inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages i16-i17

Rietveld refinement of Sr5(AsO4)3Cl from high-resolution synchrotron data

aSynchrotron Radiation Source, STFC Daresbury Laboratory, Daresbury, Warrington, Cheshire WA4 4AD, England, bSchool of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, M13 9PL, England, and cDepartment of Geology and Geological Engineering, Colorado School of Mines, Golden, CO 80401, USA
*Correspondence e-mail: ynotlleb1@mac.com

(Received 6 February 2009; accepted 11 February 2009; online 21 February 2009)

The apatite-type compound, penta­strontium tris­[arsenate(V)] chloride, Sr5(AsO4)3Cl, has been synthesized by ion exchange at high temperature from a synthetic sample of mimetite [Pb5(AsO4)3Cl] with SrCO3 as a by-product. The results of the Rietveld refinement, based on high resolution synchrotron X-ray powder diffraction data, show that the title compound crystallizes in the same structure as other halogenoapatites with general formula A5(YO4)3X (A = divalent cation, Y = penta­valent cation, and X = F, Cl or Br) in the space group P63/m. The structure consists of isolated tetra­hedral AsO43− anions (the As atom and two O atoms have m symmetry), separated by two crystallographically independent Sr2+ cations that are located on mirror planes and threefold rotation axes, respectively. One Sr atom is coordinated by nine O atoms and the other by six. The chloride anions (site symmetry [\overline3]) are at the 2a sites and are located in the channels of the structure.

Related literature

For crystal chemistry of apatites, see: Mercier et al. (2005[Mercier, P. H. J., Le Page, Y., Whitfield, P. S., Mitchell, L. D., Davidson, I. J. & White, T. J. (2005). Acta Cryst. B61, 635-655.]); White & ZhiLi (2003[White, T. J. & ZhiLi, D. (2003). Acta Cryst. B59, 1-16.]); Wu et al. (2003[Wu, P., Zeng, Y. Z. & Wang, C. M. (2003). Biomaterials, 25, 1123-1130.]). For powder diffraction data on Sr As-apatite, see: Kreidler & Hummel (1970[Kreidler, E. R. & Hummel, F. A. (1970). Am. Mineral. 55, 170-184.]). Atomic coordinates as starting parameters for the Rietveld (Rietveld, 1969[Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65-71.]) refinement of the present phases were taken from Bell et al. (2008[Bell, A. M. T., Henderson, C. M. B., Wendlandt, R. F. & Harrison, W. J. (2008). Acta Cryst. E64, i63-i64.]); Dai et al. (1991[Dai, Y.-S., Hughes, J. M. & Moore, P. B. (1991). Can. Mineral. 29, 369-376.]); de Villiers et al. (1971[Villiers, J. P. R. de (1971). Am. Mineral. 56, 758-766.]). For related Sr—Cl-apatites, see: Đordević et al. (2008[Đordević, T., Šutović, S., Stojanović, J. & Karanović, Lj. (2008). Acta Cryst. C64, i82-i86.]); Sudarsanan & Young, (1974[Sudarsanan, K. & Young, R. A. (1974). Acta Cryst. B30, 1381-1386.], 1980[Sudarsanan, K. & Young, R. A. (1980). Acta Cryst. B36, 1525-1530.]); Beck et al. (2006[Beck, H. P., Douiheche, M., Haberkorn, R. & Kohlmann, H. (2006). Solid State Sci. 8, 64-70.]); Noetzold et al. (1995[Noetzold, D., Wulff, H. & Herzog, G. (1995). Phys. Status Solidi Sect. B, 191 21-30.]); Noetzold & Wulff (1996[Noetzold, D. & Wulff, H. (1996). Phys. Status Solidi Sect. A, 158 303-311.], 1997[Noetzold, D. & Wulff, H. (1997). Phys. Status Solidi Sect. A, 160 227-236.], 1998[Noetzold, D. & Wulff, H. (1998). Phys. Status Solidi Sect. B, 207 271-281.]); Swafford & Holt (2002[Swafford, S. H. & Holt, E. M. (2002). Solid State Sci. 4, 807-812.]); Wardojo & Hwu (1996[Wardojo, T. A. & Hwu, S.-J. (1996). Acta Cryst. C52, 2959-2960.]). For synthetic work, see: Baker (1966[Baker, W. E. (1966). Am. Mineral. 51, 1712-1721.]); Essington (1988[Essington, M. E. (1988). Soil Sci. Soc. Am. J. 52, 1566-1570.]); Harrison et al. (2002[Harrison, W. J., Wendlandt, R. F. & Wendlandt, A. E. (2002). International Mineralogical Association 18th General Meeting, Sept 1-6, 2002, Edinburgh, Scotland. Abstract A18-10, meeting program with abstracts, page 185.]).

Experimental

Crystal data
  • Sr5(AsO4)3Cl

  • Mr = 890.31

  • Hexagonal, P 63 /m

  • a = 10.1969 (1) Å

  • c = 7.28108 (9) Å

  • V = 655.63 (2) Å3

  • Z = 2

  • Synchrotron radiation

  • λ = 0.998043 Å

  • T = 298 K

  • Specimen shape: cylinder

  • 40 × 0.7 × 0.7 mm

  • Specimen prepared at 100 kPa

  • Specimen prepared at 1258 K

  • Particle morphology: powder, white

Data collection
  • In-house design diffractometer

  • Specimen mounting: capillary

  • Specimen mounted in transmission mode

  • Scan method: step

  • Absorption correction: fixed at 0

  • 2θmin = 2, 2θmax = 60°

  • Increment in 2θ = 0.01°

Refinement
  • Rp = 0.052

  • Rwp = 0.066

  • Rexp = 0.047

  • RB = 0.090

  • S = 2.00

  • Excluded region(s): 2-6° 2θ

  • Profile function: Pseudo Voigt

  • 225 reflections

  • 16 parameters

  • Preferred orientation correction: none

Table 1
Selected geometric parameters (Å, °)

Sr1—O1 2.49 (2)
Sr1—O2i 2.59 (2)
Sr1—O3i 3.01 (1)
Sr2—O2ii 2.53 (2)
Sr2—O3iii 2.44 (1)
Sr2—O3iv 2.94 (1)
Sr2—O1v 3.02 (2)
Sr2—Cl1iv 3.156 (3)
As1—O3 1.57 (1)
As1—O1 1.72 (2)
As1—O2 1.70 (2)
O3—As1—O3vi 121 (1)
O3—As1—O1 105.8 (7)
O3—As1—O2 106.3 (6)
O1—As1—O2 112 (1)
Symmetry codes: (i) x-y, x, -z; (ii) -y+1, x-y+1, z; (iii) y, -x+y+1, -z; (iv) x, y+1, z; (v) -x+y, -x+1, z; (vi) [x, y, -z+{\script{1\over 2}}].

Data collection: local software; cell refinement: CELREF (Laugier & Bochu, 2003[Laugier, J. & Bochu, B. (2003). CELREF. http://www.CCP14.ac.uk/tutorial/lmgp/CELREF.htm.]) and GSAS (Larson & Von Dreele (2004[Larson, A. C. & Von Dreele, R. B. (2004). General Structure Analysis System (GSAS). Report LAUR 86-748. Los Alamos National Laboratory, New Mexico, USA.]); data reduction: local software; method used to solve structure: coordinates taken from a related compound; program(s) used to refine structure: GSAS and EXPGUI (Toby, 2001[Toby, B. H. (2001). J. Appl. Cryst. 34, 210-213.]); molecular graphics: VESTA (Momma & Izumi, 2008[Momma, K. & Izumi, F. (2008). J. Appl. Cryst. 41, 653-658.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Apatites are minerals and synthetic compounds with general formula A5(YO4)3X, containing tetrahedrally coordinated YO43- anions (Y = pentavalent cation) and a monovalent anion X such as F-, Cl- or OH-. The divalent cations frequently belong to the alkaline earth group, but other cations like Pb2+ are also known. For a review of the structures and crystal-chemistry of these materials, see Mercier et al. (2005), White & ZhiLi (2003) and Wu et al., (2003). Apatites containing arsenic (As-apatites) are of interest as hosts for storage of arsenic removed from contaminated water (Harrison et al., 2002). Powder diffraction data for the Sr containing As-apatite Sr5(AsO4)3Cl (Kreidler & Hummel, 1970) was indexed in space group P63/m. Related crystal structures have also been reported for Ca5(AsO4)3Cl (Wardojo and Hwu, 1996) and for Sr5(AsO4)3F and (Sr1.66Ba0.34)(Ba2.61Sr0.39)(AsO4)3Cl (Đordević et al., 2008). The crystal structure of Sr5(AsO4)3Cl in space group P63/m is reported in the present communication. We recently reported the related crystal structure of Ba5(AsO4)3Cl (Bell et al., 2008).

Table 1 shows refined interatomic distances and angles for the Sr5(AsO4)3Cl structure. The averaged Sr1—O and Sr2—O distances of respectively 2.70 Å and 2.72 Å, compare with Sr1—O and Sr2—O distances in: Sr5(AsO4)3F (Đordević et al. 2008) of 2.71 Å and 2.62 Å; 2.71 Å and 2.63 Å for Sr5(VO4)3Cl (Beck et al., 2006); 2.67 Å and 2.62 Å for Sr5(PO4)3Cl (Sudarsanan and Young, 1974); and 2.67 Å and 2.59 Å for Sr5(PO4)3F (Swafford and Holt, 2002). The As—O distances are characteristic for tetrahedral AsO4 units. The O—As—O angles deviate significantly from the ideal tetrahedral angle of 109.5°, indicating a strong distortion.

The refined lattice parameters for Sr5(AsO4)3Cl are similar to the previously published parameters of a = 10.18 Å, c = 7.28 Å given by Kreidler & Hummel (1970). Fig. 1 shows the Rietveld difference plot for the present refinement. The crystal structure of Sr5(AsO4)3Cl, showing the isolated tetrahedral AsO43- anions separated by Sr2+ cations and Cl- anions, is displayed in Fig. 2.

Related literature top

For crystal chemistry of apatites, see: Mercier et al. (2005); White & ZhiLi (2003); Wu et al. (2003). For powder diffraction data on Sr As-apatite, see: Kreidler & Hummel (1970). Atomic coordinates as starting parameters for the Rietveld (Rietveld, 1969) refinement of the present phases were taken from Bell et al. (2008); Dai et al. (1991); de Villiers et al. (1971). For related Sr—Cl-apatites, see: Đordević et al. (2008); Sudarsanan & Young, (1974, 1980); Beck et al. (2006); Noetzold et al. (1995); Noetzold & Wulff (1996, 1997, 1998); Swafford & Holt (2002); Wardojo & Hwu (1996). For synthetic work, see: Baker (1966); Essington (1988); Harrison et al. (2002).

Experimental top

This work was part of an attempt to synthesize analogues of Pb5(AsO4)3Cl (mimetite) with Pb2+ substituted by alkaline earth cations. All starting materials were well crystallized solids. Pb5(AsO4)3Cl was precipitated by titration of 0.1M Na2HAsO4 into a well stirred, saturated PbCl2 solution at room temperature (procedure modified from methods of Baker (1966) and Essington (1988)). The molar ratio of Pb:As was slightly greater than 5:3, allowing for excess PbCl2 during the precipitation. A very fine-grained pure solid formed immediately, which was then separated, washed, and dried. Typically, five de-ionized water washes were needed to reduce the conductivity of the wash water to < 50 µS.cm-1. Sr5(AsO4)3Cl was successfully synthesized by ion exchange of Pb5(AsO4)3Cl with molten SrCl2 at 1258 K (modified from the method given by Kreidler & Hummel (1970)). Two fusions were required to completely eliminate formation of Pb containing solid solutions and to yield the Pb free title compound. Excess metal in the form of SrCl2 was removed from the solids by repeated washing with de-ionized water followed by centrifugation and filtration to separate the solid from the solution.

Refinement top

The main Bragg reflections of the high resolution synchrotron X-ray powder diffraction pattern could be indexed in space group P63/m with similar lattice parameters to those of the published powder diffraction data (Kreidler & Hummel, 1970). Some broad and weak Bragg reflections were matched by the pattern of SrCO3 in space group Pmcn.

Initial lattice parameters for the two phases were refined using CELREF (Laugier & Bochu, 2003). The P63/m crystal structure of Ba5(AsO4)3Cl (Bell et al., 2008) was used as a starting model for the Rietveld (Rietveld, 1969) refinement of the structure of Sr5(AsO4)3Cl. The crystal structure of strontianite (de Villiers et al., 1971) was used as a starting model for refinement of the structure of SrCO3. Isotropic atomic displacement parameters were used for both phases. For the Sr5(AsO4)3Cl phase soft constraints were used for the As—O distances in the AsO4 tetrahedral units. These distances were restrained to those for mimetite (Dai et al., 1991). For the SrCO3 phase only the coordinates and the atomic displacement parameters for Sr were refined, the C and O coordinates were fixed to those in the starting model and the C and O atomic displacement parameters were fixed at zero. Proportions of the two phases were refined as 76.6 (1) wt.% Sr5(AsO4)3Cl and 23.4 (1) wt.% SrCO3.

Computing details top

Data collection: local software; cell refinement: CELREF (Laugier & Bochu, 2003); data reduction: local software; program(s) used to solve structure: coordinates taken from a related compound; program(s) used to refine structure: GSAS (Larson & Von Dreele (2004) and EXPGUI (Toby, 2001); molecular graphics: VESTA (Momma & Izumi, 2008); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Rietveld difference plot for the multi-phase refinement of Sr5(AsO4)3Cl and SrCO3. The red crosses, and green and pink lines show respectively the observed, calculated and difference plots. Calculated Bragg reflection positions are indicated by black lines for the Sr5(AsO4)3Cl phase and by red lines for the SrCO3 phase.
[Figure 2] Fig. 2. The crystal structure of Sr5(AsO4)3Cl. Pink tetrahedra show AsO4 units with As5+ cations as orange spheres and O2- anions as red spheres. Large blue spheres represent Sr2+ cations and small green spheres Cl- anions.
pentastrontium tris[arsenate(V)] chloride top
Crystal data top
Sr5(AsO4)3ClDx = 4.510 (1) Mg m3
Mr = 890.31Synchrotron radiation, λ = 0.998043 Å
Hexagonal, P63/mT = 298 K
a = 10.1969 (1) ÅParticle morphology: powder
c = 7.28108 (9) Åwhite
V = 655.63 (2) Å3cylinder, 40 × 0.7 mm
Z = 2Specimen preparation: Prepared at 1258 K and 100 kPa
Data collection top
In-house design
diffractometer
Data collection mode: transmission
Radiation source: SynchrotronScan method: step
Si(111) channel-cut crystal monochromator2θmin = 6°, 2θmax = 60°, 2θstep = 0.01°
Specimen mounting: capillary
Refinement top
Rp = 0.052Profile function: Pseudo Voigt
Rwp = 0.06616 parameters
Rexp = 0.0470 restraints
RBragg = 0.0904 constraints
R(F2) = 0.33148(Δ/σ)max = 0.001
χ2 = 3.992Background function: Cosine Fourier Series
5801 data pointsPreferred orientation correction: None
Excluded region(s): 2-6° 2θ
Crystal data top
Sr5(AsO4)3ClV = 655.63 (2) Å3
Mr = 890.31Z = 2
Hexagonal, P63/mSynchrotron radiation, λ = 0.998043 Å
a = 10.1969 (1) ÅT = 298 K
c = 7.28108 (9) Åcylinder, 40 × 0.7 mm
Data collection top
In-house design
diffractometer
Scan method: step
Specimen mounting: capillary2θmin = 6°, 2θmax = 60°, 2θstep = 0.01°
Data collection mode: transmission
Refinement top
Rp = 0.052χ2 = 3.992
Rwp = 0.0665801 data points
Rexp = 0.04716 parameters
RBragg = 0.0900 restraints
R(F2) = 0.33148
Special details top

Experimental. Absorption correction fixed at zero, all attempts to refine this term in GSAS were unsuccessful so this term was fixed at zero. CELREF was used for initial lattice parameter determinations before Rietveld refinement. Lattice parameters from GSAS refinement are quoted in the paper.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.333330.666670.008 (1)0.0246 (9)
Sr20.2496 (5)0.9936 (6)0.250.0246 (9)
As10.4057 (5)0.3718 (5)0.250.029 (2)
O10.337 (3)0.496 (2)0.250.015 (4)
O20.598 (2)0.464 (2)0.250.015 (4)
O30.354 (2)0.284 (2)0.063 (2)0.015 (4)
Cl10.00000.00000.00000.031 (5)
Geometric parameters (Å, º) top
Sr1—O1i2.49 (2)Sr2—O3vi2.44 (1)
Sr1—O1ii2.49 (2)Sr2—O3vii2.94 (1)
Sr1—O12.49 (2)Sr2—O3viii2.94 (1)
Sr1—O2iii2.59 (2)Sr2—O1ii3.02 (2)
Sr1—O2iv2.59 (2)Sr2—Cl1viii3.156 (3)
Sr1—O2v2.59 (2)Sr2—Cl1ix3.156 (3)
Sr1—O3iv3.01 (1)As1—O31.57 (1)
Sr1—O3iii3.01 (1)As1—O3x1.57 (1)
Sr1—O3v3.01 (1)As1—O11.72 (2)
Sr2—O2i2.53 (2)As1—O21.70 (2)
Sr2—O3iv2.44 (1)
O3—As1—O3x121 (1)O3—As1—O2106.3 (6)
O3—As1—O1105.8 (7)O3x—As1—O2106.3 (6)
O3x—As1—O1105.8 (7)O1—As1—O2112 (1)
Symmetry codes: (i) y+1, xy+1, z; (ii) x+y, x+1, z; (iii) xy, x, z; (iv) y, x+y+1, z; (v) x+1, y+1, z; (vi) y, x+y+1, z+1/2; (vii) x, y+1, z+1/2; (viii) x, y+1, z; (ix) x, y+1, z+1/2; (x) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaSr5(AsO4)3Cl
Mr890.31
Crystal system, space groupHexagonal, P63/m
Temperature (K)298
a, c (Å)10.1969 (1), 7.28108 (9)
V3)655.63 (2)
Z2
Radiation typeSynchrotron, λ = 0.998043 Å
µ (mm1)?
Specimen shape, size (mm)Cylinder, 40 × 0.7
Data collection
DiffractometerIn-house design
diffractometer
Specimen mountingCapillary
Data collection modeTransmission
Scan methodStep
2θ values (°)2θmin = 6 2θmax = 60 2θstep = 0.01
Refinement
R factors and goodness of fitRp = 0.052, Rwp = 0.066, Rexp = 0.047, RBragg = 0.090, R(F2) = 0.33148, χ2 = 3.992
No. of data points5801
No. of parameters16

Computer programs: local software, CELREF (Laugier & Bochu, 2003), coordinates taken from a related compound, GSAS (Larson & Von Dreele (2004) and EXPGUI (Toby, 2001), VESTA (Momma & Izumi, 2008), publCIF (Westrip, 2009).

Selected geometric parameters (Å, º) top
Sr1—O12.49 (2)Sr2—O1v3.02 (2)
Sr1—O2i2.59 (2)Sr2—Cl1iv3.156 (3)
Sr1—O3i3.01 (1)As1—O31.57 (1)
Sr2—O2ii2.53 (2)As1—O11.72 (2)
Sr2—O3iii2.44 (1)As1—O21.70 (2)
Sr2—O3iv2.94 (1)
O3—As1—O3vi121 (1)O3—As1—O2106.3 (6)
O3—As1—O1105.8 (7)O1—As1—O2112 (1)
Symmetry codes: (i) xy, x, z; (ii) y+1, xy+1, z; (iii) y, x+y+1, z; (iv) x, y+1, z; (v) x+y, x+1, z; (vi) x, y, z+1/2.
 

Acknowledgements

AMTB acknowledges the use of the EPSRC's Chemical Database Service at Daresbury (Fletcher et al., 1996[Fletcher, D. A., McMeeking, R. F. & Parkin, D. J. (1996). Chem. Inf. Comput. Sci. 36, 746-749.]).

References

First citationBaker, W. E. (1966). Am. Mineral. 51, 1712–1721.  CAS Google Scholar
First citationBeck, H. P., Douiheche, M., Haberkorn, R. & Kohlmann, H. (2006). Solid State Sci. 8, 64–70.  Web of Science CrossRef CAS Google Scholar
First citationBell, A. M. T., Henderson, C. M. B., Wendlandt, R. F. & Harrison, W. J. (2008). Acta Cryst. E64, i63–i64.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDai, Y.-S., Hughes, J. M. & Moore, P. B. (1991). Can. Mineral. 29, 369–376.  CAS Google Scholar
First citationĐordević, T., Šutović, S., Stojanović, J. & Karanović, Lj. (2008). Acta Cryst. C64, i82–i86.  Web of Science CrossRef IUCr Journals Google Scholar
First citationEssington, M. E. (1988). Soil Sci. Soc. Am. J. 52, 1566–1570.  CrossRef CAS Google Scholar
First citationFletcher, D. A., McMeeking, R. F. & Parkin, D. J. (1996). Chem. Inf. Comput. Sci. 36, 746–749.  CrossRef CAS Web of Science Google Scholar
First citationHarrison, W. J., Wendlandt, R. F. & Wendlandt, A. E. (2002). International Mineralogical Association 18th General Meeting, Sept 1–6, 2002, Edinburgh, Scotland. Abstract A18–10, meeting program with abstracts, page 185.  Google Scholar
First citationKreidler, E. R. & Hummel, F. A. (1970). Am. Mineral. 55, 170–184.  CAS Google Scholar
First citationLarson, A. C. & Von Dreele, R. B. (2004). General Structure Analysis System (GSAS). Report LAUR 86-748. Los Alamos National Laboratory, New Mexico, USA.  Google Scholar
First citationLaugier, J. & Bochu, B. (2003). CELREF. http://www.CCP14.ac.uk/tutorial/lmgp/CELREF.htm.  Google Scholar
First citationMercier, P. H. J., Le Page, Y., Whitfield, P. S., Mitchell, L. D., Davidson, I. J. & White, T. J. (2005). Acta Cryst. B61, 635–655.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMomma, K. & Izumi, F. (2008). J. Appl. Cryst. 41, 653–658.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNoetzold, D. & Wulff, H. (1996). Phys. Status Solidi Sect. A, 158 303–311.  CAS Google Scholar
First citationNoetzold, D. & Wulff, H. (1997). Phys. Status Solidi Sect. A, 160 227–236.  Google Scholar
First citationNoetzold, D. & Wulff, H. (1998). Phys. Status Solidi Sect. B, 207 271–281.  CAS Google Scholar
First citationNoetzold, D., Wulff, H. & Herzog, G. (1995). Phys. Status Solidi Sect. B, 191 21–30.  CAS Google Scholar
First citationRietveld, H. M. (1969). J. Appl. Cryst. 2, 65–71.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSudarsanan, K. & Young, R. A. (1974). Acta Cryst. B30, 1381–1386.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSudarsanan, K. & Young, R. A. (1980). Acta Cryst. B36, 1525–1530.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSwafford, S. H. & Holt, E. M. (2002). Solid State Sci. 4, 807–812.  Web of Science CrossRef CAS Google Scholar
First citationToby, B. H. (2001). J. Appl. Cryst. 34, 210–213.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVilliers, J. P. R. de (1971). Am. Mineral. 56, 758–766.  Google Scholar
First citationWardojo, T. A. & Hwu, S.-J. (1996). Acta Cryst. C52, 2959–2960.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationWhite, T. J. & ZhiLi, D. (2003). Acta Cryst. B59, 1–16.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, P., Zeng, Y. Z. & Wang, C. M. (2003). Biomaterials, 25, 1123–1130.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages i16-i17
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds