organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[2-(4-Fluoro­phen­yl)furan-3-yl]pyridine

aFaculty of Science, Chemistry Department, Islamic University of Gaza, Gaza Strip, Palestinian Territories, bInstitute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany, and cDepartment of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: stefan.laufer@uni-tuebingen.de

(Received 23 January 2009; accepted 29 January 2009; online 4 February 2009)

In the crystal structure of the title compound, C15H10FNO, the furan ring makes dihedral angles of 40.04 (11) and 25.71 (11)° with the pyridine and 4-fluoro­phenyl rings, respectively. The pyridine ring makes a dihedral angle of 49.51 (10)° with the 4-fluoro­phenyl ring. Non-conventional C—H⋯F and C—H⋯N hydrogen bonds are effective in the stabilization of the crystal structure.

Related literature

For the biological activities of related compounds, see: Wilkerson et al. (1985[Wilkerson, W. W., Cherkofsky, S. C. & Haber, S. B. (1985). Res. Discl., 253, 220-222.]); Myers et al. (1985[Myers, M. J., Cherkofsky, S. C. & Haber, S. B. (1985). Res. Discl., 253, 223-224.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10FNO

  • Mr = 239.24

  • Monoclinic, P 21 /c

  • a = 13.343 (9) Å

  • b = 10.550 (3) Å

  • c = 8.178 (5) Å

  • β = 94.44 (3)°

  • V = 1147.7 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.81 mm−1

  • T = 193 (2) K

  • 0.26 × 0.19 × 0.12 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2172 measured reflections

  • 2172 independent reflections

  • 1806 reflections with I > 2σ(I)

  • 3 standard reflectionsfrequency: 60 min intensity decay: 2%

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.151

  • S = 1.07

  • 2172 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯F1i 0.95 2.32 3.006 (3) 128
C8—H8⋯N15ii 0.95 2.60 3.483 (3) 155
Symmetry codes: (i) x, y-1, z; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CORINC (Dräger & Gattow, 1971[Dräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761-762.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Diarylfuran carbinols and methanamines (Wilkerson et al. 1985) and diaryl-thio-substituted furans (Myers et al. 1985) have been considered to be potential anti-inflammatory or analgetic agents.

The analysis of the crystal structure of the title compound is shown in Fig. 1. The furan ring makes dihedral angles of 40.04 (11)° and 25.71 (11)° to the pyridine ring and the 4-fluorophenyl ring, respectively. The pyridine ring makes a dihedral angle of 49.51 (10)° to the 4-fluorophenyl ring. Non-conventional C—H···X H-bonds seem to be effective in stabilization of the crystal structure. By intermolecular hydrogen bonds C5—H5···F1 (2.32 Å) and C8—H8···N15 (2.60 Å) a two-dimensional network parallel to the ab plane (Fig. 2) is formed.

Related literature top

For the biological activities of related compounds, see: Wilkerson et al. (1985); Myers et al. (1985).

Experimental top

4-(4-Fluorophenyl)-4-oxo-3-(pyridin-4-yl)butanal (2.0 g) was treated with glacial acetic acid (10 ml), conc. HCl (30 ml) and then heated to reflux temperature for 4 h. The reaction mixture was cooled to r.t. and put into ice. A solution of K2CO3 was added until it became basic. The aqueous phase was extracted four times with ethyl acetate and the combined organic layers were dried over Na2SO4 and filtered. The remaining solution was concentrated in vacuo and then purified by flash chromatography (SiO2, petroleum ether/ethylacetate 2:1 to 1:1) to give compound I (1.15 g) as a pale yellow solid. For X-ray suitable crystals of compound I were obtained by slow evaporation at 298 K of a solution of n-hexane–ethyl acetate–diethyl ether.

Refinement top

H atoms attached to carbons were placed at calculated positions with C—H = 0.95 Å. They were refined in the riding-model approximation with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CORINC (Dräger & Gattow, 1971); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. View of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are depicted as circles of arbitrary size.
[Figure 2] Fig. 2. Partial crystal packing diagram of the title compound. The hydrogen bonds are shown with dashed lines. View along the c axis.
4-[2-(4-Fluorophenyl)furan-3-yl]pyridine top
Crystal data top
C15H10FNOF(000) = 496
Mr = 239.24Dx = 1.385 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 13.343 (9) Åθ = 35–47°
b = 10.550 (3) ŵ = 0.81 mm1
c = 8.178 (5) ÅT = 193 K
β = 94.44 (3)°Plate, colourless
V = 1147.7 (11) Å30.26 × 0.19 × 0.12 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.000
Radiation source: rotating anodeθmax = 70.1°, θmin = 3.3°
Graphite monochromatorh = 016
ω/2θ scansk = 012
2172 measured reflectionsl = 99
2172 independent reflections3 standard reflections every 60 min
1806 reflections with I > 2σ(I) intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.084P)2 + 0.3989P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2172 reflectionsΔρmax = 0.23 e Å3
164 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0023 (6)
Crystal data top
C15H10FNOV = 1147.7 (11) Å3
Mr = 239.24Z = 4
Monoclinic, P21/cCu Kα radiation
a = 13.343 (9) ŵ = 0.81 mm1
b = 10.550 (3) ÅT = 193 K
c = 8.178 (5) Å0.26 × 0.19 × 0.12 mm
β = 94.44 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.000
2172 measured reflections3 standard reflections every 60 min
2172 independent reflections intensity decay: 2%
1806 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.07Δρmax = 0.23 e Å3
2172 reflectionsΔρmin = 0.31 e Å3
164 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.12844 (11)0.65865 (12)0.4490 (2)0.0657 (5)
O10.10747 (10)0.06648 (13)0.45018 (19)0.0394 (4)
C20.19141 (14)0.13786 (18)0.4958 (2)0.0324 (4)
C30.26801 (14)0.05896 (18)0.5490 (2)0.0338 (5)
C40.22829 (15)0.06710 (19)0.5367 (3)0.0403 (5)
H40.26330.14320.56560.048*
C50.13306 (16)0.0573 (2)0.4771 (3)0.0438 (5)
H50.08890.12700.45610.053*
C60.17617 (13)0.27453 (18)0.4833 (2)0.0315 (4)
C70.23331 (14)0.35897 (19)0.5837 (2)0.0353 (5)
H70.28370.32670.66100.042*
C80.21809 (15)0.4885 (2)0.5730 (3)0.0409 (5)
H80.25770.54550.64080.049*
C90.14411 (17)0.53215 (19)0.4616 (3)0.0422 (5)
C100.08431 (16)0.4532 (2)0.3621 (3)0.0421 (5)
H100.03290.48680.28760.051*
C110.10057 (15)0.32439 (19)0.3728 (3)0.0364 (5)
H110.06010.26860.30460.044*
C120.37309 (14)0.08896 (18)0.6061 (2)0.0323 (4)
C130.42007 (15)0.0206 (2)0.7362 (3)0.0395 (5)
H130.38410.04260.79020.047*
C140.51936 (16)0.0457 (2)0.7858 (3)0.0425 (5)
H140.55000.00290.87390.051*
N150.57492 (13)0.13313 (18)0.7186 (2)0.0411 (5)
C160.52945 (15)0.1975 (2)0.5926 (3)0.0389 (5)
H160.56760.25950.54050.047*
C170.43063 (15)0.17936 (19)0.5335 (3)0.0356 (5)
H170.40240.22840.44390.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0692 (10)0.0266 (7)0.0986 (13)0.0065 (6)0.0102 (8)0.0003 (7)
O10.0293 (7)0.0296 (7)0.0575 (9)0.0026 (5)0.0079 (6)0.0016 (6)
C20.0274 (9)0.0303 (10)0.0383 (11)0.0035 (7)0.0038 (7)0.0019 (8)
C30.0310 (10)0.0287 (10)0.0406 (11)0.0007 (8)0.0030 (8)0.0003 (8)
C40.0357 (11)0.0289 (10)0.0554 (13)0.0023 (8)0.0017 (9)0.0011 (9)
C50.0375 (11)0.0253 (10)0.0679 (15)0.0024 (8)0.0004 (10)0.0030 (9)
C60.0277 (9)0.0306 (10)0.0355 (10)0.0014 (7)0.0019 (7)0.0001 (8)
C70.0308 (10)0.0344 (11)0.0392 (11)0.0012 (8)0.0072 (8)0.0023 (8)
C80.0348 (11)0.0337 (11)0.0532 (13)0.0034 (8)0.0034 (9)0.0081 (9)
C90.0418 (12)0.0264 (10)0.0581 (14)0.0035 (8)0.0018 (9)0.0009 (9)
C100.0396 (11)0.0383 (12)0.0467 (12)0.0074 (9)0.0085 (9)0.0033 (9)
C110.0327 (10)0.0341 (10)0.0410 (11)0.0004 (8)0.0073 (8)0.0023 (8)
C120.0296 (10)0.0293 (10)0.0371 (10)0.0037 (7)0.0035 (7)0.0040 (8)
C130.0373 (11)0.0366 (11)0.0438 (12)0.0038 (8)0.0023 (9)0.0042 (9)
C140.0389 (12)0.0474 (12)0.0396 (11)0.0108 (9)0.0073 (9)0.0016 (9)
N150.0345 (9)0.0451 (11)0.0420 (10)0.0036 (7)0.0070 (7)0.0049 (8)
C160.0335 (10)0.0380 (11)0.0444 (11)0.0027 (8)0.0023 (8)0.0028 (9)
C170.0334 (10)0.0341 (10)0.0379 (10)0.0011 (8)0.0071 (8)0.0017 (8)
Geometric parameters (Å, º) top
F1—C91.354 (2)C8—H80.9500
O1—C51.363 (2)C9—C101.375 (3)
O1—C21.377 (2)C10—C111.378 (3)
C2—C31.363 (3)C10—H100.9500
C2—C61.459 (3)C11—H110.9500
C3—C41.432 (3)C12—C171.387 (3)
C3—C121.478 (3)C12—C131.393 (3)
C4—C51.329 (3)C13—C141.381 (3)
C4—H40.9500C13—H130.9500
C5—H50.9500C14—N151.329 (3)
C6—C71.397 (3)C14—H140.9500
C6—C111.403 (3)N15—C161.339 (3)
C7—C81.384 (3)C16—C171.382 (3)
C7—H70.9500C16—H160.9500
C8—C91.370 (3)C17—H170.9500
C5—O1—C2106.97 (16)C8—C9—C10123.0 (2)
C3—C2—O1109.06 (17)C9—C10—C11118.58 (19)
C3—C2—C6136.31 (18)C9—C10—H10120.7
O1—C2—C6114.55 (16)C11—C10—H10120.7
C2—C3—C4106.28 (17)C10—C11—C6120.82 (19)
C2—C3—C12129.79 (18)C10—C11—H11119.6
C4—C3—C12123.92 (18)C6—C11—H11119.6
C5—C4—C3106.96 (18)C17—C12—C13116.85 (18)
C5—C4—H4126.5C17—C12—C3123.72 (18)
C3—C4—H4126.5C13—C12—C3119.38 (18)
C4—C5—O1110.72 (18)C14—C13—C12119.4 (2)
C4—C5—H5124.6C14—C13—H13120.3
O1—C5—H5124.6C12—C13—H13120.3
C7—C6—C11118.14 (18)N15—C14—C13124.34 (19)
C7—C6—C2121.48 (17)N15—C14—H14117.8
C11—C6—C2120.34 (17)C13—C14—H14117.8
C8—C7—C6121.47 (18)C14—N15—C16115.86 (18)
C8—C7—H7119.3N15—C16—C17124.2 (2)
C6—C7—H7119.3N15—C16—H16117.9
C9—C8—C7117.94 (19)C17—C16—H16117.9
C9—C8—H8121.0C16—C17—C12119.35 (19)
C7—C8—H8121.0C16—C17—H17120.3
F1—C9—C8118.7 (2)C12—C17—H17120.3
F1—C9—C10118.2 (2)
C5—O1—C2—C30.5 (2)C7—C8—C9—C100.7 (4)
C5—O1—C2—C6176.93 (18)F1—C9—C10—C11179.2 (2)
O1—C2—C3—C40.6 (2)C8—C9—C10—C111.2 (4)
C6—C2—C3—C4176.0 (2)C9—C10—C11—C60.3 (3)
O1—C2—C3—C12178.1 (2)C7—C6—C11—C101.0 (3)
C6—C2—C3—C125.3 (4)C2—C6—C11—C10178.8 (2)
C2—C3—C4—C50.5 (3)C2—C3—C12—C1740.6 (3)
C12—C3—C4—C5178.3 (2)C4—C3—C12—C17138.0 (2)
C3—C4—C5—O10.3 (3)C2—C3—C12—C13142.0 (2)
C2—O1—C5—C40.1 (3)C4—C3—C12—C1339.4 (3)
C3—C2—C6—C724.2 (4)C17—C12—C13—C140.1 (3)
O1—C2—C6—C7152.23 (18)C3—C12—C13—C14177.75 (19)
C3—C2—C6—C11158.1 (2)C12—C13—C14—N150.8 (3)
O1—C2—C6—C1125.5 (3)C13—C14—N15—C161.4 (3)
C11—C6—C7—C81.5 (3)C14—N15—C16—C171.2 (3)
C2—C6—C7—C8179.28 (19)N15—C16—C17—C120.4 (3)
C6—C7—C8—C90.7 (3)C13—C12—C17—C160.3 (3)
C7—C8—C9—F1179.7 (2)C3—C12—C17—C16177.80 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···F1i0.952.323.006 (3)128
C8—H8···N15ii0.952.603.483 (3)155
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC15H10FNO
Mr239.24
Crystal system, space groupMonoclinic, P21/c
Temperature (K)193
a, b, c (Å)13.343 (9), 10.550 (3), 8.178 (5)
β (°) 94.44 (3)
V3)1147.7 (11)
Z4
Radiation typeCu Kα
µ (mm1)0.81
Crystal size (mm)0.26 × 0.19 × 0.12
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2172, 2172, 1806
Rint0.000
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.151, 1.07
No. of reflections2172
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.31

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), CORINC (Dräger & Gattow, 1971), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···F1i0.952.323.006 (3)128
C8—H8···N15ii0.952.603.483 (3)155
Symmetry codes: (i) x, y1, z; (ii) x+1, y+1/2, z+3/2.
 

Acknowledgements

The authors thank the Alexander von Humbolt Foundation (AvH) for funding.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDräger, M. & Gattow, G. (1971). Acta Chem. Scand. 25, 761–762.  Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationMyers, M. J., Cherkofsky, S. C. & Haber, S. B. (1985). Res. Discl., 253, 223–224.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWilkerson, W. W., Cherkofsky, S. C. & Haber, S. B. (1985). Res. Discl., 253, 220–222.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds