120.0C27'—C28'—H28D109.3
H19A—C19—H19B120.0C29'—C28'—H28D109.3
O1—C17'—C18'108.2 (15)H28C—C28'—H28D108.0
O1—C17'—H17C110.1C28'—C29'—H29D109.5
C18'—C17'—H17C110.1C28'—C29'—H29E109.5
O1—C17'—H17D110.1H29D—C29'—H29E109.5
C18'—C17'—H17D110.1C28'—C29'—H29F109.5
H17C—C17'—H17D108.4H29D—C29'—H29F109.5
C19'—C18'—C17'124.5 (19)H29E—C29'—H29F109.5
C19'—C18'—H18'117.7
C23i—C1—C11—C16109.7 (5)C17'—O1—C17—C1825.5 (12)
C23i—C1—C11—C1263.7 (6)O1—C17—C18—C19125.5 (13)
C17'—O1—C12—C11116.6 (9)C12—O1—C17'—C18'79.0 (13)
C17—O1—C12—C1176.8 (7)C17—O1—C17'—C18'14.8 (11)
C17'—O1—C12—C1369.9 (9)O1—C17'—C18'—C19'126.8 (19)
C17—O1—C12—C13109.6 (6)C13—C2—C21—C2652.0 (6)
C16—C11—C12—O1179.6 (4)C13—C2—C21—C22124.0 (4)
C1—C11—C12—O15.9 (6)C27'—O2—C22—C23118.1 (10)
C16—C11—C12—C136.4 (6)C27—O2—C22—C2393.9 (5)
C1—C11—C12—C13167.3 (4)C27'—O2—C22—C2166.3 (11)
O1—C12—C13—C14178.8 (4)C27—O2—C22—C2190.5 (5)
C11—C12—C13—C145.6 (6)C26—C21—C22—O2179.5 (4)
O1—C12—C13—C26.3 (6)C2—C21—C22—O23.4 (6)
C11—C12—C13—C2166.9 (4)C26—C21—C22—C234.1 (6)
C21—C2—C13—C1265.6 (5)C2—C21—C22—C23172.1 (4)
C21—C2—C13—C14106.5 (4)O2—C22—C23—C24178.8 (4)
C12—C13—C14—C150.2 (6)C21—C22—C23—C243.4 (6)
C2—C13—C14—C15172.3 (4)O2—C22—C23—C1i1.5 (6)
C13—C14—C15—C164.3 (6)C21—C22—C23—C1i173.9 (4)
C13—C14—C15—N1179.6 (6)C22—C23—C24—C250.5 (7)
C13—C14—C15—Br1178.9 (3)C1i—C23—C24—C25176.8 (4)
O12—N1—C15—C148.1 (12)C23—C24—C25—C261.4 (7)
O11—N1—C15—C14171.8 (9)C24—C25—C26—C210.6 (8)
O12—N1—C15—C16168.1 (8)C22—C21—C26—C252.1 (7)
O11—N1—C15—C1611.9 (13)C2—C21—C26—C25174.1 (4)
C14—C15—C16—C113.5 (6)C22—O2—C27—C28178.5 (6)
N1—C15—C16—C11179.6 (6)C27'—O2—C27—C2842.4 (18)
Br1—C15—C16—C11179.8 (3)O2—C27—C28—C29176.1 (7)
C12—C11—C16—C151.8 (6)C22—O2—C27'—C28'105 (2)
C1—C11—C16—C15171.8 (4)C27—O2—C27'—C28'52.8 (17)
C12—O1—C17—C1877.5 (10)O2—C27'—C28'—C29'166 (2)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC40H42BrNO6
Mr712.66
Crystal system, space groupMonoclinic, C2/c
Temperature (K)173
a, b, c (Å)25.001 (3), 8.4963 (14), 19.909 (3)
β (°) 121.530 (8)
V3)3604.6 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.19
Crystal size (mm)0.26 × 0.12 × 0.11
Data collection
DiffractometerStoe IPDS-II two-circle
diffractometer
Absorption correctionMulti-scan
(MULABS; Spek, 2009; Blessing, 1995)
Tmin, Tmax0.748, 0.881
No. of measured, independent and
observed [I > 2σ(I)] reflections
9833, 3366, 1538
Rint0.081
(sin θ/λ)max1)0.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.130, 0.92
No. of reflections3366
No. of parameters286
No. of restraints47
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.29

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL-Plus (Sheldrick, 2008).

 

References

First citationAsfari, Z., Böhmer, V. & Harrowfield, J. (2001). Calixarenes 2001. Dordrecht: Kluwer Academic Publishers.  Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBöhmer, V. (1995). Angew. Chem. Int. Ed. Engl. 34, 713-745.  CrossRef Web of Science Google Scholar
First citationGutsche, C. D. (1998). Calixarenes Revisited. Letchworth: The Royal Society of Chemistry.  Google Scholar
First citationMandolini, L. & Ungaro, R. (2000). Calixarenes in Action. London: Imperial College Press.  Google Scholar
First citationSansone, F., Baldini, L., Casnati, A., Chierici, E., Faimani, G., Ugozzoli, F. & Ungaro, R. (2004). J. Am. Chem. Soc. 126, 6204–6205.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds