organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(8-Bromo-2-methyl-4-thioxo-3,4,5,6-tetra­hydro-2H-2,6-methano-1,3-benzoxazocin-11-yl)ethanone

aSTC Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Lenina Avenue, Kharkiv 61001, Ukraine, and bDepartment of Pharmaceutical Chemistry, National University of Pharmacy, 4 Blyukhera Avenue, Kharkiv 61002, Ukraine
*Correspondence e-mail: gena@xray.isc.kharkov.com

(Received 30 October 2008; accepted 28 January 2009; online 4 February 2009)

In the title compound, C14H14BrNO2S, there are two similar non-equivalent mol­ecules in the asymmetric unit, displaying three chiral centres each. In the crystal structure, they are linked by inter­molecular N—H⋯O hydrogen bonds to form infinite chains, which are in turn connected by weak Br⋯H and S⋯H inter­actions.

Related literature

For related literature on the applications of thio­phene derivatives, see: Zaragoza Dorwald (2000[Zaragoza Dorwald, F. (2000). US Patent 6136984 24 10.]); Kovalenko & Victorova (2005[Kovalenko, V. N. & Victorova, A. P. (2005). Compendium of Medicinal Preparation, p. 1920. Kiev: Morion.]). For analogous conformations, see: Bilokin et al. (1988[Bilokin, Y. V., Kovalenko, S. N. & Chernykh, V. P. (1988). Heterocycl. Commun. 4, 169-170.]); Raev et al. (2004[Raev, L. D., Frey, W. & Ivanov, I. C. (2004). Synlett, pp. 1584-88.]); Biala et al. (2002[Biala, J., Czarnocki, Z. & Maurin, J. K. (2002). Tetrahedron Asymmetry, 13, 1021-1023.]); Konovalova et al. (2007[Konovalova, I. S., Zaremba, O. V., Kovalenko, S. S., Chernykh, V. P., Kovalenko, S. M., Baumer, V. N. & Shishkin, O. V. (2007). Acta Cryst. E63, o4906.]); O'Callaghan et al. (1997[O'Callaghan, C. N., McMurry, T. B. H., O'Brien, J. E. & Draper, S. M. (1997). J. Chem. Res. 312, 2101-2122.]); Zefirov & Zorky (1995[Zefirov, Yu. V. & Zorky, P. M. (1995). Usp. Khim. 64, 446-460.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14BrNO2S

  • Mr = 340.23

  • Triclinic, [P \overline 1]

  • a = 8.213 (5) Å

  • b = 11.625 (7) Å

  • c = 15.156 (10) Å

  • α = 98.67 (5)°

  • β = 99.09 (5)°

  • γ = 101.81 (5)°

  • V = 1373.1 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.14 mm−1

  • T = 293 (2) K

  • 0.6 × 0.1 × 0.05 mm

Data collection
  • Siemens P3/PC diffractometer

  • Absorption correction: integration (XPREP; Siemens, 1991[Siemens (1991). P3, XDISK and XPREP. Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.]) Tmin = 0.611, Tmax = 0.855

  • 7869 measured reflections

  • 4773 independent reflections

  • 3383 reflections with I > 2/s(I)

  • Rint = 0.012

  • 2 standard reflections every 98 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.118

  • S = 1.03

  • 4773 reflections

  • 348 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N10A—H10A⋯O14Bi 0.86 2.20 2.981 (4) 150
N10B—H10B⋯O14Aii 0.86 2.15 2.960 (4) 157
Symmetry codes: (i) x, y-1, z; (ii) x-1, y, z.

Data collection: P3 (Siemens, 1991[Siemens (1991). P3, XDISK and XPREP. Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.]); cell refinement: P3; data reduction: XDISK and XPREP (Siemens, 1991[Siemens (1991). P3, XDISK and XPREP. Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The fragment of thiophene is a very important pharmacophore part of many biologically active compounds. Thiophene derivatives are used as antitussives (Zaragoza Dorwald, 2000; Kovalenko & Victorova, 2005), antibiotics, anaesthetics, antiparasitics, resolvents, anthelmintic drugs, anticholinergic drugs, antiulcer agents, antihistamines. Investigation of the molecular structure of these compounds may provide useful information for understanding the mechanism of their biological activity. In this paper we report the molecular and crystal structure of the 2-aroyl-3-amino-4-arylsulfonyl-5-arylamino-thiophene. There are two molecules in the asymmetric unit (labelled A and B in Fig. 1), with a similar distribution of chiral centers (C1, C9 and C13). Both molecules have similar geometrical characteristics: the piperidine-2-tione and tetrahydropyran rings adopt a half-chair conformation; deviations of the C1 and C13 atoms of the tetrahydropyrimidine ring from the mean-square planes of the remaining atoms in the ring are -0.46 (1) Å, 0.44 (1) Å and 0.37 (1) Å, -0.51 (1) Å in molecules A and B, respectively. Deviations of the C9 and C13 atoms of the tetrahydropyrane from the mean-square planes of the remaining atoms in the rings are -0.36 (1) Å, 0.44 (1) Å, in both molecules. The two rings are fused in such way that the C16 methyl group and the H atom at the C1 have equatorial orientation (the C7—C8—C9—C16 and C7—C2—C1—H1A torsion angles being -177.2 (3)° and -140.7 (3)° (molecule A) and -175.2 (3)° and -140.0 (3)° (molecule B). The same type of ring fusion have been observed in related compounds (Konovalova et al., 2007; Raev et al., 2004; Bilokin et al., 1988; O'Callaghan et al., 1997; Biala et al., 2002). The C13—C14 bond has an equatorial orientation with regard to the piperidine-2-tione ring (the N10—C9—C13—C14 torsion angle being -176.6 (3)° and -179.8 (3)° (A, B respectively). The acetyl group adopts an orthogonal arrangement relative to the C9—C13 bond (the C9—C13—C14—O14 torsion angle being 92.4 (4)°, -89.8 (4)° (A, B respectively). The main H-bonding interactions are presented in Table 1. Molecules pack as infinite chains of alternating A and B molecules, due to intrachain N—H···O and weak C—H···Br interactions. Neighbouring chains in turn are connected by weak C—H···.S interactions as well as by stacking interactions between phenyl rings with an interplanar distance of 3.37 (1) Å.

Related literature top

For related literature on applications of thiophene derivatives, see: Zaragoza Dorwald (2000); Kovalenko & Victorova (2005). For analogous conformations, see: Bilokin et al. (1988); Raev et al. (2004); Biala et al. (2002); Konovalova et al. (2007); O'Callaghan et al. (1997); Zefirov & Zorky (1995). [The synthesis twice states a temperature of 500°C. Should this be 500 K in each case?]

Experimental top

The title compound was obtained by one-pot synthesis, starting from a mixture of 1 mmol 6-bromocoumarine-3-thioamide and 1.2 mmol of 2,4-pentanedione in 5 ml of methanol containing catalytic amounts of piperidine, which was refluxed for 5 min. Then it was cooled to 500 C and 2 mmol of potassium alkali was added. The reaction mixture was stirred at 500 C for 6 h (monitored by TLC). Then it was cooled to r.t. and diluted with water. Formed precipitate was filtered and washed with water and water–methanol, 1:1.

Refinement top

All H atoms were located from an electron density difference map and included in the refinement in the riding motion approximation with Uiso constrained to be 1.5 times Ueq of the carrier atom for the methyl groups and 1.2 times Ueq of the carrier atom for the other atoms.

Computing details top

Data collection: P3 (Siemens, 1991); cell refinement: P3 (Siemens, 1991); data reduction: XDISK and XPREP (Siemens, 1991); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound with atomic numbering. Displacement ellipsoids drawn at a 50% probability level.
1-(8-Bromo-2-methyl-4-thioxo-3,4,5,6-tetrahydro-2H-2,6-methano-1,3- benzoxazocin-11-yl)ethanone top
Crystal data top
C14H14BrNO2SZ = 4
Mr = 340.23F(000) = 688
Triclinic, P1Dx = 1.646 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.213 (5) ÅCell parameters from 24 reflections
b = 11.625 (7) Åθ = 10–11°
c = 15.156 (10) ŵ = 3.14 mm1
α = 98.67 (5)°T = 293 K
β = 99.09 (5)°Needle, colourless
γ = 101.81 (5)°0.6 × 0.1 × 0.05 mm
V = 1373.1 (15) Å3
Data collection top
Siemens P3/PC
diffractometer
3383 reflections with I > 2/s(I)
Radiation source: sealed tubeRint = 0.012
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
2θ/θ scansh = 94
Absorption correction: integration
(XPREP; Siemens, 1991)
k = 1313
Tmin = 0.611, Tmax = 0.855l = 1818
7869 measured reflections2 standard reflections every 98 reflections
4773 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0597P)2 + 0.9457P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4773 reflectionsΔρmax = 0.37 e Å3
348 parametersΔρmin = 0.43 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0026 (5)
Crystal data top
C14H14BrNO2Sγ = 101.81 (5)°
Mr = 340.23V = 1373.1 (15) Å3
Triclinic, P1Z = 4
a = 8.213 (5) ÅMo Kα radiation
b = 11.625 (7) ŵ = 3.14 mm1
c = 15.156 (10) ÅT = 293 K
α = 98.67 (5)°0.6 × 0.1 × 0.05 mm
β = 99.09 (5)°
Data collection top
Siemens P3/PC
diffractometer
3383 reflections with I > 2/s(I)
Absorption correction: integration
(XPREP; Siemens, 1991)
Rint = 0.012
Tmin = 0.611, Tmax = 0.8552 standard reflections every 98 reflections
7869 measured reflections intensity decay: 1%
4773 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.03Δρmax = 0.37 e Å3
4773 reflectionsΔρmin = 0.43 e Å3
348 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br1A0.62044 (6)0.83270 (4)0.58068 (4)0.05907 (14)
S1A0.17210 (13)0.30146 (10)0.67922 (7)0.0413 (3)
C1A0.6441 (5)0.5017 (3)0.7900 (2)0.0269 (8)
H1A0.69250.56950.84060.032*
C2A0.6686 (4)0.5407 (3)0.7023 (2)0.0273 (8)
C3A0.6433 (5)0.6509 (3)0.6851 (2)0.0295 (9)
H3A0.61220.70240.72910.035*
C4A0.6641 (5)0.6833 (3)0.6045 (3)0.0346 (9)
C5A0.7090 (5)0.6098 (4)0.5373 (3)0.0421 (11)
H5A0.72180.63400.48250.050*
C6A0.7350 (5)0.4992 (4)0.5518 (2)0.0373 (10)
H6A0.76780.44880.50770.045*
C7A0.7109 (4)0.4659 (3)0.6333 (2)0.0271 (8)
O8A0.7374 (3)0.3533 (2)0.64432 (16)0.0299 (6)
C9A0.6713 (4)0.3045 (3)0.7161 (2)0.0259 (8)
N10A0.4847 (4)0.2771 (2)0.69181 (19)0.0284 (7)
H10A0.43710.21050.65510.034*
C11A0.3799 (5)0.3432 (3)0.7199 (2)0.0302 (9)
C12A0.4574 (5)0.4563 (3)0.7894 (2)0.0315 (9)
H12A0.44360.44110.84930.038*
H12B0.39790.51750.77620.038*
C13A0.7290 (4)0.3964 (3)0.8053 (2)0.0264 (8)
H13A0.68310.35990.85310.032*
C14A0.9203 (5)0.4390 (3)0.8362 (2)0.0307 (9)
O14A1.0003 (3)0.5252 (2)0.8167 (2)0.0447 (8)
C15A1.0060 (6)0.3680 (4)0.8959 (3)0.0531 (13)
H15A1.12540.40390.91210.080*
H15B0.98810.28740.86370.080*
H15C0.95920.36750.95010.080*
C16A0.7249 (5)0.1878 (3)0.7156 (3)0.0370 (10)
H16A0.68470.13820.65640.056*
H16B0.67770.14760.75990.056*
H16C0.84640.20350.73040.056*
Br1B0.59308 (7)1.32613 (4)1.02809 (3)0.05332 (14)
S1B0.10276 (13)0.80780 (9)0.93052 (6)0.0360 (2)
C1B0.1321 (4)1.0087 (3)0.7679 (2)0.0230 (8)
H1AA0.11251.07790.74160.028*
C2B0.3048 (4)1.0401 (3)0.8293 (2)0.0252 (8)
C3B0.3636 (5)1.1495 (3)0.8877 (2)0.0278 (9)
H3AA0.29631.20480.88910.033*
C4B0.5208 (5)1.1774 (3)0.9439 (2)0.0356 (10)
C5B0.6249 (4)1.0974 (3)0.9440 (2)0.0320 (9)
H5AA0.73121.11680.98200.038*
C6B0.5661 (5)0.9884 (3)0.8862 (2)0.0319 (9)
H6AA0.63430.93370.88450.038*
C7B0.4067 (4)0.9585 (3)0.8304 (2)0.0224 (8)
O8B0.3583 (3)0.84740 (19)0.77593 (16)0.0274 (6)
C9B0.1825 (4)0.8068 (3)0.7368 (2)0.0271 (8)
N10B0.0844 (4)0.7827 (2)0.8077 (2)0.0293 (7)
H10B0.08210.71480.82400.035*
C11B0.0017 (4)0.8516 (3)0.8502 (2)0.0266 (8)
C12B0.0047 (4)0.9703 (3)0.8219 (2)0.0271 (8)
H12C0.01081.03120.87590.032*
H12D0.11500.96490.78520.032*
C13B0.1177 (4)0.9023 (3)0.6920 (2)0.0235 (8)
H13B0.00290.87000.66530.028*
C14B0.2102 (4)0.9365 (3)0.6148 (2)0.0291 (9)
O14B0.3348 (4)1.0153 (2)0.63118 (17)0.0438 (8)
C15B0.1367 (7)0.8714 (5)0.5217 (3)0.0717 (17)
H15D0.16540.92220.47930.108*
H15F0.01560.84780.51450.108*
H15G0.18110.80150.51020.108*
C16B0.1689 (5)0.6886 (3)0.6746 (3)0.0413 (11)
H16F0.20550.63340.71000.062*
H16G0.23940.70130.63040.062*
H16D0.05320.65630.64390.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1A0.0566 (3)0.0473 (2)0.0811 (3)0.0145 (2)0.0039 (2)0.0429 (2)
S1A0.0277 (5)0.0528 (6)0.0445 (5)0.0050 (4)0.0101 (4)0.0157 (5)
C1A0.038 (2)0.0186 (15)0.0213 (16)0.0018 (14)0.0007 (15)0.0060 (13)
C2A0.0252 (19)0.0281 (17)0.0269 (17)0.0003 (14)0.0060 (15)0.0076 (14)
C3A0.035 (2)0.0262 (17)0.0256 (17)0.0073 (15)0.0003 (15)0.0065 (14)
C4A0.0252 (19)0.0378 (19)0.044 (2)0.0079 (16)0.0015 (16)0.0211 (16)
C5A0.036 (2)0.056 (2)0.0323 (19)0.0007 (19)0.0027 (17)0.0205 (18)
C6A0.039 (2)0.048 (2)0.0257 (17)0.0051 (18)0.0129 (16)0.0090 (16)
C7A0.0290 (19)0.0293 (17)0.0186 (15)0.0024 (15)0.0033 (14)0.0046 (13)
O8A0.0365 (14)0.0249 (12)0.0318 (12)0.0068 (10)0.0166 (11)0.0064 (10)
C9A0.0244 (18)0.0211 (15)0.0372 (18)0.0032 (14)0.0144 (15)0.0151 (13)
N10A0.0354 (17)0.0108 (13)0.0313 (15)0.0076 (12)0.0090 (13)0.0047 (11)
C11A0.046 (2)0.0345 (18)0.0158 (15)0.0102 (17)0.0150 (15)0.0116 (13)
C12A0.033 (2)0.0260 (17)0.0356 (19)0.0086 (15)0.0080 (16)0.0041 (15)
C13A0.0279 (19)0.0251 (16)0.0298 (17)0.0018 (14)0.0173 (15)0.0107 (13)
C14A0.036 (2)0.0220 (17)0.0316 (18)0.0062 (15)0.0043 (16)0.0001 (14)
O14A0.0347 (15)0.0250 (13)0.0719 (19)0.0046 (11)0.0084 (14)0.0193 (13)
C15A0.044 (3)0.055 (2)0.061 (3)0.001 (2)0.003 (2)0.033 (2)
C16A0.036 (2)0.0302 (19)0.050 (2)0.0109 (17)0.0164 (18)0.0104 (16)
Br1B0.0680 (3)0.0420 (2)0.0324 (2)0.0129 (2)0.0054 (2)0.00752 (17)
S1B0.0361 (5)0.0435 (5)0.0338 (5)0.0083 (4)0.0157 (4)0.0162 (4)
C1B0.0162 (16)0.0259 (16)0.0266 (17)0.0057 (13)0.0005 (14)0.0078 (13)
C2B0.0258 (18)0.0229 (16)0.0275 (17)0.0009 (14)0.0081 (14)0.0094 (13)
C3B0.035 (2)0.0235 (16)0.0233 (17)0.0039 (15)0.0067 (15)0.0017 (14)
C4B0.045 (2)0.036 (2)0.0156 (16)0.0109 (18)0.0105 (16)0.0029 (14)
C5B0.0175 (18)0.049 (2)0.0271 (18)0.0001 (16)0.0012 (15)0.0148 (16)
C6B0.0256 (19)0.0402 (19)0.0355 (18)0.0083 (16)0.0083 (15)0.0213 (15)
C7B0.0206 (17)0.0233 (16)0.0252 (16)0.0034 (13)0.0091 (14)0.0083 (13)
O8B0.0236 (12)0.0231 (11)0.0378 (13)0.0065 (10)0.0077 (10)0.0098 (10)
C9B0.0232 (18)0.0199 (16)0.0378 (19)0.0051 (14)0.0061 (15)0.0039 (14)
N10B0.0295 (16)0.0202 (13)0.0422 (16)0.0036 (12)0.0123 (13)0.0152 (12)
C11B0.0239 (18)0.0236 (16)0.0357 (18)0.0079 (14)0.0061 (15)0.0123 (14)
C12B0.0209 (18)0.0268 (17)0.0348 (18)0.0041 (14)0.0104 (15)0.0067 (14)
C13B0.0187 (17)0.0192 (15)0.0307 (17)0.0035 (13)0.0035 (14)0.0106 (13)
C14B0.0251 (19)0.0276 (17)0.0364 (19)0.0035 (15)0.0041 (15)0.0175 (14)
O14B0.0454 (17)0.0466 (16)0.0330 (14)0.0042 (14)0.0131 (13)0.0027 (12)
C15B0.071 (4)0.100 (4)0.031 (2)0.007 (3)0.010 (2)0.007 (3)
C16B0.041 (2)0.034 (2)0.047 (2)0.0061 (18)0.0116 (19)0.0016 (18)
Geometric parameters (Å, º) top
Br1A—C4A1.918 (4)Br1B—C4B1.909 (4)
S1A—C11A1.663 (4)S1B—C11B1.662 (4)
C1A—C2A1.497 (5)C1B—C2B1.509 (5)
C1A—C12A1.514 (5)C1B—C12B1.525 (5)
C1A—C13A1.556 (5)C1B—C13B1.528 (5)
C1A—H1A0.9800C1B—H1AA0.9800
C2A—C7A1.390 (5)C2B—C3B1.381 (5)
C2A—C3A1.394 (5)C2B—C7B1.388 (5)
C3A—C4A1.357 (5)C3B—C4B1.377 (5)
C3A—H3A0.9300C3B—H3AA0.9300
C4A—C5A1.374 (6)C4B—C5B1.387 (6)
C5A—C6A1.390 (6)C5B—C6B1.373 (5)
C5A—H5A0.9300C5B—H5AA0.9300
C6A—C7A1.380 (5)C6B—C7B1.387 (5)
C6A—H6A0.9300C6B—H6AA0.9300
C7A—O8A1.400 (4)C7B—O8B1.368 (4)
O8A—C9A1.431 (4)O8B—C9B1.423 (4)
C9A—N10A1.474 (4)C9B—N10B1.468 (5)
C9A—C16A1.509 (5)C9B—C16B1.518 (5)
C9A—C13A1.532 (5)C9B—C13B1.526 (5)
N10A—C11A1.342 (5)N10B—C11B1.332 (5)
N10A—H10A0.8600N10B—H10B0.8600
C11A—C12A1.507 (5)C11B—C12B1.510 (5)
C12A—H12A0.9700C12B—H12C0.9700
C12A—H12B0.9700C12B—H12D0.9700
C13A—C14A1.521 (5)C13B—C14B1.549 (5)
C13A—H13A0.9800C13B—H13B0.9800
C14A—O14A1.186 (4)C14B—O14B1.190 (4)
C14A—C15A1.501 (6)C14B—C15B1.467 (6)
C15A—H15A0.9600C15B—H15D0.9600
C15A—H15B0.9600C15B—H15F0.9600
C15A—H15C0.9600C15B—H15G0.9600
C16A—H16A0.9600C16B—H16F0.9600
C16A—H16B0.9600C16B—H16G0.9600
C16A—H16C0.9600C16B—H16D0.9600
C2A—C1A—C12A110.6 (3)C2B—C1B—C12B109.8 (3)
C2A—C1A—C13A111.7 (3)C2B—C1B—C13B110.6 (3)
C12A—C1A—C13A106.3 (3)C12B—C1B—C13B106.6 (3)
C2A—C1A—H1A109.4C2B—C1B—H1AA109.9
C12A—C1A—H1A109.4C12B—C1B—H1AA109.9
C13A—C1A—H1A109.4C13B—C1B—H1AA109.9
C7A—C2A—C3A117.5 (3)C3B—C2B—C7B118.2 (3)
C7A—C2A—C1A121.0 (3)C3B—C2B—C1B120.9 (3)
C3A—C2A—C1A121.5 (3)C7B—C2B—C1B120.9 (3)
C4A—C3A—C2A120.2 (3)C4B—C3B—C2B120.7 (4)
C4A—C3A—H3A119.9C4B—C3B—H3AA119.7
C2A—C3A—H3A119.9C2B—C3B—H3AA119.7
C3A—C4A—C5A121.9 (4)C3B—C4B—C5B121.5 (3)
C3A—C4A—Br1A119.5 (3)C3B—C4B—Br1B119.5 (3)
C5A—C4A—Br1A118.5 (3)C5B—C4B—Br1B119.0 (3)
C4A—C5A—C6A119.5 (4)C6B—C5B—C4B117.8 (3)
C4A—C5A—H5A120.2C6B—C5B—H5AA121.1
C6A—C5A—H5A120.2C4B—C5B—H5AA121.1
C7A—C6A—C5A118.2 (4)C5B—C6B—C7B121.2 (4)
C7A—C6A—H6A120.9C5B—C6B—H6AA119.4
C5A—C6A—H6A120.9C7B—C6B—H6AA119.4
C6A—C7A—C2A122.6 (4)O8B—C7B—C6B117.0 (3)
C6A—C7A—O8A116.1 (3)O8B—C7B—C2B122.4 (3)
C2A—C7A—O8A121.3 (3)C6B—C7B—C2B120.6 (3)
C7A—O8A—C9A116.4 (3)C7B—O8B—C9B116.0 (3)
O8A—C9A—N10A108.0 (3)O8B—C9B—N10B110.1 (3)
O8A—C9A—C16A105.3 (3)O8B—C9B—C16B104.4 (3)
N10A—C9A—C16A108.0 (3)N10B—C9B—C16B108.0 (3)
O8A—C9A—C13A110.2 (3)O8B—C9B—C13B110.8 (3)
N10A—C9A—C13A108.6 (3)N10B—C9B—C13B107.2 (3)
C16A—C9A—C13A116.5 (3)C16B—C9B—C13B116.2 (3)
C11A—N10A—C9A128.0 (3)C11B—N10B—C9B129.0 (3)
C11A—N10A—H10A116.0C11B—N10B—H10B115.5
C9A—N10A—H10A116.0C9B—N10B—H10B115.5
N10A—C11A—C12A117.6 (3)N10B—C11B—C12B117.2 (3)
N10A—C11A—S1A121.0 (3)N10B—C11B—S1B121.3 (3)
C12A—C11A—S1A121.4 (3)C12B—C11B—S1B121.5 (3)
C11A—C12A—C1A112.1 (3)C11B—C12B—C1B112.9 (3)
C11A—C12A—H12A109.2C11B—C12B—H12C109.0
C1A—C12A—H12A109.2C1B—C12B—H12C109.0
C11A—C12A—H12B109.2C11B—C12B—H12D109.0
C1A—C12A—H12B109.2C1B—C12B—H12D109.0
H12A—C12A—H12B107.9H12C—C12B—H12D107.8
C14A—C13A—C9A114.5 (3)C9B—C13B—C1B107.0 (3)
C14A—C13A—C1A111.9 (3)C9B—C13B—C14B112.9 (3)
C9A—C13A—C1A105.8 (3)C1B—C13B—C14B113.2 (3)
C14A—C13A—H13A108.1C9B—C13B—H13B107.9
C9A—C13A—H13A108.1C1B—C13B—H13B107.9
C1A—C13A—H13A108.1C14B—C13B—H13B107.9
O14A—C14A—C15A120.4 (4)O14B—C14B—C15B121.6 (4)
O14A—C14A—C13A122.8 (3)O14B—C14B—C13B120.4 (3)
C15A—C14A—C13A116.8 (3)C15B—C14B—C13B118.0 (3)
C14A—C15A—H15A109.5C14B—C15B—H15D109.5
C14A—C15A—H15B109.5C14B—C15B—H15F109.5
H15A—C15A—H15B109.5H15D—C15B—H15F109.5
C14A—C15A—H15C109.5C14B—C15B—H15G109.5
H15A—C15A—H15C109.5H15D—C15B—H15G109.5
H15B—C15A—H15C109.5H15F—C15B—H15G109.5
C9A—C16A—H16A109.5C9B—C16B—H16F109.5
C9A—C16A—H16B109.5C9B—C16B—H16G109.5
H16A—C16A—H16B109.5H16F—C16B—H16G109.5
C9A—C16A—H16C109.5C9B—C16B—H16D109.5
H16A—C16A—H16C109.5H16F—C16B—H16D109.5
H16B—C16A—H16C109.5H16G—C16B—H16D109.5
C12A—C1A—C2A—C7A98.7 (4)C12B—C1B—C2B—C3B79.3 (4)
C13A—C1A—C2A—C7A19.4 (4)C13B—C1B—C2B—C3B163.4 (3)
C12A—C1A—C2A—C3A78.7 (4)C12B—C1B—C2B—C7B98.9 (4)
C13A—C1A—C2A—C3A163.2 (3)C13B—C1B—C2B—C7B18.5 (4)
C7A—C2A—C3A—C4A1.6 (5)C7B—C2B—C3B—C4B1.5 (5)
C1A—C2A—C3A—C4A179.1 (3)C1B—C2B—C3B—C4B179.7 (3)
C2A—C3A—C4A—C5A0.4 (6)C2B—C3B—C4B—C5B0.1 (5)
C2A—C3A—C4A—Br1A177.7 (3)C2B—C3B—C4B—Br1B176.8 (3)
C3A—C4A—C5A—C6A0.3 (6)C3B—C4B—C5B—C6B0.2 (5)
Br1A—C4A—C5A—C6A177.6 (3)Br1B—C4B—C5B—C6B176.5 (3)
C4A—C5A—C6A—C7A1.4 (6)C4B—C5B—C6B—C7B0.9 (5)
C5A—C6A—C7A—C2A2.7 (6)C5B—C6B—C7B—O8B179.2 (3)
C5A—C6A—C7A—O8A179.5 (3)C5B—C6B—C7B—C2B2.3 (5)
C3A—C2A—C7A—C6A2.7 (5)C3B—C2B—C7B—O8B179.1 (3)
C1A—C2A—C7A—C6A179.7 (3)C1B—C2B—C7B—O8B0.9 (5)
C3A—C2A—C7A—O8A179.6 (3)C3B—C2B—C7B—C6B2.5 (5)
C1A—C2A—C7A—O8A2.1 (5)C1B—C2B—C7B—C6B179.3 (3)
C6A—C7A—O8A—C9A164.1 (3)C6B—C7B—O8B—C9B164.9 (3)
C2A—C7A—O8A—C9A18.1 (4)C2B—C7B—O8B—C9B16.6 (4)
C7A—O8A—C9A—N10A67.6 (3)C7B—O8B—C9B—N10B69.1 (3)
C7A—O8A—C9A—C16A177.2 (3)C7B—O8B—C9B—C16B175.2 (3)
C7A—O8A—C9A—C13A50.9 (4)C7B—O8B—C9B—C13B49.4 (4)
O8A—C9A—N10A—C11A98.4 (4)O8B—C9B—N10B—C11B99.0 (4)
C16A—C9A—N10A—C11A148.2 (3)C16B—C9B—N10B—C11B147.6 (3)
C13A—C9A—N10A—C11A21.1 (4)C13B—C9B—N10B—C11B21.6 (4)
C9A—N10A—C11A—C12A4.2 (5)C9B—N10B—C11B—C12B1.5 (5)
C9A—N10A—C11A—S1A175.8 (3)C9B—N10B—C11B—S1B179.0 (3)
N10A—C11A—C12A—C1A21.9 (4)N10B—C11B—C12B—C1B16.3 (4)
S1A—C11A—C12A—C1A158.0 (3)S1B—C11B—C12B—C1B164.1 (2)
C2A—C1A—C12A—C11A66.0 (4)C2B—C1B—C12B—C11B69.2 (4)
C13A—C1A—C12A—C11A55.4 (4)C13B—C1B—C12B—C11B50.6 (4)
O8A—C9A—C13A—C14A58.5 (4)O8B—C9B—C13B—C1B65.1 (4)
N10A—C9A—C13A—C14A176.6 (3)N10B—C9B—C13B—C1B55.1 (3)
C16A—C9A—C13A—C14A61.2 (4)C16B—C9B—C13B—C1B176.0 (3)
O8A—C9A—C13A—C1A65.2 (3)O8B—C9B—C13B—C14B60.1 (4)
N10A—C9A—C13A—C1A52.9 (3)N10B—C9B—C13B—C14B179.8 (3)
C16A—C9A—C13A—C1A175.1 (3)C16B—C9B—C13B—C14B58.9 (4)
C2A—C1A—C13A—C14A76.9 (3)C2B—C1B—C13B—C9B47.7 (4)
C12A—C1A—C13A—C14A162.5 (3)C12B—C1B—C13B—C9B71.6 (3)
C2A—C1A—C13A—C9A48.5 (4)C2B—C1B—C13B—C14B77.2 (4)
C12A—C1A—C13A—C9A72.2 (3)C12B—C1B—C13B—C14B163.4 (3)
C9A—C13A—C14A—O14A92.4 (4)C9B—C13B—C14B—O14B89.8 (4)
C1A—C13A—C14A—O14A28.0 (5)C1B—C13B—C14B—O14B31.9 (5)
C9A—C13A—C14A—C15A89.3 (4)C9B—C13B—C14B—C15B91.9 (4)
C1A—C13A—C14A—C15A150.3 (3)C1B—C13B—C14B—C15B146.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10A—H10A···O14Bi0.862.202.981 (4)150
N10B—H10B···O14Aii0.862.152.960 (4)157
Symmetry codes: (i) x, y1, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC14H14BrNO2S
Mr340.23
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.213 (5), 11.625 (7), 15.156 (10)
α, β, γ (°)98.67 (5), 99.09 (5), 101.81 (5)
V3)1373.1 (15)
Z4
Radiation typeMo Kα
µ (mm1)3.14
Crystal size (mm)0.6 × 0.1 × 0.05
Data collection
DiffractometerSiemens P3/PC
diffractometer
Absorption correctionIntegration
(XPREP; Siemens, 1991)
Tmin, Tmax0.611, 0.855
No. of measured, independent and
observed [I > 2/s(I)] reflections
7869, 4773, 3383
Rint0.012
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.118, 1.03
No. of reflections4773
No. of parameters348
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.43

Computer programs: P3 (Siemens, 1991), XDISK and XPREP (Siemens, 1991), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N10A—H10A···O14Bi0.862.202.981 (4)150.1
N10B—H10B···O14Aii0.862.152.960 (4)157.2
Symmetry codes: (i) x, y1, z; (ii) x1, y, z.
 

References

First citationBiala, J., Czarnocki, Z. & Maurin, J. K. (2002). Tetrahedron Asymmetry, 13, 1021–1023.  Web of Science CSD CrossRef CAS Google Scholar
First citationBilokin, Y. V., Kovalenko, S. N. & Chernykh, V. P. (1988). Heterocycl. Commun. 4, 169–170.  Google Scholar
First citationKonovalova, I. S., Zaremba, O. V., Kovalenko, S. S., Chernykh, V. P., Kovalenko, S. M., Baumer, V. N. & Shishkin, O. V. (2007). Acta Cryst. E63, o4906.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKovalenko, V. N. & Victorova, A. P. (2005). Compendium of Medicinal Preparation, p. 1920. Kiev: Morion.  Google Scholar
First citationO'Callaghan, C. N., McMurry, T. B. H., O'Brien, J. E. & Draper, S. M. (1997). J. Chem. Res. 312, 2101–2122.  Google Scholar
First citationRaev, L. D., Frey, W. & Ivanov, I. C. (2004). Synlett, pp. 1584–88.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1991). P3, XDISK and XPREP. Siemens Analytical X-ray Instruments Inc., Karlsruhe, Germany.  Google Scholar
First citationZaragoza Dorwald, F. (2000). US Patent 6136984 24 10.  Google Scholar
First citationZefirov, Yu. V. & Zorky, P. M. (1995). Usp. Khim. 64, 446–460.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds