organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Bromo­phen­yl)-6-(1H-indol-3-yl)-2,2′-bi­pyridine-5-carbo­nitrile

aDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, bOrganic Chemistry Division, Central Leather Research Institute, Adyar, Chennai 600 020, India, and cCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 20 December 2008; accepted 12 January 2009; online 4 February 2009)

In the title compound, C25H15BrN4, the two pyridine rings lie in a common plane [r.m.s. deviation = 0.023 (2) Å], whereas the bromo­phenyl and indole rings are twisted away from this plane by 52.82 (12) and 28.02 (10)°, respectively. The crystal structure is stabilized by inter­molecular N—H⋯N inter­actions.

Related literature

Compounds having an indole ring system have been shown to display high aldose reductase inhibitory activity (Rajeswaran et al., 1999[Rajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369-1371.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]);

[Scheme 1]

Experimental

Crystal data
  • C25H15BrN4

  • Mr = 451.32

  • Orthorhombic, P b c a

  • a = 14.7393 (4) Å

  • b = 10.7465 (3) Å

  • c = 25.4251 (7) Å

  • V = 4027.23 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.06 mm−1

  • T = 293 (2) K

  • 0.29 × 0.26 × 0.22 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.556, Tmax = 0.635

  • 47903 measured reflections

  • 5545 independent reflections

  • 3138 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.120

  • S = 0.99

  • 5545 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N14—H14⋯N17i 0.86 2.22 2.980 (3) 147
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Compounds having indole ring system are proved to display high aldose reductase inhibitory activity (Rajeswaran et al., 1999). Against this background and to ascertain the detailed conformation, the crystal structure determination of the title compound has been carried out.

The ORTEP diagram of the title compound is shown in Fig. 1. The two pyridine rings lie in the same plane as can be seen from the dihedral angle of 3.61 (13)°. The bromophenyl and indole rings are twisted away from the bipyridine ring by 52.82 (12)° and 28.02 (10)°, respectively. The sum of the bond angles at N14 (360.0°) in the indole ring is in accordance with sp2 hybridization. The bond angle of C3—C16—N17 [178.4 (3)°] shows the linearity of the cyano group, a feature observed in carbonitrile compounds.

The crystal packing is controlled by C—H···N intermolecular interactions in addition to van der Waals forces. Atom N14 (x, y, z) donates one proton to N17 at (-x + 1,-y,-z + 1) which connects the molecules to form a R22 (16) dimer (Bernstein et al., 1995).

Related literature top

Compounds having an indole ring system have been shown to display high aldose reductase inhibitory activity (Rajeswaran et al.,1999). For hydrogen-bond motifs, see: Bernstein et al. (1995);

Experimental top

A mixture of 3-cyanoacetyl indole (1 mmol), 4-bromobenzaldehyde (1 mmol) and 2-acetyl pyridine (1 mmol) in 5 gm of ammonium acetate under neat condition was refluxed 6–8 hrs. After the completion of the reaction (as monitored by TLC), it was poured into water and extracted with ethyl acetate. The organic layer was dried over sodium sulfate and concentrated under vacuo. The crude product was chromatographed and isolated in 80% yield (90:10, petroleum ether: ethyl acetate) and recrystallized in ethanol.

Refinement top

H atoms were positioned geometrically (N—H=0.86 Å, and C—H=0.93 Å) and allowed to ride on their parent atoms, with 1.2Ueq(C,N).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecule showing the displacement ellipsoids at 50% probability level. The H atoms are shown as small circles of arbitrary radii.
[Figure 2] Fig. 2. The crystal packing of the molecules viewed down the b axis. H atoms not involved in hydrogen bonding are omitted for clarity.
4-(4-Bromophenyl)-6-(1H-indol-3-yl)-2,2'-bipyridine-5-carbonitrile top
Crystal data top
C25H15BrN4F(000) = 1824
Mr = 451.32Dx = 1.489 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5842 reflections
a = 14.7393 (4) Åθ = 1.6–29.4°
b = 10.7465 (3) ŵ = 2.06 mm1
c = 25.4251 (7) ÅT = 293 K
V = 4027.23 (19) Å3Block, colorless
Z = 80.29 × 0.26 × 0.22 mm
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
5545 independent reflections
Radiation source: fine-focus sealed tube3138 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω and ϕ scansθmax = 29.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1720
Tmin = 0.556, Tmax = 0.635k = 1414
47903 measured reflectionsl = 3535
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0524P)2 + 1.6981P]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max = 0.001
5545 reflectionsΔρmax = 0.42 e Å3
272 parametersΔρmin = 0.58 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0015 (2)
Crystal data top
C25H15BrN4V = 4027.23 (19) Å3
Mr = 451.32Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.7393 (4) ŵ = 2.06 mm1
b = 10.7465 (3) ÅT = 293 K
c = 25.4251 (7) Å0.29 × 0.26 × 0.22 mm
Data collection top
Bruker Kappa APEXII area-detector
diffractometer
5545 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
3138 reflections with I > 2σ(I)
Tmin = 0.556, Tmax = 0.635Rint = 0.057
47903 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 0.99Δρmax = 0.42 e Å3
5545 reflectionsΔρmin = 0.58 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.24258 (2)0.41762 (4)0.228490 (11)0.07539 (16)
N10.40577 (13)0.47359 (16)0.56512 (7)0.0397 (4)
C20.41263 (15)0.3612 (2)0.54258 (9)0.0385 (5)
C30.38681 (16)0.3440 (2)0.48975 (9)0.0399 (5)
C40.35912 (16)0.4449 (2)0.45926 (9)0.0391 (5)
C50.35655 (16)0.5595 (2)0.48331 (9)0.0426 (5)
H50.34060.62980.46410.051*
C60.37776 (15)0.5701 (2)0.53619 (9)0.0387 (5)
C70.44948 (15)0.2632 (2)0.57570 (9)0.0400 (5)
C80.44917 (15)0.2595 (2)0.63245 (9)0.0402 (5)
C90.41165 (18)0.3326 (2)0.67203 (10)0.0490 (6)
H90.37690.40210.66370.059*
C100.4265 (2)0.3010 (3)0.72342 (10)0.0591 (7)
H100.40220.35030.74990.071*
C110.4771 (2)0.1972 (3)0.73681 (11)0.0640 (8)
H110.48610.17830.77210.077*
C120.5139 (2)0.1223 (3)0.69920 (11)0.0596 (7)
H120.54730.05210.70820.072*
C130.49973 (16)0.1545 (2)0.64702 (10)0.0463 (6)
N140.52963 (15)0.09858 (18)0.60195 (9)0.0533 (5)
H140.56260.03270.60070.064*
C150.49954 (16)0.1625 (2)0.55983 (10)0.0485 (6)
H150.51110.14130.52500.058*
C160.38817 (18)0.2223 (2)0.46641 (10)0.0480 (6)
N170.38837 (19)0.1271 (2)0.44684 (10)0.0694 (7)
C180.33250 (16)0.4340 (2)0.40326 (9)0.0403 (5)
C190.26769 (17)0.3498 (2)0.38682 (10)0.0504 (6)
H190.24130.29600.41100.060*
C200.24170 (18)0.3450 (2)0.33465 (11)0.0530 (7)
H200.19820.28790.32370.064*
C210.28003 (18)0.4241 (2)0.29947 (10)0.0481 (6)
C220.34485 (19)0.5078 (3)0.31444 (10)0.0562 (7)
H220.37120.56080.28990.067*
C230.37058 (19)0.5126 (2)0.36651 (10)0.0523 (6)
H230.41430.56970.37700.063*
C240.36885 (16)0.6912 (2)0.56355 (9)0.0410 (5)
N250.33924 (15)0.78608 (18)0.53415 (8)0.0516 (5)
C260.32987 (19)0.8957 (2)0.55752 (12)0.0562 (7)
H260.31010.96240.53730.067*
C270.3474 (2)0.9165 (2)0.60946 (12)0.0595 (7)
H270.33880.99470.62430.071*
C280.3779 (3)0.8194 (3)0.63905 (12)0.0756 (9)
H280.39080.83040.67460.091*
C290.3895 (2)0.7051 (2)0.61584 (10)0.0624 (8)
H290.41100.63810.63530.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0741 (2)0.1126 (3)0.03942 (16)0.02193 (18)0.00909 (13)0.00200 (15)
N10.0451 (11)0.0356 (10)0.0385 (10)0.0036 (8)0.0000 (8)0.0014 (8)
C20.0390 (13)0.0360 (12)0.0403 (12)0.0018 (9)0.0016 (10)0.0024 (10)
C30.0419 (13)0.0357 (12)0.0420 (13)0.0005 (10)0.0031 (10)0.0014 (10)
C40.0422 (13)0.0380 (12)0.0370 (12)0.0002 (10)0.0033 (10)0.0030 (10)
C50.0528 (14)0.0342 (12)0.0408 (13)0.0033 (10)0.0002 (10)0.0050 (10)
C60.0411 (12)0.0357 (11)0.0395 (12)0.0005 (9)0.0029 (10)0.0020 (10)
C70.0410 (13)0.0346 (11)0.0444 (13)0.0009 (10)0.0015 (10)0.0008 (10)
C80.0428 (13)0.0337 (11)0.0442 (13)0.0045 (10)0.0066 (10)0.0054 (10)
C90.0578 (16)0.0416 (13)0.0477 (14)0.0040 (12)0.0001 (12)0.0020 (11)
C100.0737 (19)0.0608 (17)0.0427 (15)0.0128 (14)0.0027 (13)0.0005 (12)
C110.074 (2)0.0704 (19)0.0475 (15)0.0201 (16)0.0152 (14)0.0149 (14)
C120.0648 (18)0.0527 (15)0.0613 (17)0.0053 (13)0.0194 (14)0.0189 (14)
C130.0463 (14)0.0390 (13)0.0537 (15)0.0028 (10)0.0091 (12)0.0059 (11)
N140.0550 (13)0.0400 (11)0.0648 (14)0.0130 (10)0.0099 (11)0.0043 (10)
C150.0511 (15)0.0430 (13)0.0513 (14)0.0073 (11)0.0027 (12)0.0010 (11)
C160.0553 (15)0.0438 (14)0.0450 (14)0.0084 (11)0.0056 (11)0.0008 (11)
N170.0931 (19)0.0476 (13)0.0675 (16)0.0163 (12)0.0173 (14)0.0139 (12)
C180.0479 (14)0.0375 (12)0.0354 (11)0.0036 (10)0.0013 (10)0.0011 (10)
C190.0563 (16)0.0490 (14)0.0458 (14)0.0095 (12)0.0059 (12)0.0126 (11)
C200.0556 (16)0.0533 (15)0.0502 (15)0.0060 (12)0.0131 (12)0.0009 (12)
C210.0544 (15)0.0538 (14)0.0360 (12)0.0118 (13)0.0038 (11)0.0011 (11)
C220.0705 (18)0.0571 (16)0.0412 (14)0.0020 (14)0.0107 (13)0.0090 (12)
C230.0626 (17)0.0472 (14)0.0472 (14)0.0133 (12)0.0042 (12)0.0015 (12)
C240.0433 (13)0.0354 (12)0.0442 (13)0.0003 (10)0.0044 (10)0.0021 (10)
N250.0663 (14)0.0373 (10)0.0511 (13)0.0095 (10)0.0024 (11)0.0019 (9)
C260.0650 (18)0.0387 (13)0.0648 (18)0.0103 (12)0.0007 (14)0.0007 (12)
C270.0716 (18)0.0421 (14)0.0647 (18)0.0018 (13)0.0102 (14)0.0117 (13)
C280.122 (3)0.0565 (18)0.0484 (17)0.0025 (18)0.0037 (17)0.0114 (14)
C290.099 (2)0.0438 (14)0.0446 (15)0.0048 (14)0.0079 (15)0.0001 (12)
Geometric parameters (Å, º) top
Br1—C211.888 (2)N14—C151.347 (3)
N1—C61.336 (3)N14—H140.8600
N1—C21.341 (3)C15—H150.9300
C2—C31.408 (3)C16—N171.138 (3)
C2—C71.453 (3)C18—C231.379 (3)
C3—C41.394 (3)C18—C191.381 (3)
C3—C161.437 (3)C19—C201.382 (3)
C4—C51.376 (3)C19—H190.9300
C4—C181.482 (3)C20—C211.357 (4)
C5—C61.385 (3)C20—H200.9300
C5—H50.9300C21—C221.367 (4)
C6—C241.481 (3)C22—C231.378 (3)
C7—C151.371 (3)C22—H220.9300
C7—C81.443 (3)C23—H230.9300
C8—C91.391 (3)C24—N251.338 (3)
C8—C131.403 (3)C24—C291.372 (3)
C9—C101.368 (3)N25—C261.327 (3)
C9—H90.9300C26—C271.364 (4)
C10—C111.383 (4)C26—H260.9300
C10—H100.9300C27—C281.363 (4)
C11—C121.363 (4)C27—H270.9300
C11—H110.9300C28—C291.373 (4)
C12—C131.387 (3)C28—H280.9300
C12—H120.9300C29—H290.9300
C13—N141.367 (3)
C6—N1—C2119.15 (19)C13—N14—H14125.2
N1—C2—C3120.32 (19)N14—C15—C7110.2 (2)
N1—C2—C7115.66 (19)N14—C15—H15124.9
C3—C2—C7124.0 (2)C7—C15—H15124.9
C4—C3—C2120.5 (2)N17—C16—C3178.4 (3)
C4—C3—C16118.8 (2)C23—C18—C19118.5 (2)
C2—C3—C16120.6 (2)C23—C18—C4119.7 (2)
C5—C4—C3117.2 (2)C19—C18—C4121.7 (2)
C5—C4—C18119.4 (2)C18—C19—C20120.5 (2)
C3—C4—C18123.4 (2)C18—C19—H19119.8
C4—C5—C6119.9 (2)C20—C19—H19119.8
C4—C5—H5120.0C21—C20—C19119.6 (2)
C6—C5—H5120.0C21—C20—H20120.2
N1—C6—C5122.7 (2)C19—C20—H20120.2
N1—C6—C24116.8 (2)C20—C21—C22121.3 (2)
C5—C6—C24120.5 (2)C20—C21—Br1119.0 (2)
C15—C7—C8105.9 (2)C22—C21—Br1119.64 (19)
C15—C7—C2127.0 (2)C21—C22—C23119.0 (2)
C8—C7—C2126.7 (2)C21—C22—H22120.5
C9—C8—C13118.3 (2)C23—C22—H22120.5
C9—C8—C7135.1 (2)C22—C23—C18121.1 (2)
C13—C8—C7106.5 (2)C22—C23—H23119.5
C10—C9—C8119.1 (2)C18—C23—H23119.5
C10—C9—H9120.4N25—C24—C29122.0 (2)
C8—C9—H9120.4N25—C24—C6115.9 (2)
C9—C10—C11121.4 (3)C29—C24—C6122.1 (2)
C9—C10—H10119.3C26—N25—C24117.4 (2)
C11—C10—H10119.3N25—C26—C27124.0 (2)
C12—C11—C10121.2 (3)N25—C26—H26118.0
C12—C11—H11119.4C27—C26—H26118.0
C10—C11—H11119.4C28—C27—C26118.1 (2)
C11—C12—C13117.6 (3)C28—C27—H27120.9
C11—C12—H12121.2C26—C27—H27120.9
C13—C12—H12121.2C27—C28—C29119.2 (3)
N14—C13—C12130.1 (2)C27—C28—H28120.4
N14—C13—C8107.7 (2)C29—C28—H28120.4
C12—C13—C8122.2 (2)C24—C29—C28119.1 (3)
C15—N14—C13109.6 (2)C24—C29—H29120.4
C15—N14—H14125.2C28—C29—H29120.4
C6—N1—C2—C32.8 (3)C7—C8—C13—C12179.7 (2)
C6—N1—C2—C7175.9 (2)C12—C13—N14—C15179.7 (3)
N1—C2—C3—C44.0 (3)C8—C13—N14—C150.7 (3)
C7—C2—C3—C4174.6 (2)C13—N14—C15—C70.5 (3)
N1—C2—C3—C16175.8 (2)C8—C7—C15—N140.2 (3)
C7—C2—C3—C165.6 (4)C2—C7—C15—N14173.8 (2)
C2—C3—C4—C51.3 (3)C4—C3—C16—N174 (11)
C16—C3—C4—C5178.4 (2)C2—C3—C16—N17176 (100)
C2—C3—C4—C18179.0 (2)C5—C4—C18—C2350.8 (3)
C16—C3—C4—C181.3 (3)C3—C4—C18—C23129.5 (3)
C3—C4—C5—C62.3 (3)C5—C4—C18—C19126.8 (3)
C18—C4—C5—C6177.4 (2)C3—C4—C18—C1952.9 (3)
C2—N1—C6—C51.0 (3)C23—C18—C19—C200.1 (4)
C2—N1—C6—C24178.2 (2)C4—C18—C19—C20177.5 (2)
C4—C5—C6—N13.6 (4)C18—C19—C20—C210.3 (4)
C4—C5—C6—C24175.5 (2)C19—C20—C21—C220.8 (4)
N1—C2—C7—C15149.1 (2)C19—C20—C21—Br1179.2 (2)
C3—C2—C7—C1529.6 (4)C20—C21—C22—C230.8 (4)
N1—C2—C7—C823.7 (3)Br1—C21—C22—C23179.1 (2)
C3—C2—C7—C8157.7 (2)C21—C22—C23—C180.4 (4)
C15—C7—C8—C9179.9 (3)C19—C18—C23—C220.0 (4)
C2—C7—C8—C96.1 (4)C4—C18—C23—C22177.7 (2)
C15—C7—C8—C130.3 (3)N1—C6—C24—N25178.9 (2)
C2—C7—C8—C13174.2 (2)C5—C6—C24—N250.3 (3)
C13—C8—C9—C101.1 (4)N1—C6—C24—C291.0 (4)
C7—C8—C9—C10179.3 (3)C5—C6—C24—C29179.8 (3)
C8—C9—C10—C110.8 (4)C29—C24—N25—C260.3 (4)
C9—C10—C11—C120.1 (4)C6—C24—N25—C26179.5 (2)
C10—C11—C12—C130.7 (4)C24—N25—C26—C270.9 (4)
C11—C12—C13—N14178.6 (3)N25—C26—C27—C281.2 (5)
C11—C12—C13—C80.3 (4)C26—C27—C28—C290.2 (5)
C9—C8—C13—N14179.7 (2)N25—C24—C29—C281.2 (4)
C7—C8—C13—N140.6 (3)C6—C24—C29—C28178.7 (3)
C9—C8—C13—C120.6 (4)C27—C28—C29—C240.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14···N17i0.862.222.980 (3)147
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC25H15BrN4
Mr451.32
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)14.7393 (4), 10.7465 (3), 25.4251 (7)
V3)4027.23 (19)
Z8
Radiation typeMo Kα
µ (mm1)2.06
Crystal size (mm)0.29 × 0.26 × 0.22
Data collection
DiffractometerBruker Kappa APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.556, 0.635
No. of measured, independent and
observed [I > 2σ(I)] reflections
47903, 5545, 3138
Rint0.057
(sin θ/λ)max1)0.691
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.120, 0.99
No. of reflections5545
No. of parameters272
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.58

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N14—H14···N17i0.862.222.980 (3)147.3
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

PR thanks Dr Babu Varghese, SAIF, IIT–Madras, India, for his help with the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationRajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369–1371.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds