organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

E-[4-(β-D-Allo­pyranos­yl­oxy)phen­yl]-1-(4-chloro­phen­yl)prop-2-enone ethanol solvate

aCollege of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China
*Correspondence e-mail: chuandayouji217@163.com

(Received 10 January 2009; accepted 21 February 2009; online 28 February 2009)

The title compound, C21H21ClO7·C2H5OH was synthesized by the condensation reaction between helicid [systematic name: 4-(β-D-allopyranos­yloxy)benzaldehyde] and 4-chloro­aceto­phen­one in ethanol. In the mol­ecular structure, the pyran­oside ring adopts a chair conformation. In the crystal structure, the molecules are linked by inter­molecular O—H⋯O hydrogen bonds involving the OH groups from the pyran­oside unit and from the ethanol solvent mol­ecule.

Related literature

For helicid, see: Chen et al. (1981[Chen, W. S., Lu, S. D. & Breitmaier, E. (1981). Liebigs Ann. Chem. pp. 1893-1895.]) and for its biological activity, see: Sha & Mao (1987[Sha, J. Z. & Mao, H. K. (1987). Chin. Pharm. Bull. 22, 27-30.]). For the pharmacological activity of some helicid derivatives, see: Fan et al. (2007[Fan, B., Li, J.-L., Li, Y. & Yin, S.-F. (2007). Chin. J. Org. Chem. 27, 1150-1154.]).

[Scheme 1]

Experimental

Crystal data
  • C21H21ClO7·C2H6O

  • Mr = 466.90

  • Monoclinic, P 21

  • a = 11.000 (5) Å

  • b = 7.712 (3) Å

  • c = 13.213 (4) Å

  • β = 92.08 (2)°

  • V = 1120.2 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 292 K

  • 0.48 × 0.44 × 0.36 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: for a sphere [WinGX; Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.])] Tmin = 0.903, Tmax = 0.926

  • 2921 measured reflections

  • 2815 independent reflections

  • 2305 reflections with I > 2σ(I)

  • Rint = 0.008

  • 3 standard reflections every 200 reflections intensity decay: 1.4%

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.143

  • S = 1.10

  • 2815 reflections

  • 281 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 562 Friedel pairs

  • Flack parameter: 0.14 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O3i 0.82 2.02 2.809 (4) 160
O4—H4O⋯O2ii 0.82 1.88 2.694 (4) 171
O5—H5O⋯O8ii 0.82 1.97 2.696 (5) 148
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z]; (ii) x, y+1, z.

Data collection: DIFRAC (Gabe & White, 1993[Gabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association, Pittsburgh meeting. Abstract PA 104.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The natural compound helicid, 4-(β-D-allopyranosyloxy)benzaldehyde, which is extracted from the fruit of Helicia nilagirica Beed (Chen et al., 1981) is a major active ingredient of Chinese herbal medicine. It has good biological effects on the central nervous system with a low toxicity (Sha & Mao, 1987). Some helicid derivatives have been reported with good pharmacological activities (Fan et al., 2007). The title compound, a new helicid derivative, was synthesized via reaction of helicid and 4-chloroacetophenone, in good yield.

In the molecule of the title compound (Fig. 1), the average of C—C bond lengths in the six-membered pyranoside ring is 1.522 (5) Å. The average C(sp3)—O and C(sp2)—O bond lengths are 1.414 (5) and 1.392 (4) Å, respectively. The pyranoside ring adopts a chair conformation with hydroxyl group at C3 in axial position and the other substituents at C1, C2 and C4, in equatorial positions.

In the crystal packing, the molecules are connected by intermolecular O—H···.O hydrogen bonds (Table 1) involving O1 and O7 atoms and the hydroxyl groups in the main molecule and in the ethanol solvent molecule, forming a three-dimensional network.

Related literature top

For helicid, see: Chen et al. (1981) and for its biological activity, see: Sha & Mao (1987). For the pharmacological activity of some helicid derivatives, see: Fan et al. (2007).

Experimental top

To a solution of helicid (1.420 g, 5 mmol) in ethanol (20 ml), 10% aqueous solution of sodium hydroxide was added until helicid was dissolved completely. Then 4-chloroacetophenone (0.847 g, 5.5 mmol) was added dropwise, with the vessel placed in an ice bath. The reaction was monitored by TLC. After the reaction completed, the mixture was cooled to room temperature, and then neutralized with diluted hydrochloric acid. The solution was extracted three times with ethyl acetate, and the combined organic layers were dried with anhydrous Na2SO4, filtered, and evaporated in vacuo to get the crude product. The title compound was recrystallized twice from ethanol, and colourless single crystals were finally obtained by slow evaporation of an ethanol solution, at room temperature.

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.98 Å, O—H = 0.82 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq (methylene C, aromatic C) or Uiso(H) = 1.5Ueq (O). The absolute configuration was determined by refinement of a Flack parameter, based on 562 measured Friedel pairs (Flack, 1983), and is in agreement with the expected configuration from the synthetic route.

Computing details top

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC (Gabe & White, 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level.
E-[4-(β-D-Allopyranosyloxy)phenyl]-1-(4-chlorophenyl)prop-2-enone ethanol solvate top
Crystal data top
C21H21ClO7·C2H6OF(000) = 492
Mr = 466.90Dx = 1.384 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 19 reflections
a = 11.000 (5) Åθ = 4.5–7.4°
b = 7.712 (3) ŵ = 0.22 mm1
c = 13.213 (4) ÅT = 292 K
β = 92.08 (2)°Block, colourless
V = 1120.2 (8) Å30.48 × 0.44 × 0.36 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
2305 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.008
Graphite monochromatorθmax = 25.5°, θmin = 1.5°
ω/–2θ scansh = 1313
Absorption correction: for a sphere
[WinGX; Farrugia, 1999)]
k = 99
Tmin = 0.903, Tmax = 0.926l = 1515
2921 measured reflections3 standard reflections every 200 reflections
2815 independent reflections intensity decay: 1.4%
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.048 w = 1/[σ2(Fo2) + (0.099P)2 + 0.0279P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.143(Δ/σ)max = 0.001
S = 1.10Δρmax = 0.43 e Å3
2815 reflectionsΔρmin = 0.30 e Å3
281 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.056 (7)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 562 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.14 (12)
Crystal data top
C21H21ClO7·C2H6OV = 1120.2 (8) Å3
Mr = 466.90Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.000 (5) ŵ = 0.22 mm1
b = 7.712 (3) ÅT = 292 K
c = 13.213 (4) Å0.48 × 0.44 × 0.36 mm
β = 92.08 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2305 reflections with I > 2σ(I)
Absorption correction: for a sphere
[WinGX; Farrugia, 1999)]
Rint = 0.008
Tmin = 0.903, Tmax = 0.9263 standard reflections every 200 reflections
2921 measured reflections intensity decay: 1.4%
2815 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.143Δρmax = 0.43 e Å3
S = 1.10Δρmin = 0.30 e Å3
2815 reflectionsAbsolute structure: Flack (1983), 562 Friedel pairs
281 parametersAbsolute structure parameter: 0.14 (12)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.19712 (12)0.6652 (2)1.29357 (8)0.0730 (4)
O10.6580 (2)0.7216 (3)0.27293 (17)0.0385 (6)
O20.5789 (3)0.4472 (3)0.1477 (2)0.0478 (7)
H2O0.56240.44700.08670.072*
O30.4614 (2)0.8598 (4)0.05711 (19)0.0469 (7)
H3O0.42010.93310.08480.070*
O40.5518 (3)1.1087 (3)0.1920 (2)0.0452 (7)
H4O0.56651.21170.18300.068*
O50.8179 (2)1.1280 (4)0.2200 (2)0.0481 (7)
H5O0.77321.20090.24430.072*
O60.8220 (2)0.8419 (4)0.35453 (16)0.0423 (6)
O70.7388 (3)0.5708 (5)0.9598 (2)0.0564 (8)
C10.5463 (3)0.7382 (5)0.2130 (2)0.0353 (8)
H10.48800.80550.25130.042*
C20.5718 (4)0.8348 (5)0.1143 (3)0.0376 (8)
H20.62620.76340.07450.045*
C30.6344 (3)1.0062 (5)0.1375 (3)0.0386 (8)
H30.65361.06460.07420.046*
C40.7517 (3)0.9739 (5)0.2010 (3)0.0373 (8)
H40.80300.89470.16330.045*
C50.7157 (3)0.8832 (5)0.2974 (3)0.0379 (8)
H50.66210.95700.33650.046*
C60.4973 (4)0.5577 (5)0.1971 (3)0.0431 (9)
H6A0.47930.50790.26230.052*
H6B0.42170.56400.15710.052*
C70.8102 (3)0.7956 (5)0.4555 (3)0.0401 (9)
C80.6991 (3)0.7808 (6)0.4999 (3)0.0468 (10)
H80.62690.80120.46310.056*
C90.6987 (3)0.7340 (6)0.6024 (3)0.0475 (9)
H90.62470.72470.63380.057*
C100.8041 (3)0.7015 (5)0.6579 (3)0.0423 (9)
C110.9136 (4)0.7145 (6)0.6094 (3)0.0497 (10)
H110.98610.69050.64500.060*
C120.9159 (4)0.7624 (6)0.5098 (3)0.0490 (10)
H120.99010.77250.47870.059*
C130.7923 (3)0.6580 (6)0.7646 (3)0.0469 (9)
H130.71310.64420.78550.056*
C140.8794 (3)0.6351 (6)0.8365 (3)0.0454 (9)
H140.96100.64070.82060.054*
C150.8446 (3)0.6010 (5)0.9412 (3)0.0409 (9)
C160.9379 (3)0.6058 (5)1.0255 (3)0.0379 (8)
C170.9023 (4)0.5637 (5)1.1225 (3)0.0444 (9)
H170.82340.52531.13210.053*
C180.9827 (4)0.5781 (6)1.2042 (3)0.0480 (10)
H180.95860.54901.26880.058*
C191.0986 (4)0.6360 (5)1.1897 (3)0.0453 (9)
C201.1381 (4)0.6725 (6)1.0948 (3)0.0489 (10)
H201.21800.70661.08590.059*
C211.0571 (3)0.6578 (5)1.0122 (3)0.0420 (9)
H211.08290.68300.94750.050*
O80.7509 (3)0.3817 (5)0.3469 (3)0.0700 (10)*
H8A0.68150.39840.32420.105*
C220.7467 (4)0.3290 (7)0.4506 (3)0.0590 (11)*
H22A0.78720.41540.49310.071*
H22B0.79030.22040.45960.071*
C230.6220 (6)0.3068 (9)0.4826 (5)0.0845 (16)*
H23A0.57980.22760.43770.127*
H23B0.58120.41680.48100.127*
H23C0.62310.26140.55030.127*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0730 (8)0.1004 (10)0.0442 (6)0.0021 (8)0.0177 (5)0.0029 (6)
O10.0469 (14)0.0345 (11)0.0336 (12)0.0010 (12)0.0078 (11)0.0031 (11)
O20.0706 (19)0.0373 (14)0.0350 (14)0.0064 (14)0.0040 (14)0.0004 (11)
O30.0485 (16)0.0526 (16)0.0388 (14)0.0065 (14)0.0115 (12)0.0005 (13)
O40.0499 (16)0.0336 (13)0.0525 (16)0.0062 (12)0.0054 (12)0.0011 (12)
O50.0461 (15)0.0473 (15)0.0513 (16)0.0075 (13)0.0087 (12)0.0051 (13)
O60.0363 (13)0.0620 (16)0.0284 (12)0.0025 (13)0.0022 (10)0.0014 (12)
O70.0444 (16)0.084 (2)0.0410 (14)0.0089 (16)0.0028 (12)0.0011 (15)
C10.0376 (19)0.0380 (17)0.0299 (17)0.0017 (15)0.0021 (15)0.0000 (15)
C20.045 (2)0.0357 (17)0.0313 (17)0.0040 (17)0.0020 (16)0.0036 (16)
C30.048 (2)0.0377 (18)0.0303 (17)0.0028 (17)0.0023 (15)0.0054 (15)
C40.042 (2)0.0375 (18)0.0325 (18)0.0025 (16)0.0023 (15)0.0031 (15)
C50.038 (2)0.0394 (19)0.0358 (19)0.0007 (16)0.0045 (16)0.0031 (15)
C60.047 (2)0.0405 (19)0.042 (2)0.0029 (18)0.0032 (17)0.0031 (16)
C70.0409 (19)0.047 (2)0.0323 (18)0.0004 (18)0.0026 (15)0.0035 (15)
C80.0351 (19)0.070 (3)0.0353 (18)0.005 (2)0.0038 (15)0.0006 (18)
C90.0367 (19)0.070 (3)0.0360 (19)0.0027 (19)0.0038 (16)0.001 (2)
C100.042 (2)0.054 (2)0.0309 (17)0.0017 (19)0.0012 (15)0.0003 (17)
C110.040 (2)0.072 (3)0.0367 (19)0.003 (2)0.0089 (16)0.004 (2)
C120.040 (2)0.070 (3)0.0373 (19)0.001 (2)0.0023 (16)0.0004 (19)
C130.045 (2)0.061 (2)0.0337 (18)0.001 (2)0.0011 (16)0.0002 (19)
C140.042 (2)0.061 (2)0.0332 (18)0.004 (2)0.0007 (16)0.0007 (18)
C150.042 (2)0.046 (2)0.0349 (18)0.0024 (17)0.0034 (16)0.0016 (16)
C160.046 (2)0.0378 (18)0.0298 (17)0.0009 (17)0.0019 (15)0.0024 (15)
C170.043 (2)0.051 (2)0.040 (2)0.0053 (18)0.0057 (16)0.0038 (17)
C180.058 (2)0.056 (2)0.0296 (18)0.009 (2)0.0033 (17)0.0043 (17)
C190.055 (2)0.047 (2)0.0336 (18)0.003 (2)0.0049 (16)0.0001 (17)
C200.045 (2)0.056 (3)0.045 (2)0.006 (2)0.0004 (17)0.003 (2)
C210.046 (2)0.048 (2)0.0321 (17)0.0023 (19)0.0013 (15)0.0031 (17)
Geometric parameters (Å, º) top
Cl1—C191.732 (4)C9—C101.372 (5)
O1—C51.431 (4)C9—H90.9300
O1—C11.443 (4)C10—C111.389 (5)
O2—C61.414 (5)C10—C131.460 (5)
O2—H2O0.8200C11—C121.368 (6)
O3—C21.420 (4)C11—H110.9300
O3—H3O0.8200C12—H120.9300
O4—C31.420 (5)C13—C141.336 (5)
O4—H4O0.8200C13—H130.9300
O5—C41.412 (5)C14—C151.473 (5)
O5—H5O0.8200C14—H140.9300
O6—C71.392 (4)C15—C161.488 (5)
O6—C51.404 (4)C16—C211.389 (5)
O7—C151.221 (5)C16—C171.392 (5)
C1—C61.505 (5)C17—C181.376 (5)
C1—C21.537 (5)C17—H170.9300
C1—H10.9800C18—C191.371 (6)
C2—C31.516 (5)C18—H180.9300
C2—H20.9800C19—C201.371 (6)
C3—C41.533 (5)C20—C211.388 (5)
C3—H30.9800C20—H200.9300
C4—C51.519 (5)C21—H210.9300
C4—H40.9800O8—C221.431 (5)
C5—H50.9800O8—H8A0.8200
C6—H6A0.9700C22—C231.460 (7)
C6—H6B0.9700C22—H22A0.9700
C7—C121.368 (5)C22—H22B0.9700
C7—C81.379 (5)C23—H23A0.9600
C8—C91.402 (5)C23—H23B0.9600
C8—H80.9300C23—H23C0.9600
C5—O1—C1114.1 (3)C8—C9—H9119.0
C6—O2—H2O109.5C9—C10—C11118.1 (3)
C2—O3—H3O109.5C9—C10—C13117.1 (3)
C3—O4—H4O109.5C11—C10—C13124.8 (3)
C4—O5—H5O109.5C12—C11—C10120.7 (3)
C7—O6—C5117.9 (3)C12—C11—H11119.7
O1—C1—C6106.7 (3)C10—C11—H11119.7
O1—C1—C2109.3 (3)C11—C12—C7120.7 (4)
C6—C1—C2113.9 (3)C11—C12—H12119.7
O1—C1—H1108.9C7—C12—H12119.7
C6—C1—H1108.9C14—C13—C10129.1 (4)
C2—C1—H1108.9C14—C13—H13115.5
O3—C2—C3111.2 (3)C10—C13—H13115.5
O3—C2—C1109.8 (3)C13—C14—C15119.1 (3)
C3—C2—C1110.3 (3)C13—C14—H14120.4
O3—C2—H2108.5C15—C14—H14120.4
C3—C2—H2108.5O7—C15—C14120.4 (3)
C1—C2—H2108.5O7—C15—C16119.4 (3)
O4—C3—C2107.1 (3)C14—C15—C16120.2 (3)
O4—C3—C4110.7 (3)C21—C16—C17118.9 (3)
C2—C3—C4109.6 (3)C21—C16—C15122.8 (3)
O4—C3—H3109.8C17—C16—C15118.3 (3)
C2—C3—H3109.8C18—C17—C16120.7 (4)
C4—C3—H3109.8C18—C17—H17119.7
O5—C4—C5112.7 (3)C16—C17—H17119.7
O5—C4—C3112.3 (3)C19—C18—C17119.4 (4)
C5—C4—C3107.1 (3)C19—C18—H18120.3
O5—C4—H4108.2C17—C18—H18120.3
C5—C4—H4108.2C18—C19—C20121.5 (4)
C3—C4—H4108.2C18—C19—Cl1119.3 (3)
O6—C5—O1106.1 (3)C20—C19—Cl1119.2 (3)
O6—C5—C4108.6 (3)C19—C20—C21119.2 (4)
O1—C5—C4109.8 (3)C19—C20—H20120.4
O6—C5—H5110.8C21—C20—H20120.4
O1—C5—H5110.8C20—C21—C16120.3 (4)
C4—C5—H5110.8C20—C21—H21119.8
O2—C6—C1113.1 (3)C16—C21—H21119.8
O2—C6—H6A109.0C22—O8—H8A109.5
C1—C6—H6A109.0O8—C22—C23112.0 (4)
O2—C6—H6B109.0O8—C22—H22A109.2
C1—C6—H6B109.0C23—C22—H22A109.2
H6A—C6—H6B107.8O8—C22—H22B109.2
C12—C7—C8120.7 (3)C23—C22—H22B109.2
C12—C7—O6116.4 (3)H22A—C22—H22B107.9
C8—C7—O6122.9 (3)C22—C23—H23A109.5
C7—C8—C9117.8 (3)C22—C23—H23B109.5
C7—C8—H8121.1H23A—C23—H23B109.5
C9—C8—H8121.1C22—C23—H23C109.5
C10—C9—C8122.0 (4)H23A—C23—H23C109.5
C10—C9—H9119.0H23B—C23—H23C109.5
C5—O1—C1—C6178.6 (3)C7—C8—C9—C100.7 (7)
C5—O1—C1—C257.8 (4)C8—C9—C10—C110.6 (7)
O1—C1—C2—O3177.0 (3)C8—C9—C10—C13178.6 (4)
C6—C1—C2—O363.7 (4)C9—C10—C11—C121.5 (7)
O1—C1—C2—C354.1 (4)C13—C10—C11—C12177.6 (4)
C6—C1—C2—C3173.4 (3)C10—C11—C12—C71.1 (7)
O3—C2—C3—O458.7 (4)C8—C7—C12—C110.2 (7)
C1—C2—C3—O463.3 (4)O6—C7—C12—C11179.5 (4)
O3—C2—C3—C4178.9 (3)C9—C10—C13—C14173.8 (4)
C1—C2—C3—C456.8 (4)C11—C10—C13—C145.2 (7)
O4—C3—C4—O565.5 (4)C10—C13—C14—C15176.6 (4)
C2—C3—C4—O5176.5 (3)C13—C14—C15—O79.8 (6)
O4—C3—C4—C558.7 (4)C13—C14—C15—C16169.3 (4)
C2—C3—C4—C559.2 (4)O7—C15—C16—C21172.7 (4)
C7—O6—C5—O176.9 (4)C14—C15—C16—C216.4 (6)
C7—O6—C5—C4165.2 (3)O7—C15—C16—C174.3 (5)
C1—O1—C5—O6179.6 (3)C14—C15—C16—C17176.6 (4)
C1—O1—C5—C462.5 (4)C21—C16—C17—C181.9 (6)
O5—C4—C5—O659.6 (4)C15—C16—C17—C18175.2 (3)
C3—C4—C5—O6176.3 (3)C16—C17—C18—C190.5 (6)
O5—C4—C5—O1175.2 (3)C17—C18—C19—C202.9 (6)
C3—C4—C5—O160.8 (3)C17—C18—C19—Cl1176.6 (3)
O1—C1—C6—O258.8 (4)C18—C19—C20—C212.9 (6)
C2—C1—C6—O261.8 (4)Cl1—C19—C20—C21176.6 (3)
C5—O6—C7—C12177.7 (3)C19—C20—C21—C160.4 (6)
C5—O6—C7—C83.1 (6)C17—C16—C21—C202.0 (6)
C12—C7—C8—C91.1 (6)C15—C16—C21—C20175.1 (4)
O6—C7—C8—C9179.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O3i0.822.022.809 (4)160
O4—H4O···O2ii0.821.882.694 (4)171
O5—H5O···O8ii0.821.972.696 (5)148
O3—H3O···O7iii0.822.112.741 (4)134
O3—H3O···O40.822.412.779 (4)109
O8—H8A···O10.822.592.966 (5)109
Symmetry codes: (i) x+1, y1/2, z; (ii) x, y+1, z; (iii) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC21H21ClO7·C2H6O
Mr466.90
Crystal system, space groupMonoclinic, P21
Temperature (K)292
a, b, c (Å)11.000 (5), 7.712 (3), 13.213 (4)
β (°) 92.08 (2)
V3)1120.2 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.48 × 0.44 × 0.36
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionFor a sphere
[WinGX; Farrugia, 1999)]
Tmin, Tmax0.903, 0.926
No. of measured, independent and
observed [I > 2σ(I)] reflections
2921, 2815, 2305
Rint0.008
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.143, 1.10
No. of reflections2815
No. of parameters281
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.30
Absolute structureFlack (1983), 562 Friedel pairs
Absolute structure parameter0.14 (12)

Computer programs: DIFRAC (Gabe & White, 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···O3i0.822.022.809 (4)160.1
O4—H4O···O2ii0.821.882.694 (4)171.0
O5—H5O···O8ii0.821.972.696 (5)147.9
Symmetry codes: (i) x+1, y1/2, z; (ii) x, y+1, z.
 

Acknowledgements

The authors thank Mr Zhi-Hua Mao of Sichuan University for the X-ray data collection.

References

First citationChen, W. S., Lu, S. D. & Breitmaier, E. (1981). Liebigs Ann. Chem. pp. 1893–1895.  Google Scholar
First citationFan, B., Li, J.-L., Li, Y. & Yin, S.-F. (2007). Chin. J. Org. Chem. 27, 1150–1154.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association, Pittsburgh meeting. Abstract PA 104.  Google Scholar
First citationSha, J. Z. & Mao, H. K. (1987). Chin. Pharm. Bull. 22, 27–30.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds