metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[aqua­bis­(μ-benzene-1,2-di­carboxyl­ato)ethano­ltetra­lithium]

aUniversidad Politécnica de Tlaxcala, Carretera Federal Tlaxcala-Puebla Km 9.5, Tepeyanco, Tlaxcala, México, and bCentro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa CP 62209, Cuernavaca Mor., México
*Correspondence e-mail: tlahuext@ciq.uaem.mx

(Received 23 January 2009; accepted 27 January 2009; online 4 February 2009)

In the crystal structure of the title compound [Li4(C8H4O4)2(C2H5OH)(H2O)]n, there are four crystallographically independent metal centers each of which is coordinated by four O atoms. The benzene-1,2-dicarboxyl­ate groups act as bidentate–bridging ligands producing a two-dimensional coordination network parallel to the ab plane. The coordination polymer is further stabilized by coordination of water and ethanol mol­ecules by the Li+ ions. Simultaneously, the water and ethanol mol­ecules are involved in O—H⋯O and C—H⋯π inter­actions.

Related literature

For related literature, see: Łyszczek et al. (2008[Łyszczek, R., Mazur, L. & Rzączyńsk, Z. (2008). Inorg. Chem. Commun. 11, 1091-1093.]); Chae et al. (2004[Chae, H. K., Siberio-Perez, D. Y., Kim, J., Go, Y., Eddaoudi, M., Matzger, A. J., O'Keeffe, M. & Yaghi, O. M. (2004). Nature (London), 427, 523-527.]); García-Zarracino et al. (2003[García-Zarracino, R., Ramos-Quiñones, J. & Höpfl, H. (2003). Inorg. Chem. 42, 3835-3845.]); García-Zarracino & Höpfl (2004[García-Zarracino, R. & Höpfl, H. (2004). Angew. Chem. Int. Ed. 43, 1507-1511.]); García-Zarracino et al. (2008[García-Zarracino, R., Rangel-Marrón, M., Tlahuext, H. & Höpfl, H. (2008). Acta Cryst. E64, m1626.]). For analysis of hydrogen-bonding patterns, see: Hunter (1994[Hunter, C. A. (1994). Chem. Soc. Rev. pp. 101-109.]); Desiraju (1991[Desiraju, G. R. (1991). Acc. Chem. Res. 24, 290-296.]).

[Scheme 1]

Experimental

Crystal data
  • [Li4(C8H4O4)2(C2H6O)(H2O)]

  • Mr = 420.07

  • Triclinic, [P \overline 1]

  • a = 7.5254 (7) Å

  • b = 10.0538 (10) Å

  • c = 13.5073 (13) Å

  • α = 106.460 (2)°

  • β = 91.185 (2)°

  • γ = 103.046 (2)°

  • V = 950.84 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 (2) K

  • 0.49 × 0.36 × 0.06 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.945, Tmax = 1.000 (expected range = 0.938–0.993)

  • 10069 measured reflections

  • 3735 independent reflections

  • 3110 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.129

  • S = 1.09

  • 3735 reflections

  • 299 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9⋯O10i 0.841 (13) 1.947 (17) 2.767 (2) 165 (2)
O10—H10A⋯O1 0.84 (2) 1.97 (2) 2.764 (2) 156 (2)
O10—H10B⋯O6i 0.84 (1) 1.984 (12) 2.797 (2) 163 (3)
C17—H17ACg2 0.97 2.86 3.584 (3) 132
C18—H18CCg1i 0.96 2.70 3.572 (3) 152
Symmetry code: (i) -x, -y+1, -z+1. Cg1 and Cg2 are the centroids of the C2–C7 and C10–C15 rings, respectively.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus-NT (Bruker, 2001[Bruker (2001). SAINT-Plus-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus-NT; program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL-NT; molecular graphics: SHELXTL-NT; software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

Metal-organic polymers are widely studied for their properties arising from the presence of a rigid framework with open channels and cavities. Frequently, such coordination polymers are constructed from metal ions and polycarboxylate linkers; however, systems containing main group elements are little explored so far (Łyszczek et al., 2008; García-Zarracino et al., 2008; Chae et al., 2004; García-Zarracino et al., 2003; García-Zarracino & Höpfl, 2004).

We describe herein the crystal structure of dilithium phthalate solvate [(C8H4O4)2Li4(H2O)(C2H5OH)]n. The asymmetric unit of the title compound contains two benzene-1,2-dicarboxylate ligands, four crystallographically independent lithium ions, an ethanol molecule and a water molecule. The four lithium ions have distorted tetrahedral coordination environments as shown in Fig. 1. The O—Li—O bond angles range from 96.90 (15) to 127.86 (19)°. The Li—O bond lengths vary from 1.901 (4) to 2.009 (4) Å, whereby it is interesting to note that the Li—O(H)Et bond is significantly shorter [1.910 (4) Å] than the remaining bonds, the only exception being Li—O1 [1.901 (4) Å]. Coordination of the crystallographically independent Li centers through bridging-bidentate benzene-1,2-dicarboxylate groups generates a two-dimensional network parallel to the ab plane (Fig. 2). In this two-dimensional coordination polymer four different LinOn ring structures can be identified: I (n= 4), II, III (n =6) and IV (n=8). It is notheworthy to mention that the COO groups in the benzene-1,2-dicarboxylate ligands adopt different coordination modes and torsion angles with respect to the corresponding aromatic ring plane: µ3 and -72.2 (3)° for C(1)OO, µ4 and -24.9 (3)° for C(8)OO, µ3 and 21.0 (3)° for C(9)OO, µ4 and 88.8 (2)° for C(16)OO.

Packing is further stabilized by ethanol and water molecules which are coordinated to Li(1) and Li(2), respectively. Both solvent molecules display O—H···O and C—H···π hydrogen bonds (Table 1, Fig. 3). The distances from the methylene (C17) and methyl (C18) groups to centroids Cg2 (C10—C15) and Cg1 (C2—C7) are 3.584 (3) and 3.572 (3) Å, respectively (Hunter, 1994; Desiraju, 1991).

Related literature top

For related literature, see: Łyszczek et al. (2008); Chae et al. (2004); García-Zarracino et al. (2003); García-Zarracino & Höpfl (2004); García-Zarracino et al. (2008). For analysis of hydrogen bonding patterns, see: Hunter (1994); Desiraju (1991). Cg1 and Cg2 are the centroids of the C2–C7 and C10–C15 rings, respectively.

Experimental top

Single crystals were obtained by slow evaporation of a solution (EtOH, 15 ml) containing benzene-1,2-dicarboxylic acid (0.50 g, 3.0 mmol) and lithium hydroxide dihydrate (0.36 g, 6.0 mmol).

Refinement top

Aromatic and aliphatic H atoms were positioned geometrically and constrained using the riding-model approximation [C-Haryl = 0.93 Å, Uiso(Haryl)= 1.2 Ueq(C); C-Hmethylene = 0.97 Å, Uiso(Hmethylene) = 1.2 Ueq(C); C-Hmethyl = 0.96, Uiso(Hmethyl) = 1.5 Ueq(C)]. Atoms bonded to O (H9, H10A and H10B), were located by difference Fourier maps. Their coordinates were refined with a distance restraint O—H = 0.84 Å and [Uiso(H) = 1.5 Ueq(O)].

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus-NT (Bruker, 2001); data reduction: SAINT-Plus-NT (Bruker, 2001); program(s) used to solve structure: SHELXTL-NT (Sheldrick, 2008); program(s) used to refine structure: SHELXTL-NT (Sheldrick, 2008); molecular graphics: SHELXTL-NT (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2003) and publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Crystal packing of the title compound, showing the two-dimensional network parallel to the ab plane. For clarity, hydrogen and carbon atoms are omitted.
[Figure 3] Fig. 3. View of O—H···O and the facial C—H···π hydrogen bonds. Dashed lines indicate the vectors from the methylene (C17) and methyl (C18) groups to centroids Cg2 (C10—C15) and Cg1 (C2—C7), respectively.
Poly[aquabis(µ-benzene-1,2-dicarboxylato)ethanoltetralithium] top
Crystal data top
[Li4(C8H4O4)2(C2H6O)(H2O)]Z = 2
Mr = 420.07F(000) = 432
Triclinic, P1Dx = 1.467 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5254 (7) ÅCell parameters from 5811 reflections
b = 10.0538 (10) Åθ = 2.3–27.5°
c = 13.5073 (13) ŵ = 0.12 mm1
α = 106.460 (2)°T = 293 K
β = 91.185 (2)°Plate, colourless
γ = 103.046 (2)°0.49 × 0.36 × 0.06 mm
V = 950.84 (16) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3735 independent reflections
Radiation source: fine-focus sealed tube3110 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 8.3 pixels mm-1θmax = 26.0°, θmin = 1.6°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1212
Tmin = 0.945, Tmax = 1.0l = 1616
10069 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0657P)2 + 0.0955P]
where P = (Fo2 + 2Fc2)/3
3735 reflections(Δ/σ)max < 0.001
299 parametersΔρmax = 0.29 e Å3
3 restraintsΔρmin = 0.20 e Å3
Crystal data top
[Li4(C8H4O4)2(C2H6O)(H2O)]γ = 103.046 (2)°
Mr = 420.07V = 950.84 (16) Å3
Triclinic, P1Z = 2
a = 7.5254 (7) ÅMo Kα radiation
b = 10.0538 (10) ŵ = 0.12 mm1
c = 13.5073 (13) ÅT = 293 K
α = 106.460 (2)°0.49 × 0.36 × 0.06 mm
β = 91.185 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3735 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3110 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 1.0Rint = 0.039
10069 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0543 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.29 e Å3
3735 reflectionsΔρmin = 0.20 e Å3
299 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Li10.3218 (5)0.6867 (3)0.6127 (3)0.0274 (7)
Li20.1872 (5)0.3690 (4)0.4990 (3)0.0287 (8)
Li30.1436 (5)0.9010 (3)0.4401 (3)0.0271 (7)
Li40.4303 (5)1.1686 (4)0.5415 (3)0.0277 (7)
O10.51646 (19)0.40347 (14)0.33549 (11)0.0311 (4)
H90.0361 (13)0.716 (3)0.6978 (19)0.047*
O20.60250 (18)0.63805 (14)0.41291 (11)0.0277 (3)
O30.21664 (18)0.55545 (14)0.47330 (10)0.0263 (3)
O40.05081 (18)0.70170 (14)0.44799 (11)0.0277 (3)
O50.20599 (18)1.05156 (15)0.57359 (10)0.0272 (3)
O60.02639 (18)1.04904 (15)0.67106 (11)0.0313 (4)
O70.60652 (17)1.08648 (14)0.60341 (10)0.0251 (3)
O80.48228 (19)0.86333 (14)0.60088 (11)0.0286 (3)
O90.1425 (2)0.7081 (2)0.71036 (12)0.0434 (4)
O100.1786 (2)0.24140 (16)0.35725 (13)0.0355 (4)
H10A0.2810 (17)0.269 (3)0.3365 (19)0.053*
H10B0.155 (4)0.1522 (4)0.345 (2)0.053*
C10.5022 (3)0.5289 (2)0.34916 (15)0.0224 (4)
C20.3625 (3)0.5497 (2)0.27672 (15)0.0236 (4)
C30.3998 (3)0.5279 (2)0.17410 (17)0.0351 (5)
H30.50510.49830.15310.042*
C40.2845 (4)0.5489 (3)0.10264 (17)0.0408 (6)
H40.31240.53450.03420.049*
C50.1273 (4)0.5915 (2)0.13316 (18)0.0414 (6)
H50.04820.60520.08520.050*
C60.0877 (3)0.6136 (2)0.23443 (16)0.0314 (5)
H60.01790.64330.25450.038*
C70.2028 (3)0.59242 (19)0.30770 (15)0.0227 (4)
C80.1526 (2)0.6171 (2)0.41697 (15)0.0220 (4)
C90.1401 (3)1.05967 (19)0.65956 (15)0.0226 (4)
C100.2681 (3)1.0844 (2)0.75287 (15)0.0254 (4)
C110.2166 (3)1.1396 (2)0.85110 (17)0.0360 (5)
H110.10301.16150.85790.043*
C120.3293 (4)1.1626 (3)0.93858 (18)0.0446 (6)
H120.29241.19981.00380.054*
C130.4977 (4)1.1299 (3)0.92891 (18)0.0453 (6)
H130.57471.14500.98780.054*
C140.5521 (3)1.0751 (2)0.83213 (17)0.0348 (5)
H140.66541.05250.82620.042*
C150.4401 (3)1.0531 (2)0.74352 (15)0.0237 (4)
C160.5114 (2)0.9964 (2)0.64110 (15)0.0214 (4)
C170.1858 (3)0.7394 (3)0.81807 (18)0.0484 (7)
H17A0.29740.81480.83910.058*
H17B0.20910.65520.83220.058*
C180.0380 (4)0.7851 (3)0.8815 (2)0.0621 (8)
H18A0.01260.86750.86710.093*
H18B0.07720.80850.95380.093*
H18C0.07080.70870.86440.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li10.0269 (18)0.0260 (18)0.0314 (19)0.0084 (14)0.0015 (14)0.0105 (15)
Li20.0232 (18)0.0280 (18)0.036 (2)0.0073 (14)0.0001 (14)0.0106 (15)
Li30.0244 (18)0.0259 (17)0.0326 (19)0.0064 (14)0.0026 (14)0.0107 (15)
Li40.0256 (18)0.0272 (18)0.0328 (19)0.0062 (14)0.0019 (15)0.0129 (15)
O10.0299 (8)0.0243 (8)0.0430 (9)0.0112 (6)0.0011 (7)0.0123 (6)
O20.0221 (7)0.0252 (7)0.0357 (8)0.0050 (6)0.0027 (6)0.0096 (6)
O30.0260 (8)0.0268 (7)0.0299 (8)0.0089 (6)0.0005 (6)0.0126 (6)
O40.0228 (7)0.0253 (7)0.0397 (9)0.0102 (6)0.0086 (6)0.0131 (6)
O50.0222 (7)0.0308 (8)0.0277 (8)0.0048 (6)0.0016 (6)0.0088 (6)
O60.0184 (8)0.0384 (9)0.0428 (9)0.0116 (6)0.0064 (6)0.0167 (7)
O70.0162 (7)0.0272 (7)0.0345 (8)0.0047 (6)0.0019 (6)0.0137 (6)
O80.0335 (8)0.0217 (7)0.0341 (8)0.0109 (6)0.0055 (6)0.0101 (6)
O90.0273 (9)0.0688 (12)0.0372 (9)0.0183 (8)0.0039 (7)0.0150 (8)
O100.0246 (8)0.0303 (8)0.0503 (10)0.0066 (7)0.0062 (7)0.0095 (8)
C10.0175 (10)0.0254 (10)0.0279 (11)0.0076 (8)0.0073 (8)0.0111 (8)
C20.0238 (10)0.0194 (10)0.0271 (11)0.0040 (8)0.0005 (8)0.0071 (8)
C30.0369 (13)0.0377 (12)0.0337 (12)0.0132 (10)0.0081 (10)0.0117 (10)
C40.0558 (16)0.0444 (14)0.0243 (12)0.0123 (12)0.0024 (11)0.0132 (10)
C50.0521 (15)0.0398 (13)0.0336 (13)0.0143 (12)0.0121 (11)0.0113 (10)
C60.0301 (12)0.0278 (11)0.0365 (13)0.0114 (9)0.0063 (9)0.0071 (9)
C70.0223 (10)0.0177 (9)0.0280 (11)0.0045 (8)0.0026 (8)0.0071 (8)
C80.0154 (9)0.0192 (9)0.0305 (11)0.0019 (7)0.0009 (8)0.0077 (8)
C90.0212 (10)0.0172 (9)0.0317 (11)0.0069 (8)0.0034 (8)0.0093 (8)
C100.0259 (11)0.0226 (10)0.0294 (11)0.0067 (8)0.0040 (8)0.0097 (8)
C110.0340 (13)0.0394 (13)0.0346 (13)0.0120 (10)0.0089 (10)0.0083 (10)
C120.0504 (16)0.0543 (15)0.0258 (12)0.0130 (12)0.0097 (11)0.0061 (11)
C130.0450 (15)0.0578 (16)0.0295 (13)0.0053 (12)0.0079 (11)0.0136 (11)
C140.0294 (12)0.0409 (13)0.0337 (12)0.0083 (10)0.0037 (9)0.0110 (10)
C150.0243 (10)0.0202 (10)0.0270 (10)0.0035 (8)0.0006 (8)0.0094 (8)
C160.0148 (9)0.0247 (10)0.0281 (11)0.0085 (8)0.0033 (8)0.0105 (8)
C170.0380 (14)0.0637 (17)0.0381 (14)0.0000 (12)0.0020 (11)0.0162 (12)
C180.067 (2)0.0632 (19)0.0450 (16)0.0023 (15)0.0195 (14)0.0077 (14)
Geometric parameters (Å, º) top
Li1—O1i1.901 (4)O10—H10A0.84 (2)
Li1—O91.910 (4)O10—H10B0.840 (10)
Li1—O81.959 (4)C1—C21.510 (3)
Li1—O31.993 (4)C2—C31.385 (3)
Li2—O31.967 (4)C2—C71.398 (3)
Li2—O101.970 (4)C3—C41.376 (3)
Li2—O2i1.986 (4)C3—H30.9300
Li2—O4ii1.998 (4)C4—C51.379 (3)
Li3—O6iii1.964 (4)C4—H40.9300
Li3—O51.965 (4)C5—C61.373 (3)
Li3—O7iv1.970 (4)C5—H50.9300
Li3—O42.002 (3)C6—C71.394 (3)
Li4—O2iv1.940 (4)C6—H60.9300
Li4—O51.961 (4)C7—C81.497 (3)
Li4—O71.995 (4)C9—C101.498 (3)
Li4—O8iv2.009 (4)C10—C111.386 (3)
O1—C11.251 (2)C10—C151.400 (3)
O1—Li1i1.901 (4)C11—C121.373 (3)
O2—C11.257 (2)C11—H110.9300
O2—Li4iv1.940 (4)C12—C131.379 (4)
O2—Li2i1.986 (4)C12—H120.9300
O3—C81.258 (2)C13—C141.377 (3)
O4—C81.261 (2)C13—H130.9300
O4—Li2ii1.998 (4)C14—C151.384 (3)
O5—C91.261 (2)C14—H140.9300
O6—C91.250 (2)C15—C161.499 (3)
O6—Li3iii1.964 (4)C17—C181.493 (4)
O7—C161.255 (2)C17—H17A0.9700
O7—Li3iv1.970 (4)C17—H17B0.9700
O8—C161.258 (2)C18—H18A0.9600
O8—Li4iv2.009 (4)C18—H18B0.9600
O9—C171.413 (3)C18—H18C0.9600
O9—H90.841 (13)
O1i—Li1—O9105.47 (17)C4—C3—C2121.5 (2)
O1i—Li1—O8103.97 (17)C4—C3—H3119.3
O9—Li1—O8116.44 (18)C2—C3—H3119.3
O1i—Li1—O3106.04 (16)C3—C4—C5119.6 (2)
O9—Li1—O3112.98 (18)C3—C4—H4120.2
O8—Li1—O3110.81 (17)C5—C4—H4120.2
O3—Li2—O10101.37 (17)C6—C5—C4119.9 (2)
O3—Li2—O2i112.47 (17)C6—C5—H5120.0
O10—Li2—O2i110.56 (17)C4—C5—H5120.0
O3—Li2—O4ii114.83 (17)C5—C6—C7121.2 (2)
O10—Li2—O4ii105.75 (17)C5—C6—H6119.4
O2i—Li2—O4ii111.15 (18)C7—C6—H6119.4
O6iii—Li3—O5115.79 (17)C6—C7—C2118.77 (19)
O6iii—Li3—O7iv100.67 (16)C6—C7—C8119.09 (18)
O5—Li3—O7iv97.71 (16)C2—C7—C8122.15 (17)
O6iii—Li3—O4116.55 (17)O3—C8—O4123.65 (18)
O5—Li3—O4115.86 (17)O3—C8—C7118.68 (17)
O7iv—Li3—O4106.30 (16)O4—C8—C7117.65 (17)
O2iv—Li4—O5104.30 (17)O6—C9—O5123.40 (18)
O2iv—Li4—O7127.86 (19)O6—C9—C10118.31 (17)
O5—Li4—O796.90 (15)O5—C9—C10118.29 (17)
O2iv—Li4—O8iv107.63 (16)O6—C9—Li3iii43.92 (12)
O5—Li4—O8iv123.76 (18)C11—C10—C15118.73 (19)
O7—Li4—O8iv98.37 (15)C11—C10—C9119.75 (19)
C1—O1—Li1i136.25 (17)C15—C10—C9121.52 (17)
C1—O2—Li4iv129.06 (16)C12—C11—C10121.5 (2)
C1—O2—Li2i123.07 (16)C12—C11—H11119.2
Li4iv—O2—Li2i107.38 (16)C10—C11—H11119.2
C8—O3—Li2142.29 (16)C11—C12—C13119.5 (2)
C8—O3—Li1112.98 (15)C11—C12—H12120.3
Li2—O3—Li1100.59 (15)C13—C12—H12120.3
C8—O4—Li2ii119.14 (16)C14—C13—C12120.1 (2)
C8—O4—Li3116.27 (15)C14—C13—H13120.0
Li2ii—O4—Li3124.59 (15)C12—C13—H13120.0
C9—O5—Li4129.30 (16)C13—C14—C15120.8 (2)
C9—O5—Li3130.62 (16)C13—C14—H14119.6
Li4—O5—Li399.23 (15)C15—C14—H14119.6
C9—O6—Li3iii109.88 (16)C14—C15—C10119.38 (19)
C16—O7—Li3iv128.87 (15)C14—C15—C16117.46 (18)
C16—O7—Li4106.10 (15)C10—C15—C16123.16 (17)
Li3iv—O7—Li4121.08 (15)O7—C16—O8123.81 (18)
C16—O8—Li1139.52 (17)O7—C16—C15116.96 (17)
C16—O8—Li4iv106.87 (16)O8—C16—C15119.11 (17)
Li1—O8—Li4iv110.21 (15)O9—C17—C18113.4 (2)
C17—O9—Li1122.55 (17)O9—C17—H17A108.9
C17—O9—H9110.9 (17)C18—C17—H17A108.9
Li1—O9—H9125.6 (17)O9—C17—H17B108.9
Li2—O10—H10A105.3 (19)C18—C17—H17B108.9
Li2—O10—H10B121.2 (18)H17A—C17—H17B107.7
H10A—O10—H10B109 (3)C17—C18—H18A109.5
O1—C1—O2125.25 (18)C17—C18—H18B109.5
O1—C1—C2116.45 (17)H18A—C18—H18B109.5
O2—C1—C2118.11 (16)C17—C18—H18C109.5
C3—C2—C7119.07 (19)H18A—C18—H18C109.5
C3—C2—C1116.90 (18)H18B—C18—H18C109.5
C7—C2—C1124.02 (17)
O10—Li2—O3—C848.3 (3)C7—C2—C3—C40.8 (3)
O2i—Li2—O3—C8166.4 (2)C1—C2—C3—C4177.7 (2)
O4ii—Li2—O3—C865.1 (3)C2—C3—C4—C50.6 (4)
O10—Li2—O3—Li1158.66 (16)C3—C4—C5—C60.5 (4)
O2i—Li2—O3—Li140.6 (2)C4—C5—C6—C70.7 (3)
O4ii—Li2—O3—Li187.9 (2)C5—C6—C7—C20.9 (3)
O1i—Li1—O3—C8159.63 (16)C5—C6—C7—C8179.59 (19)
O9—Li1—O3—C885.3 (2)C3—C2—C7—C61.0 (3)
O8—Li1—O3—C847.4 (2)C1—C2—C7—C6177.47 (18)
O1i—Li1—O3—Li237.91 (19)C3—C2—C7—C8179.55 (18)
O9—Li1—O3—Li277.1 (2)C1—C2—C7—C82.0 (3)
O8—Li1—O3—Li2150.12 (17)Li2—O3—C8—O4105.0 (3)
O6iii—Li3—O4—C8105.3 (2)Li1—O3—C8—O446.0 (2)
O5—Li3—O4—C8113.2 (2)Li2—O3—C8—C776.6 (3)
O7iv—Li3—O4—C85.9 (2)Li1—O3—C8—C7132.36 (18)
C9iii—Li3—O4—C8128.77 (16)Li2ii—O4—C8—O359.5 (3)
O6iii—Li3—O4—Li2ii74.8 (2)Li3—O4—C8—O3120.4 (2)
O5—Li3—O4—Li2ii66.7 (2)Li2ii—O4—C8—C7122.07 (19)
O7iv—Li3—O4—Li2ii173.99 (16)Li3—O4—C8—C758.0 (2)
C9iii—Li3—O4—Li2ii51.4 (2)C6—C7—C8—O3156.66 (18)
Li4iv—Li3—O4—Li2ii153.92 (16)C2—C7—C8—O323.8 (3)
O2iv—Li4—O5—C958.5 (2)C6—C7—C8—O424.8 (3)
O7—Li4—O5—C973.5 (2)C2—C7—C8—O4154.65 (18)
O8iv—Li4—O5—C9178.40 (18)Li3iii—O6—C9—O523.6 (3)
C16iv—Li4—O5—C9161.14 (16)Li3iii—O6—C9—C10155.94 (17)
O2iv—Li4—O5—Li3131.37 (17)Li4—O5—C9—O6137.2 (2)
O7—Li4—O5—Li396.65 (16)Li3—O5—C9—O655.7 (3)
O8iv—Li4—O5—Li38.3 (2)Li4—O5—C9—C1042.3 (3)
C16iv—Li4—O5—Li39.01 (16)Li3—O5—C9—C10124.8 (2)
O6iii—Li3—O5—C9111.4 (2)Li4—O5—C9—Li3iii120.91 (19)
O7iv—Li3—O5—C9142.81 (18)Li3—O5—C9—Li3iii71.9 (2)
O4—Li3—O5—C930.4 (3)O6—C9—C10—C1120.6 (3)
C9iii—Li3—O5—C984.1 (2)O5—C9—C10—C11158.97 (19)
O6iii—Li3—O5—Li478.7 (2)Li3iii—C9—C10—C1119.7 (4)
O7iv—Li3—O5—Li427.15 (17)O6—C9—C10—C15159.43 (18)
O4—Li3—O5—Li4139.50 (18)O5—C9—C10—C1521.0 (3)
C9iii—Li3—O5—Li4105.99 (16)Li3iii—C9—C10—C15160.3 (3)
Li3iii—Li3—O5—Li4125.95 (13)C15—C10—C11—C120.6 (3)
Li4iv—Li3—O5—Li455.88 (16)C9—C10—C11—C12179.4 (2)
O2iv—Li4—O7—C16112.4 (2)C10—C11—C12—C130.1 (4)
O5—Li4—O7—C161.76 (19)C11—C12—C13—C140.2 (4)
O8iv—Li4—O7—C16127.46 (16)C12—C13—C14—C150.6 (4)
C16iv—Li4—O7—C16103.37 (14)C13—C14—C15—C101.3 (3)
O2iv—Li4—O7—Li3iv88.1 (3)C13—C14—C15—C16178.5 (2)
O5—Li4—O7—Li3iv157.75 (15)C11—C10—C15—C141.3 (3)
O8iv—Li4—O7—Li3iv32.0 (2)C9—C10—C15—C14178.69 (18)
C16iv—Li4—O7—Li3iv56.14 (18)C11—C10—C15—C16178.52 (18)
O1i—Li1—O8—C16113.1 (2)C9—C10—C15—C161.5 (3)
O9—Li1—O8—C162.4 (3)Li3iv—O7—C16—O851.7 (3)
O3—Li1—O8—C16133.4 (2)Li4—O7—C16—O8105.6 (2)
O1i—Li1—O8—Li4iv91.69 (18)Li3iv—O7—C16—C15124.2 (2)
O9—Li1—O8—Li4iv152.80 (18)Li4—O7—C16—C1578.46 (19)
O3—Li1—O8—Li4iv21.8 (2)Li3iv—O7—C16—Li4iv59.9 (2)
O1i—Li1—O9—C1736.1 (3)Li4—O7—C16—Li4iv97.41 (14)
O8—Li1—O9—C1778.6 (3)Li1—O8—C16—O7166.9 (2)
O3—Li1—O9—C17151.5 (2)Li4iv—O8—C16—O711.2 (2)
Li1i—O1—C1—O23.7 (4)Li1—O8—C16—C1517.3 (3)
Li1i—O1—C1—C2171.2 (2)Li4iv—O8—C16—C15172.99 (17)
Li4iv—O2—C1—O1168.20 (19)Li1—O8—C16—Li4iv155.7 (3)
Li2i—O2—C1—O12.7 (3)C14—C15—C16—O787.3 (2)
Li4iv—O2—C1—C217.0 (3)C10—C15—C16—O792.6 (2)
Li2i—O2—C1—C2172.08 (17)C14—C15—C16—O888.8 (2)
O1—C1—C2—C369.0 (2)C10—C15—C16—O891.3 (2)
O2—C1—C2—C3106.2 (2)C14—C15—C16—Li4iv107.8 (5)
O1—C1—C2—C7112.5 (2)C10—C15—C16—Li4iv72.3 (6)
O2—C1—C2—C772.2 (2)Li1—O9—C17—C18166.4 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+1; (iii) x, y+2, z+1; (iv) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···O10ii0.84 (1)1.95 (2)2.767 (2)165 (2)
O10—H10A···O10.84 (2)1.97 (2)2.764 (2)156 (2)
O10—H10B···O6ii0.84 (1)1.98 (1)2.797 (2)163 (3)
C17—H17A···Cg20.972.863.584 (3)132
C18—H18C···Cg1ii0.962.703.572 (3)152
Symmetry code: (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Li4(C8H4O4)2(C2H6O)(H2O)]
Mr420.07
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.5254 (7), 10.0538 (10), 13.5073 (13)
α, β, γ (°)106.460 (2), 91.185 (2), 103.046 (2)
V3)950.84 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.49 × 0.36 × 0.06
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.945, 1.0
No. of measured, independent and
observed [I > 2σ(I)] reflections
10069, 3735, 3110
Rint0.039
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.129, 1.09
No. of reflections3735
No. of parameters299
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.20

Computer programs: SMART (Bruker, 2000), SAINT-Plus-NT (Bruker, 2001), SHELXTL-NT (Sheldrick, 2008), PLATON (Spek, 2003) and publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H9···O10i0.841 (13)1.947 (17)2.767 (2)165 (2)
O10—H10A···O10.84 (2)1.97 (2)2.764 (2)156 (2)
O10—H10B···O6i0.84 (1)1.984 (12)2.797 (2)163 (3)
C17—H17A···Cg20.972.863.584 (3)132
C18—H18C···Cg1i0.962.703.572 (3)152
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

This work was supported by Consejo Nacional de Ciencia y Tecnología (CIAM-59213 for HH).

References

First citationBruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SAINT-Plus-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChae, H. K., Siberio-Perez, D. Y., Kim, J., Go, Y., Eddaoudi, M., Matzger, A. J., O'Keeffe, M. & Yaghi, O. M. (2004). Nature (London), 427, 523–527.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDesiraju, G. R. (1991). Acc. Chem. Res. 24, 290–296.  CrossRef CAS Web of Science Google Scholar
First citationGarcía-Zarracino, R. & Höpfl, H. (2004). Angew. Chem. Int. Ed. 43, 1507–1511.  Google Scholar
First citationGarcía-Zarracino, R., Ramos-Quiñones, J. & Höpfl, H. (2003). Inorg. Chem. 42, 3835–3845.  Web of Science CSD CrossRef PubMed Google Scholar
First citationGarcía-Zarracino, R., Rangel-Marrón, M., Tlahuext, H. & Höpfl, H. (2008). Acta Cryst. E64, m1626.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHunter, C. A. (1994). Chem. Soc. Rev. pp. 101–109.  CrossRef Web of Science Google Scholar
First citationŁyszczek, R., Mazur, L. & Rzączyńsk, Z. (2008). Inorg. Chem. Commun. 11, 1091–1093.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds