organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of 1-benzyl-3-furoyl-1-phenyl­thio­urea

aLaboratory of Molecular Engineering, Institute of Materials, University of Havana, Cuba, and bGrupo de Cristalografía, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brazil
*Correspondence e-mail: osvaldo@imre.oc.uh.cu

(Received 2 December 2008; accepted 27 December 2008; online 28 February 2009)

The title compound, C19H16N2O2S, was synthesized from furoyl isothio­cyanate and N-benzyl­aniline in dry acetone and the structure redetermined. The structure [Otazo-Sánchez et al. (2001[Otazo-Sánchez, E., Pérez-Marín, L., Estévez-Hernández, O., Rojas-Lima, S. & Alonso-Chamorro, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211-2218.]). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218] has been re-determined in order to establish the intramolecular and intermolecular inter­actions. The thio­urea group is in the thio­amide form. The thio­urea group makes a dihedral angle of 29.2 (6)° with the furoyl group. In the crystal structure, mol­ecules are linked by inter­molecular C—H⋯O inter­actions, forming one-dimensional chains along the a axis. An intra­molecular N—H⋯O hydrogen bond is also present.

Related literature

For general background, see: Aly et al. (2007[Aly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E. F. (2007). J. Sulfur Chem. 28, 73-93.]), Koch (2001[Koch, K. R. (2001). Coord. Chem. Rev. 216-217, 473-488.]), Estévez-Hernández et al. (2006[Estévez-Hernández, O., Naranjo-Rodríguez, I., Hidalgo-Hidalgo de Cisneros, J. L. & Reguera, E. (2006). Spectrochim. Acta Part A, 64, 961-971.]). For related structures, see: Pérez et al. (2008[Pérez, H., Mascarenhas, Y., Estévez-Hernández, O., Santos, S. Jr & Duque, J. (2008). Acta Cryst. E64, o513.]). For the synthesis, see: Otazo-Sánchez et al. (2001[Otazo-Sánchez, E., Pérez-Marín, L., Estévez-Hernández, O., Rojas-Lima, S. & Alonso-Chamorro, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211-2218.]).

[Scheme 1]

Experimental

Crystal data
  • C19H16N2O2S

  • Mr = 336.41

  • Orthorhombic, P b c a

  • a = 12.7737 (3) Å

  • b = 8.8047 (2) Å

  • c = 31.2345 (7) Å

  • V = 3512.90 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.20 mm−1

  • T = 294 (2) K

  • 0.54 × 0.22 × 0.19 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: gaussian (Coppens et al., 1965[Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038.]) Tmin = 0.92, Tmax = 0.971

  • 19732 measured reflections

  • 3536 independent reflections

  • 2565 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.114

  • S = 1.03

  • 3536 reflections

  • 281 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.84 (2) 2.25 (2) 2.677 (2) 111 (2)
C6—H6⋯O1i 0.92 (2) 2.40 (2) 3.315 (3) 172 (2)
C8—H8⋯O1ii 0.92 (2) 2.57 (2) 3.242 (2) 131 (2)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Bruno et al., 2002[Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389-397.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The importance of aroylthioureas is largely in heterocyclic syntheses and many of these substrates have interesting biological activities. Aroylthioureas have also been found to have applications in metal complexes and molecular electronics (Aly et al., 2007, Estévez-Hernández et al., 2006). The structure of the title compound (I), Fig.1, has been redetermined and the result adds significantly to the information already in the public domain (Otazo-Sánchez et al., 2001), especially about the intra and intermolecular interactions (not reported previously). The data and the refinement of the structure are also of better quality (present refinement: R: 0.0410 and wR: 0.1137; previous refinement: R: 0.1450 and wR: 0.2356). The main bond lengths and angles are within the ranges obtained for similar compounds (Koch et al., 2001; Pérez et al., 2008). The C2—S1 and C1—O1 bonds show typical double-bond character. However, the C—N bond lengths, C1—N1, C2—N1, C2—N2 are shorter than the normal C—N single-bond length of about 1.48 Å. These results can be explained by the existence of resonance in this part of the molecule. The central thiourea fragment (N1—C2—S1—N2) makes dihedral angle of 29,2(6)° with the furan carbonyl (O1—O2—C1—C3—C6) group, whereas the C7—C12 benzene ring is inclined by 84,7(6)°. The crystal structure is stabilized principally by the intramolecular N1—H···O2 hydrogen bond (Fig.1 and Table 1). In the crystal structure symmetry related molecules are linked by two different C—H···O1 interactions (C8—H···O1, 3.2<D<3.6 Å and θ>110°) and (C6—H···O1, 3.2<D<3.6 Å and θ>150°) to form one-dimensional chains along the a-axis (Fig. 2 and Table 1).

Related literature top

For general background, see: Aly et al. (2007), Koch (2001), Estévez-Hernández et al. (2006). For related structures, see: Pérez et al. (2008). For the synthesis, see: Otazo-Sánchez et al. (2001).

Experimental top

The title compound, (I), was synthesized according to a procedure described by Otazo-Sánchez et al. (2001), by converting furoyl chloride into furoyl isothiocyanate and then condensing with N-benzylaniline. The resulting solid product was crystallized from ethanol yielding X-ray quality single crystals (m.p. 127–128°C). Elemental analysis for C19H16N2O2S found: C 59.95, H 4.60, N 10.74, S 11.21%; calculated: C 60.00, H 4.62, N 10.76, S 11.31%.

Refinement top

All H atoms were refined with Uiso(H)=1.2Ueq(C/N).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Bruno et al., 2002); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular N—H···O hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. View of the crystal packing of the title compound. Intermolecular hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) -x+1/2, y-1/2, z; (ii) x+1/2, -y+1/2, -z]
1-benzyl-3-furoyl-1-phenylthiourea top
Crystal data top
C19H16N2O2SF(000) = 1408
Mr = 336.41Dx = 1.272 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 19732 reflections
a = 12.7737 (3) Åθ = 2.9–26.4°
b = 8.8047 (2) ŵ = 0.20 mm1
c = 31.2345 (7) ÅT = 294 K
V = 3512.90 (14) Å3Prism, yellow
Z = 80.54 × 0.22 × 0.19 mm
Data collection top
Nonius KappaCCD
diffractometer
2565 reflections with I > 2σ(I)
CCD rotation images, thick slices scansRint = 0.058
Absorption correction: gaussian
(Coppens et al., 1965)
θmax = 26.4°, θmin = 3.1°
Tmin = 0.92, Tmax = 0.971h = 1515
19732 measured reflectionsk = 118
3536 independent reflectionsl = 3839
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.343P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.114(Δ/σ)max < 0.001
S = 1.03Δρmax = 0.12 e Å3
3536 reflectionsΔρmin = 0.13 e Å3
281 parameters
Crystal data top
C19H16N2O2SV = 3512.90 (14) Å3
Mr = 336.41Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.7737 (3) ŵ = 0.20 mm1
b = 8.8047 (2) ÅT = 294 K
c = 31.2345 (7) Å0.54 × 0.22 × 0.19 mm
Data collection top
Nonius KappaCCD
diffractometer
3536 independent reflections
Absorption correction: gaussian
(Coppens et al., 1965)
2565 reflections with I > 2σ(I)
Tmin = 0.92, Tmax = 0.971Rint = 0.058
19732 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.12 e Å3
3536 reflectionsΔρmin = 0.13 e Å3
281 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.26117 (12)0.19869 (17)0.05040 (4)0.0577 (4)
C20.26889 (12)0.37199 (18)0.11358 (4)0.0577 (4)
C30.32563 (12)0.1570 (2)0.01356 (5)0.0619 (4)
C40.31207 (19)0.0530 (3)0.01689 (6)0.0842 (6)
C50.39938 (19)0.0609 (3)0.04428 (7)0.0952 (7)
C60.46044 (18)0.1672 (3)0.02896 (6)0.0861 (6)
C70.45449 (12)0.39652 (19)0.13227 (5)0.0599 (4)
C80.51367 (15)0.5088 (2)0.11332 (6)0.0723 (5)
C90.61918 (16)0.4856 (3)0.10720 (7)0.0865 (6)
C100.66461 (18)0.3518 (3)0.11944 (7)0.0909 (6)
C110.60580 (16)0.2400 (3)0.13808 (7)0.0866 (6)
C120.50023 (15)0.2623 (2)0.14502 (6)0.0747 (5)
C130.32176 (18)0.5218 (2)0.17699 (6)0.0706 (4)
C140.34629 (12)0.44677 (18)0.21911 (5)0.0615 (4)
C150.28076 (19)0.3390 (3)0.23609 (6)0.0877 (6)
C160.3022 (3)0.2697 (3)0.27438 (8)0.1152 (9)
C170.3882 (3)0.3076 (3)0.29671 (8)0.1110 (9)
C180.4556 (2)0.4131 (4)0.28073 (8)0.1023 (8)
C190.43495 (17)0.4839 (3)0.24164 (6)0.0822 (5)
N10.30881 (11)0.30009 (16)0.07753 (4)0.0607 (4)
N20.34480 (10)0.42232 (15)0.14007 (4)0.0613 (3)
O10.17529 (9)0.14370 (14)0.05539 (4)0.0732 (3)
O20.41816 (9)0.23024 (15)0.00713 (4)0.0762 (3)
S10.14167 (3)0.39752 (6)0.121403 (14)0.07098 (18)
H10.3720 (15)0.319 (2)0.0721 (6)0.078 (6)*
H40.2628 (18)0.001 (3)0.0187 (6)0.092 (7)*
H50.4127 (17)0.003 (3)0.0693 (7)0.109 (7)*
H60.5238 (18)0.211 (3)0.0356 (7)0.107 (7)*
H80.4814 (14)0.597 (2)0.1052 (5)0.075 (5)*
H90.660 (2)0.558 (3)0.0925 (8)0.120 (8)*
H100.734 (2)0.335 (3)0.1144 (8)0.133 (9)*
H110.6356 (17)0.143 (3)0.1469 (7)0.108 (7)*
H120.4597 (16)0.188 (2)0.1588 (6)0.088 (6)*
H13A0.3612 (15)0.614 (2)0.1742 (6)0.081 (6)*
H13B0.2478 (17)0.544 (2)0.1764 (5)0.082 (5)*
H150.2202 (18)0.315 (3)0.2208 (7)0.112 (8)*
H160.255 (3)0.181 (4)0.2858 (10)0.180 (12)*
H170.404 (2)0.260 (3)0.3255 (9)0.131 (8)*
H180.510 (2)0.441 (3)0.2933 (8)0.130 (10)*
H190.4794 (17)0.555 (3)0.2293 (7)0.103 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0526 (8)0.0640 (9)0.0563 (8)0.0003 (7)0.0034 (6)0.0060 (7)
C20.0570 (9)0.0602 (9)0.0560 (8)0.0011 (7)0.0010 (6)0.0069 (7)
C30.0551 (8)0.0738 (10)0.0569 (8)0.0019 (8)0.0019 (7)0.0037 (8)
C40.0826 (14)0.0989 (16)0.0711 (11)0.0108 (13)0.0020 (10)0.0153 (10)
C50.1014 (16)0.1183 (18)0.0659 (11)0.0129 (14)0.0064 (11)0.0178 (12)
C60.0735 (12)0.1153 (17)0.0695 (11)0.0085 (12)0.0163 (10)0.0017 (11)
C70.0562 (9)0.0675 (10)0.0559 (8)0.0011 (8)0.0065 (7)0.0052 (7)
C80.0659 (11)0.0739 (12)0.0772 (11)0.0012 (9)0.0067 (8)0.0021 (9)
C90.0644 (12)0.0936 (15)0.1013 (14)0.0087 (11)0.0005 (10)0.0047 (12)
C100.0557 (11)0.1095 (18)0.1075 (15)0.0044 (12)0.0053 (10)0.0069 (13)
C110.0733 (13)0.0878 (15)0.0988 (14)0.0177 (11)0.0119 (11)0.0013 (12)
C120.0697 (11)0.0729 (12)0.0814 (11)0.0032 (10)0.0052 (9)0.0025 (9)
C130.0747 (12)0.0698 (12)0.0674 (10)0.0067 (10)0.0003 (9)0.0074 (8)
C140.0624 (9)0.0622 (9)0.0600 (8)0.0016 (8)0.0025 (7)0.0115 (7)
C150.0932 (14)0.1008 (15)0.0691 (11)0.0237 (12)0.0073 (10)0.0063 (10)
C160.157 (3)0.115 (2)0.0739 (13)0.0213 (18)0.0218 (16)0.0066 (13)
C170.161 (3)0.1054 (19)0.0661 (13)0.0328 (19)0.0046 (15)0.0021 (13)
C180.0984 (17)0.126 (2)0.0826 (14)0.0257 (15)0.0288 (13)0.0254 (14)
C190.0754 (12)0.0875 (13)0.0838 (12)0.0046 (11)0.0083 (10)0.0092 (11)
N10.0489 (7)0.0748 (9)0.0584 (7)0.0047 (6)0.0032 (6)0.0032 (6)
N20.0592 (8)0.0697 (8)0.0552 (7)0.0047 (6)0.0013 (6)0.0031 (6)
O10.0583 (6)0.0822 (8)0.0791 (7)0.0113 (6)0.0047 (5)0.0040 (6)
O20.0632 (7)0.0934 (9)0.0719 (7)0.0070 (6)0.0097 (5)0.0042 (6)
S10.0554 (3)0.0834 (3)0.0741 (3)0.0051 (2)0.00711 (18)0.0001 (2)
Geometric parameters (Å, º) top
C1—O11.2092 (18)C10—C111.368 (3)
C1—N11.3731 (19)C10—H100.91 (3)
C1—C31.462 (2)C11—C121.380 (3)
C2—N21.349 (2)C11—H110.97 (2)
C2—N11.389 (2)C12—H120.94 (2)
C2—S11.6586 (16)C13—N21.478 (2)
C3—C41.332 (3)C13—C141.505 (2)
C3—O21.361 (2)C13—H13A0.96 (2)
C4—C51.407 (3)C13—H13B0.97 (2)
C4—H40.78 (2)C14—C151.372 (3)
C5—C61.309 (3)C14—C191.373 (2)
C5—H50.95 (2)C15—C161.370 (3)
C6—O21.368 (2)C15—H150.93 (2)
C6—H60.92 (2)C16—C171.344 (4)
C7—C121.377 (2)C16—H161.05 (4)
C7—C81.378 (2)C17—C181.361 (4)
C7—N21.440 (2)C17—H171.01 (3)
C8—C91.376 (3)C18—C191.396 (3)
C8—H80.917 (19)C18—H180.84 (3)
C9—C101.368 (3)C19—H190.93 (2)
C9—H90.94 (3)N1—H10.841 (19)
O1—C1—N1125.65 (14)C7—C12—H12119.7 (13)
O1—C1—C3120.79 (14)C11—C12—H12120.8 (13)
N1—C1—C3113.54 (13)N2—C13—C14112.36 (14)
N2—C2—N1112.52 (14)N2—C13—H13A109.1 (11)
N2—C2—S1124.70 (12)C14—C13—H13A110.0 (11)
N1—C2—S1122.74 (12)N2—C13—H13B107.6 (11)
C4—C3—O2109.47 (16)C14—C13—H13B108.1 (10)
C4—C3—C1131.42 (17)H13A—C13—H13B109.7 (17)
O2—C3—C1119.10 (14)C15—C14—C19118.04 (19)
C3—C4—C5107.3 (2)C15—C14—C13120.96 (17)
C3—C4—H4123.9 (16)C19—C14—C13121.00 (18)
C5—C4—H4128.8 (16)C16—C15—C14121.6 (2)
C6—C5—C4106.6 (2)C16—C15—H15120.8 (15)
C6—C5—H5125.4 (14)C14—C15—H15117.6 (15)
C4—C5—H5128.0 (14)C17—C16—C15120.4 (3)
C5—C6—O2110.87 (19)C17—C16—H16118.4 (18)
C5—C6—H6137.7 (14)C15—C16—H16121.1 (19)
O2—C6—H6111.4 (14)C16—C17—C18119.8 (2)
C12—C7—C8120.46 (17)C16—C17—H17121.5 (15)
C12—C7—N2119.95 (15)C18—C17—H17118.7 (15)
C8—C7—N2119.55 (15)C17—C18—C19120.4 (2)
C9—C8—C7119.4 (2)C17—C18—H18123.7 (19)
C9—C8—H8121.8 (12)C19—C18—H18115.9 (19)
C7—C8—H8118.8 (11)C14—C19—C18119.8 (2)
C10—C9—C8120.3 (2)C14—C19—H19117.0 (13)
C10—C9—H9119.0 (15)C18—C19—H19123.2 (13)
C8—C9—H9120.6 (15)C1—N1—C2129.35 (14)
C11—C10—C9120.4 (2)C1—N1—H1115.3 (12)
C11—C10—H10119.4 (17)C2—N1—H1115.3 (12)
C9—C10—H10120.2 (17)C2—N2—C7122.93 (13)
C10—C11—C12120.0 (2)C2—N2—C13122.01 (14)
C10—C11—H11122.4 (13)C7—N2—C13114.78 (14)
C12—C11—H11117.6 (13)C3—O2—C6105.79 (15)
C7—C12—C11119.5 (2)
O1—C1—C3—C46.5 (3)C16—C17—C18—C191.1 (4)
N1—C1—C3—C4172.34 (19)C15—C14—C19—C180.4 (3)
O1—C1—C3—O2174.73 (14)C13—C14—C19—C18179.69 (18)
N1—C1—C3—O26.5 (2)C17—C18—C19—C140.1 (3)
O2—C3—C4—C50.6 (2)O1—C1—N1—C26.2 (3)
C1—C3—C4—C5179.47 (18)C3—C1—N1—C2175.04 (15)
C3—C4—C5—C60.4 (3)N2—C2—N1—C1159.13 (15)
C4—C5—C6—O20.1 (3)S1—C2—N1—C123.1 (2)
C12—C7—C8—C90.0 (3)N1—C2—N2—C72.9 (2)
N2—C7—C8—C9177.88 (16)S1—C2—N2—C7179.43 (12)
C7—C8—C9—C100.6 (3)N1—C2—N2—C13170.71 (14)
C8—C9—C10—C110.3 (3)S1—C2—N2—C137.0 (2)
C9—C10—C11—C120.6 (3)C12—C7—N2—C284.39 (19)
C8—C7—C12—C111.0 (3)C8—C7—N2—C297.73 (19)
N2—C7—C12—C11178.84 (16)C12—C7—N2—C13101.60 (18)
C10—C11—C12—C71.3 (3)C8—C7—N2—C1376.27 (18)
N2—C13—C14—C1576.7 (2)C14—C13—N2—C2115.66 (17)
N2—C13—C14—C19103.2 (2)C14—C13—N2—C770.3 (2)
C19—C14—C15—C160.0 (3)C4—C3—O2—C60.5 (2)
C13—C14—C15—C16179.9 (2)C1—C3—O2—C6179.59 (15)
C14—C15—C16—C170.9 (4)C5—C6—O2—C30.3 (2)
C15—C16—C17—C181.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.84 (2)2.25 (2)2.677 (2)111 (2)
C6—H6···O1i0.92 (2)2.40 (2)3.315 (3)172 (2)
C8—H8···O1ii0.92 (2)2.57 (2)3.242 (2)131 (2)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC19H16N2O2S
Mr336.41
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)294
a, b, c (Å)12.7737 (3), 8.8047 (2), 31.2345 (7)
V3)3512.90 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.20
Crystal size (mm)0.54 × 0.22 × 0.19
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionGaussian
(Coppens et al., 1965)
Tmin, Tmax0.92, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
19732, 3536, 2565
Rint0.058
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.114, 1.03
No. of reflections3536
No. of parameters281
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.12, 0.13

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Bruno et al., 2002), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.84 (2)2.25 (2)2.677 (2)111 (2)
C6—H6···O1i0.92 (2)2.40 (2)3.315 (3)172 (2)
C8—H8···O1ii0.92 (2)2.57 (2)3.242 (2)131 (2)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1/2, y+1/2, z.
 

Acknowledgements

The authors acknowledge financial support from the Brazilian agency CNPq. OEH thanks CONACyT of Mexico for research grant No. 61541.

References

First citationAly, A. A., Ahmed, E. K., El-Mokadem, K. M. & Hegazy, M. E. F. (2007). J. Sulfur Chem. 28, 73–93.  CrossRef CAS Google Scholar
First citationBruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCoppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 1035–1038.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationEstévez-Hernández, O., Naranjo-Rodríguez, I., Hidalgo-Hidalgo de Cisneros, J. L. & Reguera, E. (2006). Spectrochim. Acta Part A, 64, 961–971.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKoch, K. R. (2001). Coord. Chem. Rev. 216217, 473–488.  Web of Science CrossRef CAS Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtazo-Sánchez, E., Pérez-Marín, L., Estévez-Hernández, O., Rojas-Lima, S. & Alonso-Chamorro, J. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 2211–2218.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPérez, H., Mascarenhas, Y., Estévez-Hernández, O., Santos, S. Jr & Duque, J. (2008). Acta Cryst. E64, o513.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds