organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1H-indol-3-ylcarbon­yl)aceto­nitrile

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, bOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, India, and cCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 17 December 2008; accepted 12 January 2009; online 4 February 2009)

The title compound, C11H8N2O, crystallizes with two crystallographically independent mol­ecules in the asymmetric unit which are approximately perpendicular to each other [79.97 (6)°]. The indole ring system is planar [r.m.s. deviation = 0.010 (1) Å]. The crystal structure is stabilized by inter­molecular C—H⋯N and N—H⋯O inter­actions.

Related literature

For the use of indole derivatives as bioactive drugs, see: Stevenson et al. (2000[Stevenson, G. I., Smith, A. L., Lewis, S. G., Neduvelil, J. G., Patel, S., Marwood, R. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697-2704.]). For their biological properties, see: Harris & Uhle (1960[Harris, L. S. & Uhle, F. C. (1960). J. Pharmacol. Exp. Ther. 128, 353-363.]); Ho et al. (1986[Ho, C. Y., Haegman, W. E. & Perisco, F. (1986). J. Med. Chem. 29, 118-121.]). For their high aldose reductase inhibitory activity, see: Rajeswaran et al. (1999[Rajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369-1371.]). For a related structure, see: Ramesh et al. (2008[Ramesh, P., Subbiahpandi, A., Thirumurugan, P., Perumal, P. T. & Ponnuswamy, M. N. (2008). Acta Cryst. E64, o1892.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C11H8N2O

  • Mr = 184.19

  • Triclinic, [P \overline 1]

  • a = 7.3439 (2) Å

  • b = 7.3534 (2) Å

  • c = 18.2475 (5) Å

  • α = 83.402 (2)°

  • β = 78.890 (2)°

  • γ = 73.501 (1)°

  • V = 925.23 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.30 × 0.30 × 0.20 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.974, Tmax = 0.983

  • 18838 measured reflections

  • 3253 independent reflections

  • 2717 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.100

  • S = 1.06

  • 3253 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 1.98 2.8146 (18) 163
C2—H2⋯N13i 0.93 2.59 3.236 (2) 127
N1′—H1′⋯O1′ii 0.86 2.00 2.8166 (15) 158
Symmetry codes: (i) x+1, y, z; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Indole derivatives are used as bioactive drugs (Stevenson et al., 2000) and they exibit anti-allergic, central nervous system depressant and muscle relaxant properties (Harris & Uhle 1960; Ho et al., 1986). Indoles have been proved to display high aldose reductase inhibitory activity (Rajeswaran et al., 1999). Against this background and to ascertain the molecular conformation, the structure determination of the title compound has been carried out.

There are two crystallographically independent molecules in the asymmetric unit and they are approximately perpendicular to each other [79.97 (6)°]. In both molecules the indole ring systems are planar and the sum of the angles at N1 (359.95°) and N1' (359.94°) are in accordance with sp2 hybridization. The bond angles of the cyano group [179.8 (2) and 179.6 (2)°] in both molecules show their linear character. The CN bond distances [1.133 (2) and 1.131 (2) Å] are comparable with the literature values (Ramesh et al., 2008).

The crystal packing is covered by C—H···N, C—H···O and C—H···π types intermolecular interactions in addition to van der Waals forces. N1 atom in one of the molecules donates one proton to O1 (-1 + x, y, z) which connects the molecules into a one dimensional C6 chain (Bernstein et al., 1995) running along the a axis, whereas in the other molecule at N1' forms similar network with O1' (x, 1 + y, z) along the b axis. The combination of N1—H1···O1 and C2—H2···N13 hydrogen bonds form a R22 (9) dimer chain running along the a axis.

Related literature top

For the use of indole derivatives as bioactive drugs, see: Stevenson et al. (2000). For the biological properties, see: Harris & Uhle (1960); Ho et al. (1986). For their high aldose reductase inhibitory activity, see: Rajeswaran et al. (1999). For a related structure, see: Ramesh et al. (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

Indole (5.85 g, 50 mmol) was added to a solution prepared by dissolution of cyanoacetic acid (5.0 g, 50 mmol) in Ac2O (50 ml) at 50 °C. The solution was heated at 85 °C for 5 min. During that period 3-cyanoacetylindole started to crystallize. After 5 more min, the mixture was allowed to cool and the solid was collected, washed with MeOH, and dried.

Refinement top

H atoms were positioned geometrically (N—H = 0.86 Å, and C—H = 0.93–0.97 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H, 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecule showing the thermal ellipsoids are drawn at 50% probability level. The H atoms are shown as small circles of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing of the molecules viewed down c axis. H atoms not involved in hydrogen bonding have been omitted for clarity.
2-(1H-indol-3-ylcarbonyl)acetonitrile top
Crystal data top
C11H8N2OZ = 4
Mr = 184.19F(000) = 384
Triclinic, P1Dx = 1.322 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3439 (2) ÅCell parameters from 3554 reflections
b = 7.3534 (2) Åθ = 1.1–25.0°
c = 18.2475 (5) ŵ = 0.09 mm1
α = 83.402 (2)°T = 293 K
β = 78.890 (2)°Block, colourless
γ = 73.501 (1)°0.30 × 0.30 × 0.20 mm
V = 925.23 (4) Å3
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
3253 independent reflections
Radiation source: fine-focus sealed tube2717 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and ϕ scansθmax = 25.0°, θmin = 1.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 78
Tmin = 0.974, Tmax = 0.983k = 88
18838 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0404P)2 + 0.2437P]
where P = (Fo2 + 2Fc2)/3
3253 reflections(Δ/σ)max = 0.008
253 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C11H8N2Oγ = 73.501 (1)°
Mr = 184.19V = 925.23 (4) Å3
Triclinic, P1Z = 4
a = 7.3439 (2) ÅMo Kα radiation
b = 7.3534 (2) ŵ = 0.09 mm1
c = 18.2475 (5) ÅT = 293 K
α = 83.402 (2)°0.30 × 0.30 × 0.20 mm
β = 78.890 (2)°
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
3253 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
2717 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.983Rint = 0.025
18838 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.06Δρmax = 0.12 e Å3
3253 reflectionsΔρmin = 0.16 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13478 (16)0.2464 (2)1.01403 (7)0.0659 (4)
O1'0.76317 (17)0.33368 (14)0.47980 (6)0.0543 (3)
N10.7573 (2)0.2397 (2)1.00692 (9)0.0619 (4)
H10.86780.23141.01830.074*
N1'0.77718 (19)0.28849 (17)0.48288 (7)0.0479 (3)
H1'0.79320.40240.47090.057*
C20.6023 (2)0.2202 (2)1.05570 (11)0.0567 (4)
H20.59770.19561.10710.068*
C2'0.8188 (2)0.1468 (2)0.43593 (9)0.0441 (4)
H2'0.86890.15670.38530.053*
C30.4501 (2)0.2418 (2)1.01850 (9)0.0475 (4)
C3'0.7768 (2)0.01550 (19)0.47349 (8)0.0385 (3)
C40.5195 (2)0.2786 (2)0.94094 (9)0.0478 (4)
C4'0.7012 (2)0.03211 (19)0.54959 (8)0.0389 (3)
C5'0.6267 (2)0.0675 (2)0.61400 (9)0.0479 (4)
H5'0.62140.19560.61330.058*
C50.4391 (2)0.3141 (2)0.87583 (10)0.0565 (4)
H50.31070.31750.87770.068*
C6'0.5613 (3)0.0269 (2)0.67853 (9)0.0569 (4)
H6'0.50980.03890.72160.068*
C60.5521 (3)0.3437 (3)0.80899 (11)0.0678 (5)
H60.49910.36870.76530.081*
C7'0.5702 (3)0.2187 (2)0.68090 (10)0.0583 (4)
H7'0.52690.27920.72570.070*
C70.7456 (3)0.3370 (3)0.80531 (13)0.0742 (6)
H70.81950.35590.75910.089*
C8'0.6417 (2)0.3200 (2)0.61849 (10)0.0527 (4)
H8'0.64750.44830.61990.063*
C80.8287 (3)0.3032 (3)0.86844 (13)0.0684 (5)
H80.95740.29930.86600.082*
C90.7140 (2)0.2751 (2)0.93550 (11)0.0540 (4)
C9'0.7049 (2)0.2241 (2)0.55332 (8)0.0419 (3)
C100.2612 (2)0.2273 (2)1.05110 (9)0.0482 (4)
C10'0.8024 (2)0.19645 (19)0.44251 (8)0.0396 (3)
C11'0.8851 (2)0.2118 (2)0.35992 (8)0.0455 (4)
H11A1.02100.14510.35240.055*
H11B0.82140.15050.33220.055*
C110.2210 (2)0.1842 (3)1.13506 (9)0.0562 (4)
H11C0.30720.06281.14800.067*
H11D0.24740.28091.16020.067*
C120.0245 (3)0.1779 (3)1.16141 (9)0.0605 (5)
C12'0.8620 (2)0.4067 (2)0.33086 (9)0.0513 (4)
N130.1297 (3)0.1725 (3)1.18193 (9)0.0878 (6)
N13'0.8429 (3)0.5597 (2)0.30820 (9)0.0806 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0436 (6)0.1027 (10)0.0585 (7)0.0291 (6)0.0166 (6)0.0039 (7)
O1'0.0829 (8)0.0340 (6)0.0491 (6)0.0248 (5)0.0035 (6)0.0054 (5)
N10.0409 (8)0.0647 (9)0.0868 (11)0.0155 (7)0.0217 (8)0.0100 (8)
N1'0.0611 (8)0.0298 (6)0.0566 (8)0.0163 (6)0.0112 (6)0.0059 (6)
C20.0469 (9)0.0597 (10)0.0689 (11)0.0150 (8)0.0187 (8)0.0087 (8)
C2'0.0521 (9)0.0379 (8)0.0453 (8)0.0158 (6)0.0082 (7)0.0056 (6)
C30.0412 (8)0.0451 (9)0.0602 (10)0.0126 (7)0.0144 (7)0.0072 (7)
C3'0.0432 (8)0.0323 (7)0.0435 (8)0.0136 (6)0.0109 (6)0.0027 (6)
C40.0420 (8)0.0367 (8)0.0674 (11)0.0124 (6)0.0128 (7)0.0038 (7)
C4'0.0409 (8)0.0333 (7)0.0461 (8)0.0130 (6)0.0123 (6)0.0011 (6)
C5'0.0566 (9)0.0388 (8)0.0501 (9)0.0144 (7)0.0095 (7)0.0043 (7)
C50.0509 (9)0.0527 (10)0.0689 (11)0.0184 (8)0.0160 (8)0.0048 (8)
C6'0.0671 (11)0.0573 (10)0.0458 (9)0.0172 (8)0.0067 (8)0.0043 (8)
C60.0761 (13)0.0590 (11)0.0706 (13)0.0260 (9)0.0147 (10)0.0103 (9)
C7'0.0656 (11)0.0587 (11)0.0514 (10)0.0237 (8)0.0092 (8)0.0103 (8)
C70.0741 (13)0.0641 (12)0.0810 (14)0.0287 (10)0.0052 (11)0.0041 (10)
C8'0.0611 (10)0.0385 (8)0.0623 (11)0.0213 (7)0.0151 (8)0.0093 (7)
C80.0486 (10)0.0584 (11)0.0983 (16)0.0215 (8)0.0032 (10)0.0021 (10)
C90.0424 (9)0.0429 (9)0.0794 (12)0.0144 (7)0.0114 (8)0.0055 (8)
C9'0.0443 (8)0.0348 (7)0.0498 (9)0.0136 (6)0.0119 (7)0.0016 (6)
C100.0438 (8)0.0472 (9)0.0576 (10)0.0131 (7)0.0148 (7)0.0065 (7)
C10'0.0432 (8)0.0347 (7)0.0446 (8)0.0140 (6)0.0106 (6)0.0026 (6)
C11'0.0512 (9)0.0421 (8)0.0451 (9)0.0155 (7)0.0081 (7)0.0026 (7)
C110.0554 (10)0.0621 (10)0.0551 (10)0.0163 (8)0.0154 (8)0.0085 (8)
C120.0591 (12)0.0765 (12)0.0430 (9)0.0117 (9)0.0078 (8)0.0100 (8)
C12'0.0641 (10)0.0487 (10)0.0432 (9)0.0227 (8)0.0044 (8)0.0001 (7)
N130.0640 (11)0.1429 (18)0.0513 (10)0.0231 (11)0.0009 (8)0.0111 (10)
N13'0.1215 (15)0.0564 (10)0.0620 (10)0.0331 (10)0.0029 (10)0.0065 (8)
Geometric parameters (Å, º) top
O1—C101.2190 (18)C5—H50.9300
O1'—C10'1.2173 (17)C6'—C7'1.389 (2)
N1—C21.335 (2)C6'—H6'0.9300
N1—C91.379 (2)C6—C71.396 (3)
N1—H10.8600C6—H60.9300
N1'—C2'1.3372 (19)C7'—C8'1.367 (2)
N1'—C9'1.3755 (19)C7'—H7'0.9300
N1'—H1'0.8600C7—C81.371 (3)
C2—C31.379 (2)C7—H70.9300
C2—H20.9300C8'—C9'1.381 (2)
C2'—C3'1.373 (2)C8'—H8'0.9300
C2'—H2'0.9300C8—C91.376 (3)
C3—C101.429 (2)C8—H80.9300
C3—C41.431 (2)C10—C111.517 (2)
C3'—C10'1.4331 (19)C10'—C11'1.516 (2)
C3'—C4'1.436 (2)C11'—C12'1.445 (2)
C4—C51.393 (2)C11'—H11A0.9700
C4—C91.406 (2)C11'—H11B0.9700
C4'—C5'1.393 (2)C11—C121.443 (3)
C4'—C9'1.3987 (19)C11—H11C0.9700
C5'—C6'1.372 (2)C11—H11D0.9700
C5'—H5'0.9300C12—N131.133 (2)
C5—C61.369 (3)C12'—N13'1.132 (2)
C2—N1—C9109.94 (14)C8'—C7'—H7'119.4
C2—N1—H1125.0C6'—C7'—H7'119.4
C9—N1—H1125.0C8—C7—C6121.35 (19)
C2'—N1'—C9'109.56 (12)C8—C7—H7119.3
C2'—N1'—H1'125.2C6—C7—H7119.3
C9'—N1'—H1'125.2C7'—C8'—C9'117.34 (15)
N1—C2—C3109.81 (16)C7'—C8'—H8'121.3
N1—C2—H2125.1C9'—C8'—H8'121.3
C3—C2—H2125.1C7—C8—C9117.29 (18)
N1'—C2'—C3'110.07 (14)C7—C8—H8121.4
N1'—C2'—H2'125.0C9—C8—H8121.4
C3'—C2'—H2'125.0C8—C9—N1130.03 (16)
C2—C3—C10126.55 (16)C8—C9—C4122.72 (17)
C2—C3—C4106.56 (14)N1—C9—C4107.25 (15)
C10—C3—C4126.89 (14)N1'—C9'—C8'129.55 (14)
C2'—C3'—C10'126.66 (14)N1'—C9'—C4'107.66 (13)
C2'—C3'—C4'106.34 (12)C8'—C9'—C4'122.78 (14)
C10'—C3'—C4'126.99 (13)O1—C10—C3122.51 (15)
C5—C4—C9118.60 (16)O1—C10—C11119.87 (15)
C5—C4—C3134.95 (15)C3—C10—C11117.61 (13)
C9—C4—C3106.45 (14)O1'—C10'—C3'122.74 (13)
C5'—C4'—C9'118.54 (13)O1'—C10'—C11'120.06 (13)
C5'—C4'—C3'135.07 (13)C3'—C10'—C11'117.20 (12)
C9'—C4'—C3'106.36 (12)C12'—C11'—C10'112.33 (13)
C6'—C5'—C4'118.70 (14)C12'—C11'—H11A109.1
C6'—C5'—H5'120.6C10'—C11'—H11A109.1
C4'—C5'—H5'120.6C12'—C11'—H11B109.1
C6—C5—C4118.94 (17)C10'—C11'—H11B109.1
C6—C5—H5120.5H11A—C11'—H11B107.9
C4—C5—H5120.5C12—C11—C10112.34 (14)
C5'—C6'—C7'121.46 (16)C12—C11—H11C109.1
C5'—C6'—H6'119.3C10—C11—H11C109.1
C7'—C6'—H6'119.3C12—C11—H11D109.1
C5—C6—C7121.09 (19)C10—C11—H11D109.1
C5—C6—H6119.5H11C—C11—H11D107.9
C7—C6—H6119.5N13—C12—C11179.8 (2)
C8'—C7'—C6'121.15 (16)N13'—C12'—C11'179.6 (2)
C9—N1—C2—C30.0 (2)C2—N1—C9—C40.35 (18)
C9'—N1'—C2'—C3'0.34 (17)C5—C4—C9—C80.7 (2)
N1—C2—C3—C10178.76 (15)C3—C4—C9—C8179.28 (15)
N1—C2—C3—C40.41 (19)C5—C4—C9—N1179.39 (14)
N1'—C2'—C3'—C10'179.69 (14)C3—C4—C9—N10.59 (17)
N1'—C2'—C3'—C4'0.69 (17)C2'—N1'—C9'—C8'179.31 (16)
C2—C3—C4—C5179.36 (17)C2'—N1'—C9'—C4'0.18 (17)
C10—C3—C4—C51.5 (3)C7'—C8'—C9'—N1'177.93 (15)
C2—C3—C4—C90.61 (17)C7'—C8'—C9'—C4'1.1 (2)
C10—C3—C4—C9178.56 (15)C5'—C4'—C9'—N1'177.78 (13)
C2'—C3'—C4'—C5'177.20 (16)C3'—C4'—C9'—N1'0.59 (16)
C10'—C3'—C4'—C5'2.4 (3)C5'—C4'—C9'—C8'1.4 (2)
C2'—C3'—C4'—C9'0.78 (16)C3'—C4'—C9'—C8'179.80 (14)
C10'—C3'—C4'—C9'179.60 (14)C2—C3—C10—O1179.17 (16)
C9'—C4'—C5'—C6'0.4 (2)C4—C3—C10—O10.2 (3)
C3'—C4'—C5'—C6'178.23 (16)C2—C3—C10—C110.1 (2)
C9—C4—C5—C60.2 (2)C4—C3—C10—C11179.09 (15)
C3—C4—C5—C6179.88 (17)C2'—C3'—C10'—O1'179.31 (15)
C4'—C5'—C6'—C7'0.8 (3)C4'—C3'—C10'—O1'1.1 (2)
C4—C5—C6—C70.6 (3)C2'—C3'—C10'—C11'0.3 (2)
C5'—C6'—C7'—C8'1.2 (3)C4'—C3'—C10'—C11'179.83 (13)
C5—C6—C7—C80.9 (3)O1'—C10'—C11'—C12'14.8 (2)
C6'—C7'—C8'—C9'0.2 (3)C3'—C10'—C11'—C12'166.12 (13)
C6—C7—C8—C90.3 (3)O1—C10—C11—C122.2 (2)
C7—C8—C9—N1179.67 (17)C3—C10—C11—C12178.56 (15)
C7—C8—C9—C40.5 (3)C10—C11—C12—N1351 (88)
C2—N1—C9—C8179.50 (18)C10'—C11'—C12'—N13'58 (25)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.982.8146 (18)163
C2—H2···N13i0.932.593.236 (2)127
N1—H1···O1ii0.862.002.8166 (15)158
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC11H8N2O
Mr184.19
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.3439 (2), 7.3534 (2), 18.2475 (5)
α, β, γ (°)83.402 (2), 78.890 (2), 73.501 (1)
V3)925.23 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerBruker Kappa APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.974, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
18838, 3253, 2717
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.100, 1.06
No. of reflections3253
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.16

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.982.8146 (18)163.0
C2—H2···N13i0.932.593.236 (2)126.9
N1'—H1'···O1'ii0.862.002.8166 (15)158.3
Symmetry codes: (i) x+1, y, z; (ii) x, y1, z.
 

Acknowledgements

PR thanks Dr Babu Varghese, SAIF, IIT-Madras, India, for his help with the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarris, L. S. & Uhle, F. C. (1960). J. Pharmacol. Exp. Ther. 128, 353–363.  Google Scholar
First citationHo, C. Y., Haegman, W. E. & Perisco, F. (1986). J. Med. Chem. 29, 118–121.  Google Scholar
First citationRajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369–1371.  Web of Science CrossRef CAS Google Scholar
First citationRamesh, P., Subbiahpandi, A., Thirumurugan, P., Perumal, P. T. & Ponnuswamy, M. N. (2008). Acta Cryst. E64, o1892.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStevenson, G. I., Smith, A. L., Lewis, S. G., Neduvelil, J. G., Patel, S., Marwood, R. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697–2704.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds