organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Bis(4-chloro­phen­yl)-3-aza­bi­cyclo­[3.3.1]nonan-9-one

aDivision of Image Science and Information Engineering, Pukyong National University, Busan 608 739, Republic of Korea, bDepartment of Chemistry, IIT Madras, Chennai, TamilNadu, India, and cDepartment of Chemistry, Annamalai University, Annamalai Nagar, TamilNadu, India
*Correspondence e-mail: ytjeong@pknu.ac.kr

(Received 4 February 2009; accepted 19 February 2009; online 25 February 2009)

In the mol­ecular structure of the title compound, C20H19Cl2NO, the mol­ecule exists in a twin-chair conformation with equatorial dispositions of the 4-chloro­phenyl groups on both sides of the secondary amino group; the dihedral angle between the aromatic ring planes is 31.33 (3)°. The crystal structure is stabilized by N—H⋯O inter­actions, leading to chains of molecules.

Related literature

For the biological activity of diterpenoid/norditerpenoid alkaloids, see: Hardick et al. (1996[Hardick, D. J., Blagbrough, I. S., Cooper, G., Potter, B. V. L., Critchley, T. & Wonnacott, S. (1996). J. Med. Chem. 39, 4860-4866.]); Jeyaraman et al. (1981[Jeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149-174.]). For similiar structures, see: Parthiban et al. (2008a[Parthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008a). Acta Cryst. E64, o1586.],b[Parthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008b). Acta Cryst. E64, o2332.],c[Parthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2008c). Acta Cryst. E64, o2385.],d[Parthiban, P., Ramkumar, V., Santan, H. D., Kim, J. T. & Jeong, Y. T. (2008d). Acta Cryst. E64, o1710.],e[Parthiban, P., Thirumurugan, K., Ramkumar, V., Pazhamalai, S. & Jeong, Y. T. (2008e). Acta Cryst. E64, o1708-o1709.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19Cl2NO

  • Mr = 360.26

  • Monoclinic, P 21 /n

  • a = 16.2589 (4) Å

  • b = 6.8983 (2) Å

  • c = 18.1291 (5) Å

  • β = 116.149 (1)°

  • V = 1825.23 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 298 K

  • 0.42 × 0.38 × 0.25 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.863, Tmax = 0.915

  • 15050 measured reflections

  • 4997 independent reflections

  • 3241 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.135

  • S = 1.02

  • 4997 reflections

  • 221 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.85 (2) 2.31 (2) 3.1202 (18) 160.2 (18)
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The widespread diterpenoid/norditerpenoid alkaloids posses the 3-azabicyclo [3.3.1]nonane pharmacophore, and as a consequence, the above alkaloids having broad spectrum of biological activities (Jeyaraman et al., 1981; Hardick et al., 1996). Hence, the synthesis and stereochemistry of 3-azabicyclononan-9-ones are more important in recent days (Parthiban et al., 2008a,b,c,d,e). A study of torsion angles, asymmetry parameters and least-squares plane calculation shows that the piperidine ring adopts near ideal chair conformation with the deviation of ring atoms N1 and C8 from the C1/C2/C6/C7 plane by -0.642 (3)Å and 0.712 (3)Å, respectively, QT=0.607 (2)Å, q(2)=0.044 (2)Å and q(3)=-0.606 (2)Å, θ=175.8 (2)°. whereas the cyclohexane ring deviate from the ideal chair conformation; the cyclohexane atoms C4 and C8 deviate from the C2/C3/C5/C6 plane by -0.557 (2)Å and 0.710 (3)Å, respectively, QT=0.560 (2) Å, q(2)=0.117 (2)Å and, q(3)=-0.548 (2)Å, θ=167.9 (2)°. (Cremer & Pople, 1975). Hence, the title compound C20H19Cl2NO, exists in double chair conformation with equatorial dispositions of the para chlorophenyl groups with the torsion angles of C8—C2—C1—C9 and C8—C6—C7—C15 are 177.88 (4)° and -179.01 (4)°, respectively. The aryl groups are oriented at an angle of 31.33 (3)° to each other.

Related literature top

For the biological activity of diterpenoid/norditerpenoid alkaloids, see: Hardick et al. (1996); Jeyaraman et al. (1981). For similiar structures, see: Parthiban et al. (2008a,b,c,d,e). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

In a warm solution of ammonium acetate (0.075 mol) in 50 ml of absolute ethanol, a mixture of cyclohexanone (0.05 mol) and para chlorobenzaldehyde (0.1 mol) was added and gently warmed with stirring on a hot plate till the yellow color was formed during the mixing of the reactants and cooled to room temperature. Then 50 ml of ether was added and allowed to stir over night at room temperature. Thus the obtained crude azabicyclic ketone was separated by filtration and washed with 1:5 ethanol-ether mixture till the solid became colorless. Recrystallization of the compound from ethanol gave X-ray diffraction quality crystals of 2,4-bis(4-chlorophenyl)-3-azabicyclo[3.3.1]nonan-9-one.

Refinement top

Nitrogen H atoms were located in a difference Fourier map and refined isotropically. Other hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms, with aromatic C—H =0.93Å, aliphatic C—H =0.98Å and methylene C—H=0.97Å. The displacement parameters were set for phenyl, methylene and aliphatic H atoms at Uiso(H)=1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP of the molecule with atoms represented as 30% probability ellipsoids.
[Figure 2] Fig. 2. Packing of molecules via N-H..O bond.
2,4-Bis(4-chlorophenyl)-3-azabicyclo[3.3.1]nonan-9-one top
Crystal data top
C20H19Cl2NOF(000) = 752
Mr = 360.26Dx = 1.311 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4308 reflections
a = 16.2589 (4) Åθ = 2.8–26.3°
b = 6.8983 (2) ŵ = 0.36 mm1
c = 18.1291 (5) ÅT = 298 K
β = 116.149 (1)°Rectangular, colourless
V = 1825.23 (9) Å30.42 × 0.38 × 0.25 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4997 independent reflections
Radiation source: fine-focus sealed tube3241 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 29.8°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 2120
Tmin = 0.863, Tmax = 0.915k = 99
15050 measured reflectionsl = 1525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0602P)2 + 0.4485P]
where P = (Fo2 + 2Fc2)/3
4997 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C20H19Cl2NOV = 1825.23 (9) Å3
Mr = 360.26Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.2589 (4) ŵ = 0.36 mm1
b = 6.8983 (2) ÅT = 298 K
c = 18.1291 (5) Å0.42 × 0.38 × 0.25 mm
β = 116.149 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4997 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
3241 reflections with I > 2σ(I)
Tmin = 0.863, Tmax = 0.915Rint = 0.021
15050 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.38 e Å3
4997 reflectionsΔρmin = 0.42 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.33305 (11)0.1260 (2)0.01759 (10)0.0384 (3)
H10.39070.10190.06650.046*
C20.29289 (11)0.0738 (2)0.02171 (10)0.0410 (4)
H20.33800.14140.03450.049*
C30.20110 (12)0.0678 (3)0.09929 (11)0.0533 (4)
H3A0.20790.01350.13990.064*
H3B0.18640.19770.12190.064*
C40.12129 (12)0.0082 (3)0.08496 (12)0.0581 (5)
H4A0.12680.14780.07790.070*
H4B0.06430.01900.13300.070*
C50.11811 (12)0.0827 (3)0.00979 (12)0.0534 (5)
H5A0.09440.21360.02350.064*
H5B0.07560.00960.00370.064*
C60.21147 (11)0.0905 (2)0.06658 (11)0.0418 (4)
H60.20520.16880.10900.050*
C70.25223 (11)0.1109 (2)0.10384 (10)0.0375 (3)
H70.31060.08930.15240.045*
C80.27891 (11)0.1870 (2)0.04285 (10)0.0390 (4)
C90.35398 (11)0.2533 (2)0.03978 (10)0.0414 (4)
C100.29057 (13)0.3777 (3)0.09592 (12)0.0544 (5)
H100.23160.38360.10000.065*
C110.31400 (15)0.4943 (3)0.14645 (12)0.0615 (5)
H110.27100.57760.18410.074*
C120.40091 (16)0.4852 (3)0.14022 (12)0.0584 (5)
C130.46439 (15)0.3618 (3)0.08633 (14)0.0654 (6)
H130.52280.35450.08350.078*
C140.44093 (13)0.2474 (3)0.03588 (13)0.0555 (5)
H140.48450.16460.00150.067*
C150.18866 (11)0.2164 (2)0.13081 (10)0.0385 (3)
C160.17785 (12)0.1464 (3)0.19803 (11)0.0473 (4)
H160.21250.04070.22710.057*
C170.11692 (13)0.2301 (3)0.22247 (11)0.0528 (4)
H170.10970.18040.26700.063*
C180.06701 (12)0.3877 (3)0.18023 (12)0.0509 (4)
C190.07748 (13)0.4646 (3)0.11480 (12)0.0540 (5)
H190.04460.57400.08770.065*
C200.13769 (12)0.3765 (2)0.08997 (11)0.0471 (4)
H200.14400.42590.04500.057*
Cl10.01108 (4)0.49239 (10)0.21027 (4)0.0838 (2)
Cl20.43337 (5)0.64178 (11)0.19813 (4)0.0956 (3)
N10.27045 (9)0.2229 (2)0.04419 (9)0.0401 (3)
O10.31840 (9)0.33704 (16)0.07301 (8)0.0515 (3)
H1A0.2917 (13)0.334 (3)0.0645 (12)0.058 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0379 (8)0.0331 (8)0.0479 (9)0.0024 (6)0.0223 (7)0.0015 (7)
C20.0440 (9)0.0329 (8)0.0532 (9)0.0007 (7)0.0278 (8)0.0020 (7)
C30.0591 (11)0.0489 (10)0.0498 (10)0.0103 (9)0.0221 (9)0.0051 (8)
C40.0413 (10)0.0552 (12)0.0634 (12)0.0046 (8)0.0100 (9)0.0021 (10)
C50.0407 (9)0.0473 (10)0.0750 (13)0.0100 (8)0.0279 (9)0.0112 (9)
C60.0462 (9)0.0304 (8)0.0578 (10)0.0030 (7)0.0312 (8)0.0018 (7)
C70.0387 (8)0.0317 (7)0.0458 (9)0.0003 (6)0.0218 (7)0.0016 (7)
C80.0401 (8)0.0273 (7)0.0514 (9)0.0059 (6)0.0219 (7)0.0053 (7)
C90.0470 (9)0.0327 (8)0.0530 (9)0.0049 (7)0.0298 (8)0.0023 (7)
C100.0526 (11)0.0557 (11)0.0635 (11)0.0042 (9)0.0334 (9)0.0110 (9)
C110.0770 (14)0.0560 (12)0.0556 (11)0.0002 (10)0.0331 (11)0.0112 (9)
C120.0821 (14)0.0544 (11)0.0527 (10)0.0244 (10)0.0424 (10)0.0081 (9)
C130.0637 (13)0.0668 (13)0.0862 (15)0.0121 (11)0.0517 (12)0.0008 (12)
C140.0514 (11)0.0483 (10)0.0781 (13)0.0017 (8)0.0387 (10)0.0053 (9)
C150.0397 (8)0.0334 (8)0.0445 (8)0.0023 (6)0.0205 (7)0.0035 (7)
C160.0531 (10)0.0452 (10)0.0471 (9)0.0052 (8)0.0254 (8)0.0035 (8)
C170.0584 (11)0.0601 (12)0.0475 (10)0.0022 (9)0.0305 (9)0.0062 (9)
C180.0442 (10)0.0534 (11)0.0576 (11)0.0012 (8)0.0249 (9)0.0186 (9)
C190.0515 (11)0.0435 (10)0.0654 (12)0.0096 (8)0.0243 (9)0.0027 (9)
C200.0534 (10)0.0394 (9)0.0528 (10)0.0025 (8)0.0274 (8)0.0022 (8)
Cl10.0721 (4)0.0962 (5)0.0986 (5)0.0135 (3)0.0519 (3)0.0262 (4)
Cl20.1246 (6)0.1079 (5)0.0667 (4)0.0502 (4)0.0535 (4)0.0061 (3)
N10.0490 (8)0.0274 (6)0.0524 (8)0.0046 (6)0.0302 (7)0.0020 (6)
O10.0613 (8)0.0313 (6)0.0686 (8)0.0042 (5)0.0347 (7)0.0037 (6)
Geometric parameters (Å, º) top
C1—N11.466 (2)C9—C101.382 (3)
C1—C91.511 (2)C9—C141.385 (2)
C1—C21.557 (2)C10—C111.393 (3)
C1—H10.9800C10—H100.9300
C2—C81.505 (2)C11—C121.368 (3)
C2—C31.535 (2)C11—H110.9300
C2—H20.9800C12—C131.363 (3)
C3—C41.524 (3)C12—Cl21.7422 (18)
C3—H3A0.9700C13—C141.383 (3)
C3—H3B0.9700C13—H130.9300
C4—C51.522 (3)C14—H140.9300
C4—H4A0.9700C15—C201.383 (2)
C4—H4B0.9700C15—C161.392 (2)
C5—C61.540 (3)C16—C171.378 (2)
C5—H5A0.9700C16—H160.9300
C5—H5B0.9700C17—C181.371 (3)
C6—C81.499 (2)C17—H170.9300
C6—C71.559 (2)C18—C191.377 (3)
C6—H60.9800C18—Cl11.7433 (17)
C7—N11.462 (2)C19—C201.385 (2)
C7—C151.511 (2)C19—H190.9300
C7—H70.9800C20—H200.9300
C8—O11.2137 (19)N1—H1A0.85 (2)
N1—C1—C9111.16 (13)O1—C8—C6123.91 (15)
N1—C1—C2110.05 (12)O1—C8—C2124.16 (15)
C9—C1—C2112.08 (13)C6—C8—C2111.92 (13)
N1—C1—H1107.8C10—C9—C14118.01 (16)
C9—C1—H1107.8C10—C9—C1123.14 (15)
C2—C1—H1107.8C14—C9—C1118.85 (16)
C8—C2—C3107.89 (13)C9—C10—C11120.76 (18)
C8—C2—C1106.25 (13)C9—C10—H10119.6
C3—C2—C1115.97 (14)C11—C10—H10119.6
C8—C2—H2108.8C12—C11—C10119.42 (19)
C3—C2—H2108.8C12—C11—H11120.3
C1—C2—H2108.8C10—C11—H11120.3
C4—C3—C2114.21 (15)C13—C12—C11121.07 (17)
C4—C3—H3A108.7C13—C12—Cl2118.99 (16)
C2—C3—H3A108.7C11—C12—Cl2119.86 (18)
C4—C3—H3B108.7C12—C13—C14119.24 (19)
C2—C3—H3B108.7C12—C13—H13120.4
H3A—C3—H3B107.6C14—C13—H13120.4
C5—C4—C3112.21 (16)C13—C14—C9121.49 (19)
C5—C4—H4A109.2C13—C14—H14119.3
C3—C4—H4A109.2C9—C14—H14119.3
C5—C4—H4B109.2C20—C15—C16117.94 (15)
C3—C4—H4B109.2C20—C15—C7123.06 (14)
H4A—C4—H4B107.9C16—C15—C7118.96 (14)
C4—C5—C6114.24 (14)C17—C16—C15121.48 (17)
C4—C5—H5A108.7C17—C16—H16119.3
C6—C5—H5A108.7C15—C16—H16119.3
C4—C5—H5B108.7C18—C17—C16119.03 (17)
C6—C5—H5B108.7C18—C17—H17120.5
H5A—C5—H5B107.6C16—C17—H17120.5
C8—C6—C5108.27 (14)C17—C18—C19121.29 (16)
C8—C6—C7107.15 (12)C17—C18—Cl1119.16 (15)
C5—C6—C7114.88 (14)C19—C18—Cl1119.55 (15)
C8—C6—H6108.8C18—C19—C20118.97 (17)
C5—C6—H6108.8C18—C19—H19120.5
C7—C6—H6108.8C20—C19—H19120.5
N1—C7—C15112.03 (12)C15—C20—C19121.25 (17)
N1—C7—C6109.68 (13)C15—C20—H20119.4
C15—C7—C6110.42 (12)C19—C20—H20119.4
N1—C7—H7108.2C7—N1—C1113.48 (12)
C15—C7—H7108.2C7—N1—H1A109.2 (14)
C6—C7—H7108.2C1—N1—H1A110.1 (13)
N1—C1—C2—C857.87 (16)C1—C9—C10—C11178.93 (17)
C9—C1—C2—C8177.89 (13)C9—C10—C11—C120.0 (3)
N1—C1—C2—C361.99 (18)C10—C11—C12—C131.1 (3)
C9—C1—C2—C362.25 (18)C10—C11—C12—Cl2175.72 (16)
C8—C2—C3—C453.9 (2)C11—C12—C13—C141.5 (3)
C1—C2—C3—C465.1 (2)Cl2—C12—C13—C14175.27 (16)
C2—C3—C4—C546.3 (2)C12—C13—C14—C91.0 (3)
C3—C4—C5—C645.7 (2)C10—C9—C14—C130.0 (3)
C4—C5—C6—C853.0 (2)C1—C9—C14—C13179.45 (18)
C4—C5—C6—C766.6 (2)N1—C7—C15—C2014.1 (2)
C8—C6—C7—N157.05 (17)C6—C7—C15—C20108.49 (17)
C5—C6—C7—N163.26 (17)N1—C7—C15—C16168.34 (15)
C8—C6—C7—C15179.02 (13)C6—C7—C15—C1669.09 (19)
C5—C6—C7—C1560.67 (18)C20—C15—C16—C171.5 (3)
C5—C6—C8—O1118.50 (18)C7—C15—C16—C17176.24 (16)
C7—C6—C8—O1117.07 (17)C15—C16—C17—C181.0 (3)
C5—C6—C8—C262.45 (17)C16—C17—C18—C190.8 (3)
C7—C6—C8—C261.98 (17)C16—C17—C18—Cl1179.30 (14)
C3—C2—C8—O1118.08 (18)C17—C18—C19—C202.0 (3)
C1—C2—C8—O1116.94 (17)Cl1—C18—C19—C20178.05 (14)
C3—C2—C8—C662.87 (17)C16—C15—C20—C190.2 (3)
C1—C2—C8—C662.11 (17)C7—C15—C20—C19177.44 (16)
N1—C1—C9—C1035.0 (2)C18—C19—C20—C151.5 (3)
C2—C1—C9—C1088.57 (19)C15—C7—N1—C1179.14 (13)
N1—C1—C9—C14144.36 (16)C6—C7—N1—C157.87 (17)
C2—C1—C9—C1492.02 (19)C9—C1—N1—C7176.47 (13)
C14—C9—C10—C110.5 (3)C2—C1—N1—C758.76 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.85 (2)2.31 (2)3.1202 (18)160.2 (18)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H19Cl2NO
Mr360.26
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)16.2589 (4), 6.8983 (2), 18.1291 (5)
β (°) 116.149 (1)
V3)1825.23 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.42 × 0.38 × 0.25
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.863, 0.915
No. of measured, independent and
observed [I > 2σ(I)] reflections
15050, 4997, 3241
Rint0.021
(sin θ/λ)max1)0.699
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.135, 1.02
No. of reflections4997
No. of parameters221
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.42

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.85 (2)2.31 (2)3.1202 (18)160.2 (18)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

References

First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHardick, D. J., Blagbrough, I. S., Cooper, G., Potter, B. V. L., Critchley, T. & Wonnacott, S. (1996). J. Med. Chem. 39, 4860–4866.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149–174.  CrossRef CAS Web of Science Google Scholar
First citationParthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008a). Acta Cryst. E64, o1586.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008b). Acta Cryst. E64, o2332.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2008c). Acta Cryst. E64, o2385.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Ramkumar, V., Santan, H. D., Kim, J. T. & Jeong, Y. T. (2008d). Acta Cryst. E64, o1710.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Thirumurugan, K., Ramkumar, V., Pazhamalai, S. & Jeong, Y. T. (2008e). Acta Cryst. E64, o1708–o1709.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds