organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2′-Di­amino-4,4′-bi-1,3-thia­zolium bis­­(3-nitro­benzoate)

aDepartment of Chemistry, Shanghai University, People's Republic of China
*Correspondence e-mail: r5744011@yahoo.com.cn

(Received 9 November 2008; accepted 18 February 2009; online 25 February 2009)

In the title salt, C6H8N4S22+·2C7H4NO4, the diprotonated diamino­bithia­zole dication is located on an inversion center. The carboxyl­ate group of the anion is twisted with respect to the benzene ring, with a dihedral angle of 13.6 (4)°. N—H⋯O hydrogen bonds involving the amino and ammonium groups of the dication and the carboxyl­ate functionality of the anion generate supra­molecular chains in the crystal.

Related literature

For applications of complexes including 2,2′-diamino-4,4′-bi-1,3-thia­zole as ligand, see: Sun et al. (1997[Sun, W., Gao, X. & Lu, F. (1997). Appl. Polym. Sci. 64, 2309-2315.]); Waring (1981[Waring, M. J. (1981). Annu. Rev. Biochem. 50, 159-192.]); Fisher et al. (1985[Fisher, L. M., Kuroda, R. & Sakai, T. T. (1985). Biochemistry, 24, 3199-3207.]). For related structures, see: Liu et al. (2003[Liu, J.-G., Xu, D.-J. & Hung, C.-H. (2003). Acta Cryst. E59, o312-o313.], 2005[Liu, B.-X., Yu, J.-Y. & Xu, D.-J. (2005). Acta Cryst. E61, o4119-o4120.]).

[Scheme 1]

Experimental

Crystal data
  • C6H8N4S22+·2C7H4NO4

  • Mr = 532.51

  • Triclinic, [P \overline 1]

  • a = 6.5670 (13) Å

  • b = 7.4538 (15) Å

  • c = 12.301 (2) Å

  • α = 74.747 (2)°

  • β = 89.721 (2)°

  • γ = 70.483 (2)°

  • V = 545.26 (19) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 295 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.940, Tmax = 0.955

  • 2771 measured reflections

  • 1880 independent reflections

  • 1325 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.140

  • S = 1.08

  • 1880 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N11—H11A⋯O22 0.95 1.71 2.627 (4) 161
N12—H12B⋯O21 0.92 1.86 2.770 (4) 171
N12—H12A⋯O21i 0.90 2.08 2.830 (4) 140
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Transition metal complexes of 2,2'-diamino-4,4'-bi-1,3-thiazole (DABT) have shown potential applications in the field of soft magnetic material (Sun et al., 1997) and biological activities, such as the effective inhibition of DNA synthesis in tumor cells (Waring, 1981; Fisher et al., 1985). As part of a serial structural investigation of metal complexes with DABT (Liu et al., 2003), while preparing the MnII complex of DABT, the title H2DABT2+ salt was unexpectedly obtained, and its X-ray structure is presented here.

The structure of the title salt is shown in Fig. 1. The diprotonated DABT dication, H2DABT, is located on an inversion center while the 3-nitrobenzoate anion is placed in general position. The H2DABT moiety displays a trans planar configuration, which agrees with that found in the neutral DABT (Liu et al., 2003). The CN(amino) bond length of 1.333 (4) Å is similar to the CN(thiazole ring) bond length, 1.316 (4) Å, indicating electron delocalization between the amino and thiazole groups. It is notable that the protonated N atoms form hydrogen bonds to O atoms of carboxylate groups of 3-nitrobenzoate anions, to form supramolecular chains. This feature is consistent with those found in the H2DABT salt formed with 2-nitrobenzoate, which we reported previously (Liu et al., 2005).

The carboxylate group of 3-nitrobenzoate anion is twisted with respect to the benzene plane, with a dihedral angle of 13.6 (4)°, which is comparable with 13.1 (2)° found in the 2-nitrobenzoate H2DABT salt (Liu et al., 2005). This distortion allows the formation of the observed supramolecular structure (Fig. 2).

Related literature top

For applications of complexes including 2,2'-diamino-4,4'-bi-1,3-thiazole as ligand, see: Sun et al. (1997); Waring (1981); Fisher et al. (1985). For related structures, see: Liu et al. (2003, 2005).

Experimental top

An ethanol-water solution (1:1, 30 ml) of DABT (0.20 g, 1 mmol) and MnCl2.4H2O (0.20 g, 1 mmol) was mixed with another aqueous solution (10 ml) of 3-nitrobenzoic acid (0.33 g, 2 mmol) and NaOH (0.08 g, 2 mmol). The mixture was refluxed for 6 h. After cooling to room temperature, the solution was filtered. Yellow single crystals were obtained from the filtrate after 5 d.

Refinement top

H atoms bonded to C atoms were placed in calculated positions with C—H = 0.93 Å, and included in the final cycles of refinement in riding mode, with Uiso(H) = 1.2Ueq(carrier C). H atoms bonded to N atoms were located in a difference map and refined as riding in their as found relative positions, with Uiso(H) = 1.2Ueq(carrier N).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title salt, with 30% probability displacement ellipsoids (arbitrary spheres for H atoms), dashed lines showing the hydrogen bonding within the complex [symmetry code: (i) 2 - x,1 - y,1 - z].
[Figure 2] Fig. 2. The unit cell packing diagram showing hydrogen bondings between thiazole rings and carboxyl groups of 3-nitrobenzoate anions.
2,2'-Diamino-4,4'-bi-1,3-thiazolium bis(3-nitrobenzoate) top
Crystal data top
C6H8N4S22+·2C7H4NO4Z = 1
Mr = 532.51F(000) = 274
Triclinic, P1Dx = 1.622 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5670 (13) ÅCell parameters from 1780 reflections
b = 7.4538 (15) Åθ = 2.0–25.0°
c = 12.301 (2) ŵ = 0.31 mm1
α = 74.747 (2)°T = 295 K
β = 89.721 (2)°Prism, yellow
γ = 70.483 (2)°0.20 × 0.18 × 0.15 mm
V = 545.26 (19) Å3
Data collection top
Bruker APEXII
diffractometer
1880 independent reflections
Radiation source: fine-focus sealed tube1325 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 10.0 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = 77
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 88
Tmin = 0.940, Tmax = 0.955l = 1412
2771 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.140 w = 1/[σ2(Fo2) + (0.0733P)2 + 0.0511P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1880 reflectionsΔρmax = 0.24 e Å3
164 parametersΔρmin = 0.35 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.013 (5)
Primary atom site location: structure-invariant direct methods
Crystal data top
C6H8N4S22+·2C7H4NO4γ = 70.483 (2)°
Mr = 532.51V = 545.26 (19) Å3
Triclinic, P1Z = 1
a = 6.5670 (13) ÅMo Kα radiation
b = 7.4538 (15) ŵ = 0.31 mm1
c = 12.301 (2) ÅT = 295 K
α = 74.747 (2)°0.20 × 0.18 × 0.15 mm
β = 89.721 (2)°
Data collection top
Bruker APEXII
diffractometer
1880 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1325 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.955Rint = 0.018
2771 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.08Δρmax = 0.24 e Å3
1880 reflectionsΔρmin = 0.35 e Å3
164 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.8309 (4)0.3447 (4)0.4956 (2)0.0409 (7)
H11A0.79220.30440.57050.049*
N120.6759 (5)0.1415 (4)0.4388 (2)0.0573 (8)
H12A0.65770.08190.38690.069*
H12B0.59030.13780.49840.069*
S110.97982 (15)0.25520 (13)0.31830 (7)0.0483 (3)
C121.0789 (5)0.4030 (5)0.3738 (2)0.0398 (8)
H121.18560.45230.34320.048*
C110.9837 (5)0.4382 (4)0.4663 (2)0.0358 (7)
C130.8101 (5)0.2415 (5)0.4254 (3)0.0422 (8)
O210.4454 (4)0.1470 (3)0.62785 (19)0.0555 (7)
O220.6468 (4)0.2977 (4)0.6861 (2)0.0613 (7)
O230.3437 (6)0.3196 (5)1.1652 (2)0.0933 (11)
O240.6375 (4)0.2992 (4)1.0836 (2)0.0616 (7)
N210.4533 (6)0.2964 (4)1.0853 (2)0.0539 (8)
C210.3836 (5)0.2210 (4)0.8031 (3)0.0386 (7)
C220.4661 (5)0.2654 (4)0.8919 (3)0.0395 (8)
H220.59230.29630.88680.047*
C230.3564 (5)0.2627 (4)0.9888 (3)0.0419 (8)
C240.1652 (6)0.2268 (5)0.9973 (3)0.0537 (9)
H240.09160.23141.06180.064*
C250.0836 (6)0.1837 (5)0.9081 (3)0.0561 (10)
H250.04610.15850.91240.067*
C260.1939 (5)0.1776 (5)0.8120 (3)0.0474 (8)
H260.14030.14410.75320.057*
C270.5007 (5)0.2205 (5)0.6972 (3)0.0429 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0525 (17)0.0566 (16)0.0301 (14)0.0364 (14)0.0145 (12)0.0167 (13)
N120.078 (2)0.081 (2)0.0511 (18)0.0614 (18)0.0273 (15)0.0379 (16)
S110.0631 (6)0.0653 (6)0.0383 (5)0.0408 (5)0.0183 (4)0.0267 (4)
C120.0464 (19)0.0569 (19)0.0322 (17)0.0337 (16)0.0140 (14)0.0186 (15)
C110.0422 (18)0.0414 (17)0.0304 (17)0.0233 (15)0.0065 (13)0.0092 (14)
C130.051 (2)0.0550 (19)0.0349 (18)0.0319 (17)0.0131 (15)0.0186 (16)
O210.0740 (17)0.0766 (16)0.0456 (14)0.0524 (14)0.0194 (12)0.0322 (13)
O220.0789 (18)0.0976 (19)0.0507 (15)0.0702 (16)0.0340 (13)0.0407 (14)
O230.124 (3)0.138 (3)0.0601 (19)0.078 (2)0.0518 (18)0.057 (2)
O240.0703 (18)0.0725 (17)0.0531 (16)0.0340 (15)0.0039 (13)0.0236 (13)
N210.076 (2)0.0540 (18)0.0406 (18)0.0319 (17)0.0166 (16)0.0155 (14)
C210.0428 (19)0.0377 (17)0.0396 (18)0.0201 (15)0.0107 (14)0.0099 (14)
C220.0401 (18)0.0433 (17)0.0429 (19)0.0228 (15)0.0125 (14)0.0142 (15)
C230.0459 (19)0.0469 (18)0.0389 (19)0.0227 (16)0.0132 (15)0.0132 (15)
C240.050 (2)0.061 (2)0.054 (2)0.0255 (19)0.0257 (17)0.0140 (18)
C250.041 (2)0.069 (2)0.062 (3)0.0305 (19)0.0158 (18)0.011 (2)
C260.043 (2)0.053 (2)0.051 (2)0.0274 (17)0.0062 (16)0.0096 (17)
C270.051 (2)0.0515 (19)0.0365 (18)0.0282 (17)0.0112 (15)0.0157 (16)
Geometric parameters (Å, º) top
N11—C131.333 (4)O24—N211.217 (4)
N11—C111.398 (4)N21—C231.466 (4)
N11—H11A0.9526C21—C221.383 (4)
N12—C131.316 (4)C21—C261.384 (4)
N12—H12A0.8973C21—C271.510 (4)
N12—H12B0.9215C22—C231.388 (4)
S11—C131.726 (3)C22—H220.9300
S11—C121.727 (3)C23—C241.367 (5)
C12—C111.339 (4)C24—C251.378 (5)
C12—H120.9300C24—H240.9300
C11—C11i1.456 (5)C25—C261.386 (5)
O21—C271.242 (4)C25—H250.9300
O22—C271.263 (4)C26—H260.9300
O23—N211.230 (4)
C13—N11—C11113.5 (2)C22—C21—C27119.8 (3)
C13—N11—H11A116.6C26—C21—C27120.5 (3)
C11—N11—H11A124.5C21—C22—C23118.6 (3)
C13—N12—H12A120.5C21—C22—H22120.7
C13—N12—H12B121.6C23—C22—H22120.7
H12A—N12—H12B117.7C24—C23—C22122.3 (3)
C13—S11—C1290.11 (14)C24—C23—N21119.6 (3)
C11—C12—S11111.9 (2)C22—C23—N21118.1 (3)
C11—C12—H12124.0C23—C24—C25118.6 (3)
S11—C12—H12124.0C23—C24—H24120.7
C12—C11—N11112.7 (3)C25—C24—H24120.7
C12—C11—C11i128.3 (3)C24—C25—C26120.4 (3)
N11—C11—C11i119.0 (3)C24—C25—H25119.8
N12—C13—N11122.9 (3)C26—C25—H25119.8
N12—C13—S11125.3 (2)C21—C26—C25120.3 (3)
N11—C13—S11111.8 (2)C21—C26—H26119.8
O24—N21—O23122.9 (3)C25—C26—H26119.8
O24—N21—C23119.1 (3)O21—C27—O22125.3 (3)
O23—N21—C23118.0 (3)O21—C27—C21118.0 (3)
C22—C21—C26119.7 (3)O22—C27—C21116.7 (3)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···O220.951.712.627 (4)161
N12—H12B···O210.921.862.770 (4)171
N12—H12A···O21ii0.902.082.830 (4)140
Symmetry code: (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC6H8N4S22+·2C7H4NO4
Mr532.51
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)6.5670 (13), 7.4538 (15), 12.301 (2)
α, β, γ (°)74.747 (2), 89.721 (2), 70.483 (2)
V3)545.26 (19)
Z1
Radiation typeMo Kα
µ (mm1)0.31
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerBruker APEXII
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.940, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
2771, 1880, 1325
Rint0.018
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.140, 1.08
No. of reflections1880
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.35

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11A···O220.951.712.627 (4)161
N12—H12B···O210.921.862.770 (4)171
N12—H12A···O21i0.902.082.830 (4)140
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

The project was supported by the Educational Development Foundation of Shanghai Educational Committee, China (No. AB0448).

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Winsonsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFisher, L. M., Kuroda, R. & Sakai, T. T. (1985). Biochemistry, 24, 3199–3207.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, J.-G., Xu, D.-J. & Hung, C.-H. (2003). Acta Cryst. E59, o312–o313.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, B.-X., Yu, J.-Y. & Xu, D.-J. (2005). Acta Cryst. E61, o4119–o4120.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, W., Gao, X. & Lu, F. (1997). Appl. Polym. Sci. 64, 2309–2315.  CrossRef CAS Google Scholar
First citationWaring, M. J. (1981). Annu. Rev. Biochem. 50, 159–192.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds