organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[2-(4-Fluoro­phen­yl)-1H-pyrrol-3-yl]pyridine

aFaculty of Science, Chemistry Department, Islamic University of Gaza, Gaza Strip, Palestinian Territories, bInstitute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany, and cDepartment of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: stefan.laufer@uni-tuebingen.de

(Received 23 January 2009; accepted 29 January 2009; online 4 February 2009)

In the crystal structure of the title compound, C15H11FN2, the pyrrole ring makes dihedral angles of 33.19 (9) and 36.33 (10)° with the pyridine and 4-fluoro­phenyl rings, respectively. The pyridine ring makes a dihedral angle of 46.59 (9)° with the 4-fluoro­phenyl ring. In the crystal structure, an N—H⋯N hydrogen bond joins the mol­ecules into chains.

Related literature

Many 1-(4-fluoro­phenyl)-2-(pyridin-4-yl)pyrrol derivatives have been prepared and their biological activities studied; see: de Laszlo et al. (1998[Laszlo, S. E. de, Visco, D., Agarwal, L., Chang, L., Chin, J., Croft, G., Forsyth, A., Fletcher, D., Frantz, B., Hacker, C., Hanlon, W., Harper, C., Kostura, M., Li, B., Luell, S., MacCoss, M., Mantlo, N., O'Neill, E. A., Orevillo, C., Pang, M., Parsons, J., Rolando, A., Sahly, Y., Sidler, K., Widmer, W. R. & O'Keefe, S. J. (1998). Bioorg. Med. Chem. Lett. 8, 2689-2694.]); Revesz et al. (2000[Revesz, L., Di Padova, F. E., Buhl, T., Feifel, R., Gram, H., Hiestand, P., Manning, U. & Zimmerlin, A. G. (2000). Bioorg. Med. Chem. Lett. 10, 1261-1264.], 2002[Revesz, L., Di Padova, F. E., Buhl, T., Feifel, R., Gram, H., Hiestand, P., Manning, U., Wolf, R. & Zimmerlin, A. G. (2002). Bioorg. Med. Chem. Lett. 12, 2109-2112.]); Qian et al. (2006[Qian, X., Liang, G.-B., Feng, D., Fisher, M., Crumley, T., Rattray, S., Dulski, P. M., Gurnett, A., Leavitt, P. S., Liberator, P. A., Misura, A. S., Samaras, S., Tamas, T., Schmatz, D. M., Wyvratt, M. & Biftu, T. (2006). Bioorg. Med. Chem. Lett. 16, 2817-2821.]). For the synthesis of the title compound, see: Qian et al. (2006[Qian, X., Liang, G.-B., Feng, D., Fisher, M., Crumley, T., Rattray, S., Dulski, P. M., Gurnett, A., Leavitt, P. S., Liberator, P. A., Misura, A. S., Samaras, S., Tamas, T., Schmatz, D. M., Wyvratt, M. & Biftu, T. (2006). Bioorg. Med. Chem. Lett. 16, 2817-2821.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11FN2

  • Mr = 238.26

  • Orthorhombic, P b c a

  • a = 9.2966 (7) Å

  • b = 8.1966 (5) Å

  • c = 30.5738 (19) Å

  • V = 2329.7 (3) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.76 mm−1

  • T = 193 (2) K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2175 measured reflections

  • 2175 independent reflections

  • 1744 reflections with I > 2σ(I)

  • 3 standard reflections frequency: 60 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.120

  • S = 1.03

  • 2175 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N16i 0.93 1.97 2.8696 (19) 161
Symmetry code: (i) x+1, y, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Functionalized 1-(4-fluorophenyl)-2-(pyridin-4-yl)pyrrols can be used as anticoccidial agents (Qian et al. 2006) or as p38 MAP kinase inhibitors (de Laszlo et al. 1998; Revesz et al. 2000, 2002).

The analysis of the crystal structure of the title compound is shown in Fig. 1. The pyrrole ring makes dihedral angles of 33.19 (9)° and 36.33 (10)° to the pyridine ring and the 4-fluorophenyl ring, respectively. The pyridine ring makes a dihedral angle of 46.59 (9)° to the 4-fluorophenyl ring.

The crystal packing (Fig. 2) shows that N1—H1 of the pyrrole ring forms an intermolecular N—H···N hydrogen bond to the pyridine ring (N16) resulting in a chain parallel to the a axis.

Related literature top

Many 1-(4-fluorophenyl)-2-(pyridin-4-yl)pyrrol derivatives have been prepared and their biological activities studied; see: de Laszlo et al. (1998); Revesz et al. (2000, 2002); Qian et al. (2006). For the synthesis of the title compound, see: Qian et al. (2006).

Experimental top

Ammonium acetate (2.20 g, 34.9 mmol) was added to a solution of 4-(4-fluorophenyl)-4-oxo-3-(pyridin-4-yl)butanal (0.50 g) in glacial acetic acid (10 ml). The resulting mixture was heated to 388–393 K for 2 h. The solvent was removed under reduced pressure and the residue was diluted with ethyl acetate and aq. NaHCO3 solution. Solid Na2CO3 was added until effervescence ceased. The organic phase was washed with aq. NaHCO3 solution and brine, dried over Na2SO4 and the solvent was evaporated under reduced pressure to give crude I. The residue was dissolved in ethyl acetate (7 ml) and filtered, then purified by flash chromatography (SiO2, petroleum ether/ethyl acetate 1:1 to 1:4). Yield 135 mg. For X-ray suitable crystals of compound I were obtained by slow evaporation at 298 K of a solution of n-hexane–ethyl acetate.

Refinement top

All atoms were located in a differerence Fourier map. Nevertheless, they were placed at calculated positions with C—H = 0.95 Å or N—H = 0.94 Å and they were refined in the riding-model approximation with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. View of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are depicted as circles of arbitrary size.
[Figure 2] Fig. 2. Crystal packing of the title compound. The hydrogen bond is shown with dashed lines. View along the b axis.
4-[2-(4-Fluorophenyl)-1H-pyrrol-3-yl]pyridine top
Crystal data top
C15H11FN2F(000) = 992
Mr = 238.26Dx = 1.359 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 9.2966 (7) Åθ = 30–51.7°
b = 8.1966 (5) ŵ = 0.76 mm1
c = 30.5738 (19) ÅT = 193 K
V = 2329.7 (3) Å3Plate, light brown
Z = 80.25 × 0.20 × 0.18 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.000
Radiation source: rotating anodeθmax = 69.5°, θmin = 2.9°
Graphite monochromatorh = 011
ω/2θ scansk = 90
2175 measured reflectionsl = 360
2175 independent reflections3 standard reflections every 60 min
1744 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0641P)2 + 0.5148P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2175 reflectionsΔρmax = 0.26 e Å3
164 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00086 (16)
Crystal data top
C15H11FN2V = 2329.7 (3) Å3
Mr = 238.26Z = 8
Orthorhombic, PbcaCu Kα radiation
a = 9.2966 (7) ŵ = 0.76 mm1
b = 8.1966 (5) ÅT = 193 K
c = 30.5738 (19) Å0.25 × 0.20 × 0.18 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.000
2175 measured reflections3 standard reflections every 60 min
2175 independent reflections intensity decay: 2%
1744 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.03Δρmax = 0.26 e Å3
2175 reflectionsΔρmin = 0.17 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.51524 (14)0.21406 (17)0.41905 (5)0.0278 (3)
H10.60830.22660.40810.033*
C20.39066 (16)0.2347 (2)0.39570 (6)0.0249 (4)
C30.27690 (16)0.2008 (2)0.42407 (5)0.0255 (4)
C40.33869 (18)0.1586 (2)0.46491 (6)0.0311 (4)
H40.28760.12880.49060.037*
C50.48474 (18)0.1684 (2)0.46075 (6)0.0317 (4)
H50.55310.14700.48310.038*
C60.39610 (16)0.2800 (2)0.34938 (5)0.0264 (4)
C70.50091 (18)0.3890 (2)0.33407 (6)0.0331 (4)
H70.56980.43220.35390.040*
C80.5055 (2)0.4345 (3)0.29053 (6)0.0421 (5)
H80.57730.50750.28020.051*
C90.4047 (2)0.3721 (3)0.26266 (6)0.0429 (5)
C100.3009 (2)0.2630 (3)0.27593 (6)0.0395 (5)
H100.23290.22070.25570.047*
C110.29785 (18)0.2163 (2)0.31936 (6)0.0311 (4)
H110.22790.13970.32890.037*
F120.40632 (16)0.4201 (2)0.22006 (4)0.0706 (5)
C130.12145 (16)0.20955 (19)0.41599 (5)0.0244 (4)
C140.05747 (18)0.3235 (2)0.38834 (6)0.0292 (4)
H140.11550.39910.37270.035*
C150.09026 (18)0.3267 (2)0.38362 (6)0.0318 (4)
H150.13070.40530.36440.038*
N160.17994 (14)0.2253 (2)0.40458 (5)0.0329 (4)
C170.11823 (18)0.1169 (2)0.43157 (6)0.0320 (4)
H170.17910.04420.44720.038*
C180.02834 (17)0.1046 (2)0.43807 (5)0.0286 (4)
H180.06570.02480.45750.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0166 (6)0.0319 (8)0.0348 (8)0.0002 (6)0.0004 (5)0.0008 (6)
C20.0176 (7)0.0249 (8)0.0322 (9)0.0008 (6)0.0008 (6)0.0021 (6)
C30.0207 (8)0.0253 (8)0.0304 (8)0.0006 (6)0.0015 (6)0.0009 (7)
C40.0258 (8)0.0379 (10)0.0297 (9)0.0005 (7)0.0018 (7)0.0050 (7)
C50.0266 (8)0.0359 (10)0.0327 (9)0.0011 (7)0.0036 (7)0.0037 (7)
C60.0199 (7)0.0276 (8)0.0316 (9)0.0044 (6)0.0034 (6)0.0020 (6)
C70.0267 (8)0.0374 (10)0.0353 (9)0.0029 (7)0.0064 (7)0.0013 (7)
C80.0413 (10)0.0452 (11)0.0399 (10)0.0017 (9)0.0160 (9)0.0048 (8)
C90.0483 (11)0.0538 (12)0.0266 (9)0.0098 (10)0.0091 (8)0.0025 (8)
C100.0377 (10)0.0475 (11)0.0332 (10)0.0072 (9)0.0022 (8)0.0071 (8)
C110.0253 (8)0.0342 (9)0.0339 (9)0.0030 (7)0.0007 (7)0.0027 (7)
F120.0869 (11)0.0956 (11)0.0292 (6)0.0015 (9)0.0080 (6)0.0113 (7)
C130.0204 (8)0.0262 (8)0.0264 (8)0.0003 (6)0.0028 (6)0.0052 (6)
C140.0226 (8)0.0289 (9)0.0361 (9)0.0001 (7)0.0041 (7)0.0013 (7)
C150.0232 (8)0.0343 (9)0.0380 (10)0.0042 (7)0.0013 (7)0.0012 (8)
N160.0197 (7)0.0426 (9)0.0362 (8)0.0000 (6)0.0031 (6)0.0027 (7)
C170.0237 (8)0.0384 (10)0.0339 (9)0.0049 (7)0.0065 (7)0.0000 (7)
C180.0244 (8)0.0326 (9)0.0286 (8)0.0009 (7)0.0025 (6)0.0005 (7)
Geometric parameters (Å, º) top
N1—C51.358 (2)C9—F121.360 (2)
N1—C21.371 (2)C9—C101.377 (3)
N1—H10.9339C10—C111.382 (3)
C2—C31.396 (2)C10—H100.9500
C2—C61.465 (2)C11—H110.9500
C3—C41.417 (2)C13—C141.393 (2)
C3—C131.468 (2)C13—C181.395 (2)
C4—C51.366 (2)C14—C151.381 (2)
C4—H40.9500C14—H140.9500
C5—H50.9500C15—N161.340 (2)
C6—C111.396 (2)C15—H150.9500
C6—C71.402 (2)N16—C171.341 (2)
C7—C81.383 (3)C17—C181.381 (2)
C7—H70.9500C17—H170.9500
C8—C91.366 (3)C18—H180.9500
C8—H80.9500
C5—N1—C2110.27 (14)F12—C9—C10118.54 (19)
C5—N1—H1124.1C8—C9—C10122.70 (18)
C2—N1—H1125.6C9—C10—C11118.50 (18)
N1—C2—C3106.96 (15)C9—C10—H10120.8
N1—C2—C6120.37 (14)C11—C10—H10120.8
C3—C2—C6132.65 (15)C10—C11—C6120.97 (17)
C2—C3—C4106.80 (14)C10—C11—H11119.5
C2—C3—C13129.17 (15)C6—C11—H11119.5
C4—C3—C13124.00 (15)C14—C13—C18116.25 (15)
C5—C4—C3107.84 (15)C14—C13—C3123.73 (15)
C5—C4—H4126.1C18—C13—C3119.96 (15)
C3—C4—H4126.1C15—C14—C13120.04 (16)
N1—C5—C4108.13 (15)C15—C14—H14120.0
N1—C5—H5125.9C13—C14—H14120.0
C4—C5—H5125.9N16—C15—C14123.85 (17)
C11—C6—C7118.26 (16)N16—C15—H15118.1
C11—C6—C2121.19 (15)C14—C15—H15118.1
C7—C6—C2120.55 (15)C15—N16—C17116.02 (14)
C8—C7—C6120.96 (18)N16—C17—C18123.98 (16)
C8—C7—H7119.5N16—C17—H17118.0
C6—C7—H7119.5C18—C17—H17118.0
C9—C8—C7118.57 (18)C17—C18—C13119.86 (16)
C9—C8—H8120.7C17—C18—H18120.1
C7—C8—H8120.7C13—C18—H18120.1
F12—C9—C8118.76 (19)
C5—N1—C2—C30.13 (19)C7—C8—C9—C101.6 (3)
C5—N1—C2—C6178.44 (15)F12—C9—C10—C11178.99 (17)
N1—C2—C3—C40.29 (18)C8—C9—C10—C110.8 (3)
C6—C2—C3—C4178.03 (17)C9—C10—C11—C61.0 (3)
N1—C2—C3—C13177.86 (16)C7—C6—C11—C101.9 (2)
C6—C2—C3—C133.8 (3)C2—C6—C11—C10178.16 (16)
C2—C3—C4—C50.4 (2)C2—C3—C13—C1433.5 (3)
C13—C3—C4—C5177.92 (16)C4—C3—C13—C14144.40 (18)
C2—N1—C5—C40.1 (2)C2—C3—C13—C18149.46 (17)
C3—C4—C5—N10.3 (2)C4—C3—C13—C1832.7 (2)
N1—C2—C6—C11142.67 (16)C18—C13—C14—C150.8 (2)
C3—C2—C6—C1135.5 (3)C3—C13—C14—C15177.95 (16)
N1—C2—C6—C737.2 (2)C13—C14—C15—N160.4 (3)
C3—C2—C6—C7144.63 (19)C14—C15—N16—C170.3 (3)
C11—C6—C7—C81.1 (3)C15—N16—C17—C180.7 (3)
C2—C6—C7—C8178.99 (17)N16—C17—C18—C130.3 (3)
C6—C7—C8—C90.6 (3)C14—C13—C18—C170.4 (2)
C7—C8—C9—F12178.17 (18)C3—C13—C18—C17177.73 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N16i0.931.972.8696 (19)161
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H11FN2
Mr238.26
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)193
a, b, c (Å)9.2966 (7), 8.1966 (5), 30.5738 (19)
V3)2329.7 (3)
Z8
Radiation typeCu Kα
µ (mm1)0.76
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2175, 2175, 1744
Rint0.000
(sin θ/λ)max1)0.607
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.120, 1.03
No. of reflections2175
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.17

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N16i0.931.972.8696 (19)160.8
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors thank the Alexander von Humbolt Foundation (AvH) for funding.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationLaszlo, S. E. de, Visco, D., Agarwal, L., Chang, L., Chin, J., Croft, G., Forsyth, A., Fletcher, D., Frantz, B., Hacker, C., Hanlon, W., Harper, C., Kostura, M., Li, B., Luell, S., MacCoss, M., Mantlo, N., O'Neill, E. A., Orevillo, C., Pang, M., Parsons, J., Rolando, A., Sahly, Y., Sidler, K., Widmer, W. R. & O'Keefe, S. J. (1998). Bioorg. Med. Chem. Lett. 8, 2689–2694.  Web of Science PubMed Google Scholar
First citationQian, X., Liang, G.-B., Feng, D., Fisher, M., Crumley, T., Rattray, S., Dulski, P. M., Gurnett, A., Leavitt, P. S., Liberator, P. A., Misura, A. S., Samaras, S., Tamas, T., Schmatz, D. M., Wyvratt, M. & Biftu, T. (2006). Bioorg. Med. Chem. Lett. 16, 2817–2821.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRevesz, L., Di Padova, F. E., Buhl, T., Feifel, R., Gram, H., Hiestand, P., Manning, U., Wolf, R. & Zimmerlin, A. G. (2002). Bioorg. Med. Chem. Lett. 12, 2109–2112.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRevesz, L., Di Padova, F. E., Buhl, T., Feifel, R., Gram, H., Hiestand, P., Manning, U. & Zimmerlin, A. G. (2000). Bioorg. Med. Chem. Lett. 10, 1261–1264.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds