organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Amino-3-bromo­benzoic acid

aDepartment of Chemistry, Government College University, Lahore, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 1 February 2009; accepted 24 February 2009; online 28 February 2009)

The asymmetric unit of the title compound, C7H6BrNO2, consists of two mol­ecules having a small variation of bond lengths and angles. The title compound forms dimers through pairs of O—H⋯O hydrogen bonds involving the carboxyl­ate groups. The dimers are linked into polymeric forms through inter­molecular hydrogen bonds, forming R21(6), R32(8) and R33(15) ring motifs.

Related literature

The title compound has been prepared as an inter­mediate for the synthesis of sulfonamides (Arshad et al., 2009[Arshad, M. N., Tahir, M. N., Khan, I. U., Siddiqui, W. A. & Shafiq, M. (2009). Acta Cryst. E65, o230.]) and benzothia­zines (Arshad et al., 2008[Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Pant (1965[Pant, A. K. (1965). Acta Cryst. 19, 440-448.]); Tanaka et al. (1967[Tanaka, N., Ashida, T., Sasada, Y. & Kakudo, M. (1967). Bull. Chem. Soc. Jpn, 40, 2717.]). For the synthesis, see: Krishna Mohan et al. (2004[Krishna Mohan, K. V. V., Narender, N., Srinivasu, P., Kulkarni, S. J. & Raghavan, K. V. (2004). Synth. Commun. 34, 2143-2152.]).

[Scheme 1]

Experimental

Crystal data
  • C7H6BrNO2

  • Mr = 216.04

  • Orthorhombic, P n a 21

  • a = 24.3968 (11) Å

  • b = 4.8388 (2) Å

  • c = 12.8040 (5) Å

  • V = 1511.53 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.38 mm−1

  • T = 296 K

  • 0.22 × 0.16 × 0.14 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.375, Tmax = 0.469

  • 9922 measured reflections

  • 3908 independent reflections

  • 3169 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.059

  • S = 1.00

  • 3908 reflections

  • 214 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.49 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1857 Friedel pairs

  • Flack parameter: 0.012 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4i 0.82 1.76 2.564 (3) 165
N1—H1A⋯Br1 0.92 (4) 2.63 (4) 3.081 (4) 111 (3)
N1—H1B⋯O2ii 0.83 (5) 2.57 (5) 3.313 (4) 149 (4)
N2—H2A⋯Br2 0.99 (4) 2.68 (4) 3.099 (4) 106 (2)
N2—H2A⋯Br1ii 0.99 (4) 2.69 (4) 3.630 (4) 158 (3)
N2—H2B⋯O1iii 0.79 (5) 2.43 (5) 3.216 (4) 179 (6)
O3—H3⋯O2iv 0.82 1.90 2.723 (3) 178
C5—H5⋯O2ii 0.93 2.59 3.407 (4) 147
C12—H12⋯O4v 0.93 2.54 3.470 (4) 174
Symmetry codes: (i) [-x, -y+2, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x, y-1, z; (iv) [-x, -y+2, z+{\script{1\over 2}}]; (v) [-x, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Different types of aromatic anilines have been used for the synthesis of carboxamides and sulfonamides. The title compound (I), (Fig 1), has been prepared as an intermediate for the synthesis of sulfonamides (Arshad et al., 2009), benzothiazines (Arshad et al., 2008) and different metal complexes.

The crystal structure of m-Bromobenzoic acid (Tanaka et al., 1967) and 3,5-Dibromo-p-aminobenzoic acid (Pant, 1965) has been published. The title compound consists of an asymmetric unit having two chemical isomers. There is a small variation of bond lengths and bond angles among the two isomers and both isomers form five membered ring (Br/C/C/N/H) through intramolecular H-bond of type N—H···Br. The molecules are dimerized forming R22(8) ring motifs (Bernstein et al., 1995). These dimers are linked to each other through R21(6), R32(8) and R33(15) ring motifs (Table 1), (Fig 2).

Related literature top

The title compound was prepared as an intermediate for the synthesis of sulfonamides (Arshad et al., 2009), benzothiazines (Arshad et al., 2008). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Pant (1965); Tanaka et al. (1967). For the synthesis, see: Krishna Mohan et al. (2004);

Experimental top

The title copound was prepared following the same method (Krishna Mohan et al., 2004) available in literature. 4-Amino Benzoic acid (2 g, 0.0146 mol) and ammonium bromide (1.5 g, 0.16 mol) was charged to a flask (25 ml) containing acetic acid (15 ml). Hydrogen peroxide (0.545 g, 0.016 mol) was added drop wise to the above mixture and allowed to stirr at room temperature for 3 h. Stirring was stoped and allowed it to setteled down. Precipitate obtained was filtered and washed with water and recrystalizesd in dichloromethane and methanol for X-ray studies.

Refinement top

The coordinates of H-atoms of amino groups were refined. H-atoms were positioned geometrically, with O-H = 0.82 Å for OH, C-H = 0.93 Å for aromatic H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, N, O), where x = 1.2 for all other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title compound, with the atom numbering scheme. The thermal ellipsoids are drawn at the 30% probability level. The dotted lines show the intramolecular H-bonds.
[Figure 2] Fig. 2. The projectional view (PLATON: Spek, 2009) which shows that molecules are dimerized and form ring motifs.
4-Amino-3-bromobenzoic acid top
Crystal data top
C7H6BrNO2F(000) = 848
Mr = 216.04Dx = 1.899 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 3169 reflections
a = 24.3968 (11) Åθ = 1.7–28.7°
b = 4.8388 (2) ŵ = 5.38 mm1
c = 12.8040 (5) ÅT = 296 K
V = 1511.53 (11) Å3Prismatic, colorless
Z = 80.22 × 0.16 × 0.14 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3908 independent reflections
Radiation source: fine-focus sealed tube3169 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 7.40 pixels mm-1θmax = 28.7°, θmin = 1.7°
ω scansh = 3233
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 65
Tmin = 0.375, Tmax = 0.469l = 1717
9922 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0107P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
3908 reflectionsΔρmax = 0.44 e Å3
214 parametersΔρmin = 0.49 e Å3
1 restraintAbsolute structure: Flack (1983), 1857 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.012 (9)
Crystal data top
C7H6BrNO2V = 1511.53 (11) Å3
Mr = 216.04Z = 8
Orthorhombic, Pna21Mo Kα radiation
a = 24.3968 (11) ŵ = 5.38 mm1
b = 4.8388 (2) ÅT = 296 K
c = 12.8040 (5) Å0.22 × 0.16 × 0.14 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3908 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3169 reflections with I > 2σ(I)
Tmin = 0.375, Tmax = 0.469Rint = 0.027
9922 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.059Δρmax = 0.44 e Å3
S = 1.00Δρmin = 0.49 e Å3
3908 reflectionsAbsolute structure: Flack (1983), 1857 Friedel pairs
214 parametersAbsolute structure parameter: 0.012 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.320114 (15)0.05594 (7)0.25848 (2)0.03957 (10)
O10.14368 (11)0.8516 (5)0.40595 (16)0.0440 (6)
H10.12880.98460.37810.053*
O20.16062 (9)0.7357 (4)0.24087 (17)0.0350 (5)
N10.33671 (15)0.0202 (8)0.4953 (3)0.0510 (10)
H1A0.3479 (16)0.127 (8)0.455 (3)0.061*
H1B0.3387 (19)0.004 (8)0.560 (4)0.061*
C10.21062 (12)0.5149 (6)0.3765 (3)0.0302 (6)
C20.23965 (12)0.3438 (6)0.3108 (2)0.0288 (7)
H20.23180.34160.23970.035*
C30.28043 (13)0.1752 (6)0.3501 (2)0.0275 (7)
C40.29402 (14)0.1757 (7)0.4569 (3)0.0339 (8)
C50.26337 (14)0.3430 (8)0.5214 (3)0.0428 (9)
H50.27020.34090.59280.051*
C60.22328 (15)0.5119 (7)0.4833 (3)0.0416 (9)
H60.20410.62650.52870.050*
C70.16965 (14)0.7060 (7)0.3350 (3)0.0312 (8)
Br20.068709 (14)0.02802 (6)0.87184 (3)0.03738 (9)
O30.09440 (11)0.8621 (5)0.66215 (19)0.0441 (6)
H30.11360.98590.68620.053*
O40.08170 (10)0.7685 (5)0.83152 (18)0.0400 (6)
N20.09823 (15)0.0184 (7)0.6365 (3)0.0468 (9)
H2A0.1139 (15)0.152 (7)0.687 (3)0.056*
H2B0.1093 (17)0.052 (8)0.580 (4)0.056*
C80.02918 (14)0.5234 (6)0.7088 (3)0.0284 (7)
C90.00474 (13)0.3632 (6)0.7867 (2)0.0281 (7)
H90.01670.37860.85540.034*
C100.03682 (12)0.1830 (6)0.7625 (3)0.0286 (6)
C110.05602 (13)0.1496 (7)0.6603 (3)0.0305 (7)
C120.03023 (14)0.3106 (8)0.5824 (2)0.0400 (8)
H120.04160.29490.51340.048*
C130.01099 (15)0.4883 (6)0.6068 (3)0.0371 (8)
H130.02750.58940.55370.045*
C140.07084 (13)0.7263 (6)0.7391 (3)0.0315 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.03529 (19)0.04090 (18)0.0425 (2)0.00405 (15)0.00077 (17)0.0027 (2)
O10.0561 (17)0.0506 (15)0.0252 (12)0.0258 (13)0.0033 (11)0.0052 (11)
O20.0373 (13)0.0412 (13)0.0265 (13)0.0111 (9)0.0002 (10)0.0058 (10)
N10.049 (2)0.069 (2)0.0351 (19)0.0173 (16)0.0101 (17)0.0089 (16)
C10.0271 (15)0.0389 (15)0.0246 (15)0.0026 (13)0.0001 (16)0.0062 (15)
C20.0250 (18)0.0351 (18)0.0264 (17)0.0012 (14)0.0023 (13)0.0040 (14)
C30.0254 (17)0.0300 (16)0.027 (2)0.0002 (13)0.0000 (13)0.0040 (13)
C40.0293 (19)0.0360 (19)0.036 (2)0.0029 (15)0.0073 (14)0.0071 (16)
C50.044 (2)0.060 (2)0.0246 (17)0.0105 (19)0.0050 (16)0.0015 (17)
C60.039 (2)0.051 (2)0.034 (2)0.0133 (16)0.0008 (16)0.0011 (16)
C70.032 (2)0.0305 (17)0.0310 (19)0.0003 (14)0.0025 (15)0.0055 (15)
Br20.03815 (19)0.03913 (17)0.03487 (17)0.00381 (15)0.00324 (17)0.0049 (2)
O30.0484 (16)0.0458 (15)0.0381 (14)0.0211 (12)0.0097 (12)0.0080 (12)
O40.0403 (16)0.0471 (15)0.0326 (13)0.0124 (12)0.0019 (11)0.0078 (11)
N20.053 (2)0.054 (2)0.0327 (18)0.0179 (16)0.0056 (16)0.0052 (16)
C80.0292 (17)0.0257 (15)0.0303 (17)0.0030 (13)0.0028 (14)0.0054 (13)
C90.0309 (18)0.0323 (16)0.0212 (16)0.0029 (14)0.0027 (12)0.0047 (12)
C100.0310 (16)0.0269 (14)0.0278 (16)0.0003 (12)0.0057 (15)0.0013 (16)
C110.0285 (17)0.0335 (17)0.0296 (17)0.0008 (14)0.0003 (14)0.0041 (15)
C120.044 (2)0.055 (2)0.0206 (17)0.0048 (17)0.0046 (15)0.0024 (15)
C130.046 (2)0.0403 (17)0.0254 (19)0.0058 (16)0.0058 (15)0.0011 (14)
C140.0302 (17)0.0287 (16)0.035 (2)0.0012 (12)0.0015 (16)0.0019 (14)
Geometric parameters (Å, º) top
Br1—C31.888 (3)Br2—C101.899 (3)
O1—C71.312 (4)O3—C141.316 (4)
O1—H10.8200O3—H30.8200
O2—C71.234 (3)O4—C141.230 (3)
N1—C41.376 (4)N2—C111.347 (5)
N1—H1A0.92 (4)N2—H2A0.99 (4)
N1—H1B0.83 (4)N2—H2B0.79 (4)
C1—C21.376 (5)C8—C131.390 (5)
C1—C61.402 (5)C8—C91.397 (4)
C1—C71.462 (5)C8—C141.465 (4)
C2—C31.382 (4)C9—C101.373 (4)
C2—H20.9300C9—H90.9300
C3—C41.407 (4)C10—C111.400 (5)
C4—C51.377 (5)C11—C121.413 (5)
C5—C61.365 (5)C12—C131.360 (5)
C5—H50.9300C12—H120.9300
C6—H60.9300C13—H130.9300
C7—O1—H1109.5C14—O3—H3109.5
C4—N1—H1A116 (2)C11—N2—H2A123 (2)
C4—N1—H1B117 (3)C11—N2—H2B126 (3)
H1A—N1—H1B118 (4)H2A—N2—H2B109 (4)
C2—C1—C6118.5 (3)C13—C8—C9117.8 (3)
C2—C1—C7120.7 (3)C13—C8—C14123.5 (3)
C6—C1—C7120.7 (3)C9—C8—C14118.7 (3)
C1—C2—C3120.2 (3)C10—C9—C8120.5 (3)
C1—C2—H2119.9C10—C9—H9119.7
C3—C2—H2119.9C8—C9—H9119.7
C2—C3—C4121.5 (3)C9—C10—C11122.1 (3)
C2—C3—Br1119.5 (2)C9—C10—Br2118.6 (2)
C4—C3—Br1119.0 (2)C11—C10—Br2119.4 (2)
N1—C4—C5121.3 (3)N2—C11—C10122.5 (3)
N1—C4—C3121.6 (3)N2—C11—C12120.9 (3)
C5—C4—C3117.1 (3)C10—C11—C12116.6 (3)
C6—C5—C4121.8 (3)C13—C12—C11121.0 (3)
C6—C5—H5119.1C13—C12—H12119.5
C4—C5—H5119.1C11—C12—H12119.5
C5—C6—C1120.8 (3)C12—C13—C8122.0 (3)
C5—C6—H6119.6C12—C13—H13119.0
C1—C6—H6119.6C8—C13—H13119.0
O2—C7—O1121.8 (3)O4—C14—O3122.9 (3)
O2—C7—C1123.4 (3)O4—C14—C8121.0 (3)
O1—C7—C1114.7 (3)O3—C14—C8116.1 (3)
C6—C1—C2—C30.4 (4)C13—C8—C9—C101.7 (5)
C7—C1—C2—C3176.3 (3)C14—C8—C9—C10176.0 (3)
C1—C2—C3—C40.9 (5)C8—C9—C10—C110.7 (5)
C1—C2—C3—Br1179.5 (2)C8—C9—C10—Br2179.7 (2)
C2—C3—C4—N1176.1 (3)C9—C10—C11—N2177.3 (3)
Br1—C3—C4—N12.5 (5)Br2—C10—C11—N23.1 (4)
C2—C3—C4—C52.7 (5)C9—C10—C11—C120.2 (5)
Br1—C3—C4—C5178.7 (3)Br2—C10—C11—C12179.4 (2)
N1—C4—C5—C6175.6 (4)N2—C11—C12—C13177.4 (3)
C3—C4—C5—C63.2 (6)C10—C11—C12—C130.1 (5)
C4—C5—C6—C12.0 (6)C11—C12—C13—C81.0 (6)
C2—C1—C6—C50.1 (5)C9—C8—C13—C121.8 (5)
C7—C1—C6—C5176.8 (3)C14—C8—C13—C12175.7 (3)
C2—C1—C7—O23.7 (5)C13—C8—C14—O4172.8 (3)
C6—C1—C7—O2172.9 (3)C9—C8—C14—O44.7 (5)
C2—C1—C7—O1178.0 (3)C13—C8—C14—O35.7 (5)
C6—C1—C7—O15.3 (5)C9—C8—C14—O3176.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.821.762.564 (3)165
N1—H1A···Br10.92 (4)2.63 (4)3.081 (4)111 (3)
N1—H1B···O2ii0.83 (5)2.57 (5)3.313 (4)149 (4)
N2—H2A···Br20.99 (4)2.68 (4)3.099 (4)106 (2)
N2—H2A···Br1ii0.99 (4)2.69 (4)3.630 (4)158 (3)
N2—H2B···O1iii0.79 (5)2.43 (5)3.216 (4)179 (6)
O3—H3···O2iv0.821.902.723 (3)178
C5—H5···O2ii0.932.593.407 (4)147
C12—H12···O4v0.932.543.470 (4)174
Symmetry codes: (i) x, y+2, z1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x, y1, z; (iv) x, y+2, z+1/2; (v) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC7H6BrNO2
Mr216.04
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)296
a, b, c (Å)24.3968 (11), 4.8388 (2), 12.8040 (5)
V3)1511.53 (11)
Z8
Radiation typeMo Kα
µ (mm1)5.38
Crystal size (mm)0.22 × 0.16 × 0.14
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.375, 0.469
No. of measured, independent and
observed [I > 2σ(I)] reflections
9922, 3908, 3169
Rint0.027
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.059, 1.00
No. of reflections3908
No. of parameters214
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.49
Absolute structureFlack (1983), 1857 Friedel pairs
Absolute structure parameter0.012 (9)

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O4i0.82001.76002.564 (3)165.00
N1—H1A···Br10.92 (4)2.63 (4)3.081 (4)111 (3)
N1—H1B···O2ii0.83 (5)2.57 (5)3.313 (4)149 (4)
N2—H2A···Br20.99 (4)2.68 (4)3.099 (4)106 (2)
N2—H2A···Br1ii0.99 (4)2.69 (4)3.630 (4)158 (3)
N2—H2B···O1iii0.79 (5)2.43 (5)3.216 (4)179 (6)
O3—H3···O2iv0.82001.90002.723 (3)178.00
C5—H5···O2ii0.93002.59003.407 (4)147.00
C12—H12···O4v0.93002.54003.470 (4)174.00
Symmetry codes: (i) x, y+2, z1/2; (ii) x+1/2, y1/2, z+1/2; (iii) x, y1, z; (iv) x, y+2, z+1/2; (v) x, y+1, z1/2.
 

Acknowledgements

MNA greatfully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing him with a Scholaship under the Indigenous PhD Program (PIN 042–120607-PS2–183).

References

First citationArshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArshad, M. N., Tahir, M. N., Khan, I. U., Siddiqui, W. A. & Shafiq, M. (2009). Acta Cryst. E65, o230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKrishna Mohan, K. V. V., Narender, N., Srinivasu, P., Kulkarni, S. J. & Raghavan, K. V. (2004). Synth. Commun. 34, 2143–2152.  Web of Science CrossRef CAS Google Scholar
First citationPant, A. K. (1965). Acta Cryst. 19, 440–448.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTanaka, N., Ashida, T., Sasada, Y. & Kakudo, M. (1967). Bull. Chem. Soc. Jpn, 40, 2717.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds