organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­butyl 2,2′-bi­pyridine-4,4′-di­carboxyl­ate

aCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China, and bDepartment of Chemistry, Liaocheng University, Liaocheng 252059, People's Republic of China
*Correspondence e-mail: macl@lcu.edu.cn

(Received 3 January 2009; accepted 3 February 2009; online 6 February 2009)

In the title compound, C20H24N2O4, the mol­ecule lies on a centre of symmetry and is approximately planar (r.m.s. deviation= 0.013 Å for 26 non-H atoms). The carboxyl­ate group is inclined slightly to the neighbouring pyridine ring, forming a dihedral angle of 4.37 (2)°. The mol­ecules form stacks with an inter­planar separation of 3.547 (1) Å.

Related literature

For related structures, see: Stocco et al. (1996[Stocco, G., Guli, G., Girasolo, M. A., Bruno, G., Nicolò, F. & Scopelliti, R. (1996). Acta Cryst. C52, 829-832.]); Tynan et al. (2003[Tynan, E., Jensen, P., Kruger, P. E., Lees, A. C. & Nieuwenhuyzen, M. (2003). Dalton Trans. pp. 1223-1228.]); Fujihara et al. (2004[Fujihara, T., Kobayashi, A. & Nagasawa, A. (2004). Acta Cryst. E60, o353-o355.]).

[Scheme 1]

Experimental

Crystal data
  • C20H24N2O4

  • Mr = 356.41

  • Monoclinic, P 21 /c

  • a = 7.4183 (9) Å

  • b = 8.2829 (10) Å

  • c = 15.375 (2) Å

  • β = 93.273 (1)°

  • V = 943.2 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 (2) K

  • 0.40 × 0.30 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.966, Tmax = 0.987

  • 4552 measured reflections

  • 1654 independent reflections

  • 1135 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.115

  • S = 1.03

  • 1654 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The crystal structure of 2,2'-bipyridine-4,4'-dicarboxylic acid (H2dcbp) has been reported by Tynan et al. (2003), and a polymeric structure contaning trimethyltin has been reported by Stocco et al. (1996). Herein, we have reacted H2dcbp with tri-n-butyltin chloride. Unexpectedly, we obtained the centrosymmetric title compound only. The C2—N1—C6 bond angle of 117.47 (15)° is similar to those for the free pyridine (Fujihara et al., 2004). The dihedral angle between the pyridine ring and the carboxylate group [C1,O1,O2] is 4.37 (2)°. The bond lengths of C1—O1 and C7—O1 are 1.332 (2) and 1.458 (2) Å, respectively.

Related literature top

For related structures, see: Stocco et al. (1996); Tynan et al. (2003); Fujihara et al., (2004).

Experimental top

The reaction was carried out under a nitrogen atmosphere. 2,2'-Bipyridine-4,4'-dicarboxylic acid (1 mmol) and sodium ethoxide (2 mmol) were added to a stirred solution of benzene (30 ml) in a Schlenk flask and stirred for 0.5 h. Tri-n-butyltin chloride (2 mmol) was then added and the reaction mixture was stirred for 12 h at 353 K. The resulting clear solution was evaporated under vacuum. The product was crystallized from dichloromethane to yield colourless blocks (yield 83%. m.p. 435 K). Elemental analysis calculated: C, 67.10; H, 6.79; N, 7.86 %; found: C, 66.92; H, 6.95; N, 7.59 %.

Refinement top

H atoms were placed geometrically and treated as riding on their parent atoms with C—H = 0.93 Å (pyridine), 0.97 Å (methylene) or 0.96 Å (methyl), and with Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure showing 30% probability displacement ellipsoids for non-H atoms.
Dibutyl 2,2'-bipyridine-4,4'-dicarboxylate top
Crystal data top
C20H24N2O4F(000) = 380
Mr = 356.41Dx = 1.255 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1638 reflections
a = 7.4183 (9) Åθ = 2.7–26.7°
b = 8.2829 (10) ŵ = 0.09 mm1
c = 15.375 (2) ÅT = 298 K
β = 93.273 (1)°Block, colorless
V = 943.2 (2) Å30.40 × 0.30 × 0.15 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
1654 independent reflections
Radiation source: fine-focus sealed tube1135 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 88
Tmin = 0.966, Tmax = 0.987k = 98
4552 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.199P]
where P = (Fo2 + 2Fc2)/3
1654 reflections(Δ/σ)max < 0.001
119 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.13 e Å3
Crystal data top
C20H24N2O4V = 943.2 (2) Å3
Mr = 356.41Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.4183 (9) ŵ = 0.09 mm1
b = 8.2829 (10) ÅT = 298 K
c = 15.375 (2) Å0.40 × 0.30 × 0.15 mm
β = 93.273 (1)°
Data collection top
Bruker SMART CCD
diffractometer
1654 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1135 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.987Rint = 0.021
4552 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.03Δρmax = 0.15 e Å3
1654 reflectionsΔρmin = 0.13 e Å3
119 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.8610 (2)0.42720 (18)0.09153 (9)0.0544 (4)
O10.38773 (17)0.20544 (16)0.09033 (7)0.0619 (4)
O20.57083 (19)0.32666 (19)0.19126 (8)0.0755 (5)
C10.5333 (2)0.2904 (2)0.11660 (11)0.0539 (5)
C20.9120 (2)0.45867 (19)0.00815 (10)0.0451 (4)
C30.8062 (2)0.4163 (2)0.06010 (10)0.0481 (4)
H30.84370.44190.11720.058*
C40.6451 (2)0.3358 (2)0.04254 (10)0.0469 (4)
C50.5929 (2)0.3018 (2)0.04371 (11)0.0540 (5)
H50.48570.24740.05810.065*
C60.7040 (3)0.3510 (2)0.10735 (11)0.0588 (5)
H60.66740.32970.16510.071*
C70.2671 (3)0.1586 (3)0.15756 (12)0.0706 (6)
H7A0.22450.25380.18690.085*
H7B0.33070.09050.20050.085*
C80.1112 (2)0.0691 (2)0.11506 (11)0.0567 (5)
H8A0.15540.02720.08730.068*
H8B0.05300.13640.07010.068*
C90.0258 (3)0.0211 (3)0.17920 (13)0.0760 (6)
H9A0.06950.11770.20670.091*
H9B0.03350.04510.22440.091*
C100.1854 (3)0.0711 (3)0.13862 (14)0.0768 (6)
H10A0.23920.01030.09070.115*
H10B0.27290.08760.18140.115*
H10C0.14550.17370.11800.115*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0561 (9)0.0655 (10)0.0412 (8)0.0060 (8)0.0003 (7)0.0020 (7)
O10.0569 (8)0.0808 (9)0.0486 (7)0.0149 (7)0.0077 (6)0.0001 (6)
O20.0741 (10)0.1073 (12)0.0448 (7)0.0210 (8)0.0004 (7)0.0002 (7)
C10.0511 (11)0.0601 (12)0.0500 (11)0.0004 (9)0.0006 (9)0.0040 (9)
C20.0488 (9)0.0461 (10)0.0402 (9)0.0038 (8)0.0008 (7)0.0024 (7)
C30.0500 (10)0.0538 (11)0.0396 (9)0.0026 (8)0.0048 (8)0.0012 (8)
C40.0467 (10)0.0489 (10)0.0449 (9)0.0053 (8)0.0012 (7)0.0029 (8)
C50.0516 (11)0.0598 (11)0.0499 (10)0.0042 (9)0.0028 (8)0.0042 (9)
C60.0627 (12)0.0733 (13)0.0396 (9)0.0066 (10)0.0036 (9)0.0054 (9)
C70.0682 (13)0.0945 (16)0.0497 (11)0.0170 (11)0.0091 (10)0.0039 (11)
C80.0573 (11)0.0626 (12)0.0506 (10)0.0001 (9)0.0064 (9)0.0042 (9)
C90.0731 (14)0.1050 (17)0.0507 (11)0.0187 (13)0.0097 (10)0.0063 (11)
C100.0684 (14)0.0923 (16)0.0705 (13)0.0141 (12)0.0096 (11)0.0132 (12)
Geometric parameters (Å, º) top
N1—C61.335 (2)C6—H60.930
N1—C21.341 (2)C7—C81.493 (3)
O1—C11.332 (2)C7—H7A0.970
O1—C71.458 (2)C7—H7B0.970
O2—C11.204 (2)C8—C91.509 (3)
C1—C41.495 (2)C8—H8A0.970
C2—C31.391 (2)C8—H8B0.970
C2—C2i1.483 (3)C9—C101.513 (3)
C3—C41.381 (2)C9—H9A0.970
C3—H30.930C9—H9B0.970
C4—C51.389 (2)C10—H10A0.960
C5—C61.377 (2)C10—H10B0.960
C5—H50.930C10—H10C0.960
C6—N1—C2117.47 (15)C8—C7—H7A110.0
C1—O1—C7116.43 (14)O1—C7—H7B110.0
O2—C1—O1124.07 (17)C8—C7—H7B110.0
O2—C1—C4123.74 (17)H7A—C7—H7B108.4
O1—C1—C4112.18 (15)C7—C8—C9112.24 (16)
N1—C2—C3122.14 (15)C7—C8—H8A109.2
N1—C2—C2i116.64 (18)C9—C8—H8A109.2
C3—C2—C2i121.23 (17)C7—C8—H8B109.2
C4—C3—C2119.56 (15)C9—C8—H8B109.2
C4—C3—H3120.2H8A—C8—H8B107.9
C2—C3—H3120.2C8—C9—C10113.81 (17)
C3—C4—C5118.40 (16)C8—C9—H9A108.8
C3—C4—C1118.96 (15)C10—C9—H9A108.8
C5—C4—C1122.64 (16)C8—C9—H9B108.8
C6—C5—C4118.21 (17)C10—C9—H9B108.8
C6—C5—H5120.9H9A—C9—H9B107.7
C4—C5—H5120.9C9—C10—H10A109.5
N1—C6—C5124.20 (16)C9—C10—H10B109.5
N1—C6—H6117.9H10A—C10—H10B109.5
C5—C6—H6117.9C9—C10—H10C109.5
O1—C7—C8108.26 (15)H10A—C10—H10C109.5
O1—C7—H7A110.0H10B—C10—H10C109.5
C7—O1—C1—O21.5 (3)O2—C1—C4—C5175.64 (18)
C7—O1—C1—C4178.51 (15)O1—C1—C4—C54.4 (2)
C6—N1—C2—C30.8 (3)C3—C4—C5—C60.4 (3)
C6—N1—C2—C2i179.14 (18)C1—C4—C5—C6178.98 (16)
N1—C2—C3—C41.5 (3)C2—N1—C6—C50.6 (3)
C2i—C2—C3—C4178.40 (18)C4—C5—C6—N11.2 (3)
C2—C3—C4—C50.9 (2)C1—O1—C7—C8178.49 (16)
C2—C3—C4—C1179.76 (15)O1—C7—C8—C9177.70 (17)
O2—C1—C4—C33.7 (3)C7—C8—C9—C10179.62 (19)
O1—C1—C4—C3176.26 (15)
Symmetry code: (i) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H24N2O4
Mr356.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)7.4183 (9), 8.2829 (10), 15.375 (2)
β (°) 93.273 (1)
V3)943.2 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.30 × 0.15
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.966, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
4552, 1654, 1135
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.115, 1.03
No. of reflections1654
No. of parameters119
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.13

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the National Natural Science Foundation of China (20741008) for financial support.

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFujihara, T., Kobayashi, A. & Nagasawa, A. (2004). Acta Cryst. E60, o353–o355.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStocco, G., Guli, G., Girasolo, M. A., Bruno, G., Nicolò, F. & Scopelliti, R. (1996). Acta Cryst. C52, 829–832.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationTynan, E., Jensen, P., Kruger, P. E., Lees, A. C. & Nieuwenhuyzen, M. (2003). Dalton Trans. pp. 1223–1228.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds