organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages o464-o465

6-Meth­­oxy-9-phenyl­sulfonyl-2-(2-thien­yl)-9H-thieno[2,3-b]carbazole

aDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, bDepartment of Physics, Presidency College, Chennai 600 005, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com

(Received 27 January 2009; accepted 28 January 2009; online 6 February 2009)

In the title compound, C25H17NO3S3, the mean planes of the thieno[2,3-b]carbazole and phenyl rings are inclined at an angle of 63.6 (1)°. The mol­ecular structure features short intra­molecular C—H⋯O contacts and the crystal packing exhibits weak inter­molecular C—H⋯S and ππ inter­actions [centroid-to-centroid distances 3.734 (2)–3.888 (2) Å].

Related literature

For biological activities of carbazole derivatives, see: Diaz et al. (2002[Diaz, J. L., Villacampa, B., Lopez-Calahorra, F. & Velasco, D. (2002). Chem. Mater. 14, 2240-2251.]); Itoigawa et al. (2000[Itoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod. 63, 893-897.]); Ramsewak et al. (1999[Ramsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444-447.]); Tachibana et al. (2001[Tachibana, Y., Kikuzaki, H., Lajis, N. H. & Nakatani, N. (2001). J. Agric. Food Chem. 49, 5589-5594.]); Zhang et al. (2004[Zhang, Q., Chen, J., Cheng, Y., Wang, L., Ma, D., Jing, X. & Wang, F. (2004). J. Mater. Chem. 14, 895-900.]). For the structures of closely related compounds, see: Chakkaravarthi et al. (2008a[Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008a). Acta Cryst. E64, o1667-o1668.],b[Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008b). Acta Cryst. E64, o1712-o1713.]); Hökelek et al. (1998[Hökelek, T., Gündüz, H., Patir, S. & Uludaug, N. (1998). Acta Cryst. C54, 1297-1299.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For graph-set notation, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). For general background, see: Govindasamy et al. (1998[Govindasamy, L., Velmurugan, D., Ravikumar, K. & Mohanakrishnan, A. K. (1998). Acta Cryst. C54, 277-279.]).

[Scheme 1]

Experimental

Crystal data
  • C25H17NO3S3

  • Mr = 475.58

  • Orthorhombic, P b c a

  • a = 15.3900 (12) Å

  • b = 10.1269 (7) Å

  • c = 28.233 (2) Å

  • V = 4400.2 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 295 (2) K

  • 0.25 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEX2 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.914, Tmax = 0.931

  • 25628 measured reflections

  • 5212 independent reflections

  • 3570 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.175

  • S = 1.04

  • 5212 reflections

  • 290 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1 0.93 2.57 2.930 (4) 103
C8—H8⋯O1 0.93 2.39 2.940 (3) 117
C19—H19⋯O2 0.93 2.39 2.943 (4) 118
C22—H22⋯S2i 0.93 2.80 3.684 (3) 158
Symmetry code: (i) -x+2, -y-1, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In continuation of our studies of carbazole derivatives, which are found to possess various biological activities, such as antitumor (Itoigawa et al., 2000), antioxidative (Tachibana et al., 2001), anti-inflammatory and antimutagenic (Ramsewak et al., 1999), the crystal structure of the title compound has been determined. These compounds are thermally and photochemically stable, which makes them useful materials for technological applications. For instance, the carbazole ring is easily functionalized and covalently linked to other molecules (Diaz et al., 2002). This enables its use as a convenient building block for the design and synthesis of molecular glasses, which are widely studied as components of electroactive and photoactive materials (Zhang et al., 2004).

The geometric parameters of the title molecule (Fig. 1) agree well with reported similar structures (Chakkaravarthi et al., 2008a,b; Hökelek et al., 1998). The mean planes of thieno[2,3-b]carbazole and phenyl rings are inclined at an angle of 63.6 (1)°. Thiophene ring C21/C22/C23/C24/S3 forms a dihedral angle of 49.2 (1)° with phenyl ring. The methoxy group is slightly twisted [torsion angle C16—C17—O3—C25 is 13.9 (5)°] out of the plane of the benzene ring C15–C20.

The N—C bond lengths, namely N1—C7 and N1—C20 [1.434 (4) and 1.450 (4) Å] deviate slightly from the normal mean value reported in the literature (Allen et al., 1987). This indicates that the substitution of the phenylsulfonyl group at atom N1 results the lengthening of C—N bond lengths. This may be due to the electron-withdrawing character of the phenylsulfonyl group (Govindasamy et al., 1998).

A distorted tetrahedral geometry around S1 is observed. The deviations being seen for the O—S—O [O1—S1—O2 119.3 (1)°] and O—S—N [O1—S1—N1 106.8 (1)°] angles. The widening of the angles may be due to repulsive interactions between the two short SO bonds, similar to what is observed in similar structures (Chakkaravarthi et al., 2008a,b). The sum of the bond angles around N1 [343.3 (2)°] indicate the sp2 hybridized state of the atom N1 in the molecule.

The torsion angles O1—S1—N1—C7 and O1—S1—C1—C6 [50.2 (2)° and -22.3 (3)°, respectively] describe the syn conformation of the phenylsulfonyl group with respect to carbazole ring system. This conformation is influenced by the intramolecular C—H··· O hydrogen bonds (Table 1); C6—H6··· O1, C8—H8··· O1 and C19—H19···O2, involving sulfonyl atoms O1 and O2. In addition, intramolecular C8—H8···O1 and C19—H19···O2 hydrogen bonds form six-membered rings, both with a graph-set motif of S(6) and C19—H19···O2 forms five-membered ring, with graph-set motif of S(5). The intermolecular C22—H22—S2 interaction generates a ten-membered ring, with graph-set motif of R22(10) (Etter et al., 1990).

The crystal structure of the title compound is stabilized by weak intermolecular C—H···S (Fig. 2 and Table 1) and ππ [Cg1···Cg3(2 - x, -y, -z) distance of 3.781 (2) Å; Cg1···Cg5(2 - x, -y, -z) distance of 3.734 (2) Å; Cg2···Cg6(2 - x, -y, -z) distance of 3.888 (2) Å, Cg3···Cg1(2 - x, -y, -z) distance of 3.781 (2) Å, Cg5···Cg5(2 - x, -y, -z) distance of 3.770 (2) Å and Cg6···Cg2(1 - x, 1 - y, -z) distance of 3.888 (2) Å (Cg1, Cg2, Cg3, Cg5 and Cg6 are the centroid of the rings defined by the atoms S2/C9/C12/C11/C10, S3/C21/C22/C23/C24, N1/C7/C14/C15/C20, C7/C8/C9/C12/C13/C14 and C15–C20, respectively)] interactions.

Related literature top

For biological activities of carbazole derivatives, see: Diaz et al. (2002); Itoigawa et al. (2000); Ramsewak et al. (1999); Tachibana et al. (2001); Zhang et al. (2004). For the structures of closely related compounds, see: Chakkaravarthi et al. (2008a,b); Hökelek et al. (1998). For bond-length data, see: Allen et al. (1987). For graph-set notation, see: Etter et al. (1990). For general background, see: Govindasamy et al. (1998).

Experimental top

To a solution of diethyl-2-((2-bromomethyl)-5-methoxy-1- (phenylsulfonyl)-1H-indol-3-yl)methylene)malonate (0.2 g, 0.36 mmol) in dry 1,2-DCE (8 ml), ZnBr2 (0.16 g, 0.71 mmol) and bithiophene (0.07 g, 0.42 mmol) were added. The reaction mixture was then refluxed for 2 h under N2 atmosphere. It was then poured over ice–water (50 ml) containing 2 ml of conc. HCl, extracted with chloroform (3 × 10 ml) and dried (Na2SO4). The removal of solvent followed by flash column chromatographic purification (silica gel, 230–420 mesh, n-hexane/ethyl acetate 99:1) afforded the compound (I), suitable for X-ray analysis..

Refinement top

H atoms were positioned geometrically and refined using riding model with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms and C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms. The components of the anisotropic displacement parameters in direction of the bond of C21, C22, C23 and S3 were restrained to be equal within an effective standard deviation of 0.001 using the DELU command in SHELXL (Sheldrick, 2008).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The packing of the title compound, viewed down the b axis. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
6-Methoxy-9-phenylsulfonyl-2-(2-thienyl)-9H-thieno[2,3-b]carbazole top
Crystal data top
C25H17NO3S3F(000) = 1968
Mr = 475.58Dx = 1.436 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 6275 reflections
a = 15.3900 (12) Åθ = 2.5–25.4°
b = 10.1269 (7) ŵ = 0.37 mm1
c = 28.233 (2) ÅT = 295 K
V = 4400.2 (6) Å3Block, colourless
Z = 80.25 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEX2
diffractometer
5212 independent reflections
Radiation source: fine-focus sealed tube3570 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω and ϕ scansθmax = 27.8°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1720
Tmin = 0.914, Tmax = 0.931k = 713
25628 measured reflectionsl = 3736
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0908P)2 + 2.7061P]
where P = (Fo2 + 2Fc2)/3
5212 reflections(Δ/σ)max < 0.001
290 parametersΔρmax = 0.55 e Å3
2 restraintsΔρmin = 0.55 e Å3
Crystal data top
C25H17NO3S3V = 4400.2 (6) Å3
Mr = 475.58Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.3900 (12) ŵ = 0.37 mm1
b = 10.1269 (7) ÅT = 295 K
c = 28.233 (2) Å0.25 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEX2
diffractometer
5212 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3570 reflections with I > 2σ(I)
Tmin = 0.914, Tmax = 0.931Rint = 0.040
25628 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0532 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.04Δρmax = 0.55 e Å3
5212 reflectionsΔρmin = 0.55 e Å3
290 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.93528 (19)0.0624 (3)0.20557 (10)0.0443 (6)
C20.8927 (2)0.0321 (4)0.23253 (11)0.0603 (9)
H20.92110.10840.24230.072*
C30.8070 (3)0.0097 (5)0.24438 (14)0.0821 (13)
H30.77720.07140.26250.099*
C40.7651 (3)0.1032 (6)0.22961 (16)0.0911 (14)
H40.70710.11650.23760.109*
C50.8074 (3)0.1944 (5)0.20365 (15)0.0873 (14)
H50.77840.27040.19400.105*
C60.8939 (2)0.1764 (4)0.19114 (12)0.0632 (9)
H60.92320.23970.17340.076*
C70.98916 (17)0.0076 (3)0.09633 (9)0.0385 (6)
C81.00292 (18)0.1328 (3)0.07857 (10)0.0447 (7)
H81.04260.19080.09210.054*
C90.95349 (18)0.1667 (3)0.03908 (9)0.0404 (6)
C100.87808 (19)0.2665 (3)0.03036 (10)0.0432 (6)
C110.85167 (18)0.1409 (3)0.02240 (10)0.0434 (6)
H110.81010.09850.04080.052*
C120.89407 (17)0.0797 (3)0.01716 (9)0.0403 (6)
C130.88459 (18)0.0474 (3)0.03532 (9)0.0415 (6)
H130.84740.10750.02080.050*
C140.93126 (16)0.0831 (3)0.07524 (9)0.0379 (6)
C150.93339 (17)0.2031 (3)0.10301 (9)0.0395 (6)
C160.88881 (19)0.3216 (3)0.09834 (10)0.0459 (7)
H160.84970.33490.07370.055*
C170.9044 (2)0.4192 (3)0.13154 (11)0.0491 (7)
C180.9644 (2)0.4001 (3)0.16782 (11)0.0528 (8)
H180.97400.46760.18960.063*
C191.0099 (2)0.2840 (3)0.17224 (10)0.0501 (7)
H191.05090.27230.19610.060*
C200.99236 (17)0.1851 (3)0.13975 (9)0.0417 (6)
C210.85065 (19)0.3600 (3)0.06662 (10)0.0450 (6)
C220.89216 (19)0.4794 (3)0.08041 (10)0.0460 (6)
H220.94180.51420.06640.055*
C230.8466 (2)0.5371 (3)0.11860 (12)0.0569 (8)
H230.86570.61310.13390.068*
C240.7753 (2)0.4750 (4)0.13083 (13)0.0664 (9)
H240.73850.50360.15480.080*
C250.7922 (3)0.5579 (4)0.10138 (15)0.0769 (11)
H25A0.80900.54410.06900.115*
H25B0.76990.64590.10500.115*
H25C0.74810.49530.10990.115*
N11.02958 (15)0.0539 (2)0.13643 (8)0.0421 (5)
O11.08087 (14)0.1554 (2)0.17329 (8)0.0562 (6)
O21.08494 (15)0.0508 (2)0.21908 (8)0.0604 (6)
O30.86577 (17)0.5408 (2)0.13127 (9)0.0695 (7)
S11.04166 (5)0.03348 (8)0.18631 (2)0.0445 (2)
S20.95684 (5)0.31754 (8)0.01006 (3)0.0507 (2)
S30.75741 (7)0.33734 (10)0.09832 (4)0.0750 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0485 (16)0.0515 (16)0.0329 (13)0.0051 (13)0.0020 (11)0.0074 (12)
C20.073 (2)0.063 (2)0.0449 (17)0.0128 (17)0.0092 (16)0.0052 (15)
C30.085 (3)0.096 (3)0.065 (2)0.036 (3)0.031 (2)0.021 (2)
C40.060 (2)0.137 (4)0.076 (3)0.010 (3)0.019 (2)0.016 (3)
C50.074 (3)0.118 (4)0.070 (3)0.037 (3)0.020 (2)0.010 (2)
C60.067 (2)0.073 (2)0.0502 (18)0.0099 (18)0.0100 (16)0.0031 (16)
C70.0345 (12)0.0513 (16)0.0297 (12)0.0015 (11)0.0001 (10)0.0009 (11)
C80.0442 (16)0.0526 (17)0.0372 (14)0.0062 (13)0.0056 (12)0.0003 (12)
C90.0427 (14)0.0433 (15)0.0353 (13)0.0000 (11)0.0009 (11)0.0000 (11)
C100.0455 (15)0.0455 (15)0.0386 (14)0.0005 (12)0.0039 (11)0.0001 (12)
C110.0440 (15)0.0464 (15)0.0397 (14)0.0008 (12)0.0085 (12)0.0007 (12)
C120.0392 (14)0.0467 (15)0.0349 (13)0.0013 (11)0.0007 (11)0.0003 (11)
C130.0398 (14)0.0472 (15)0.0376 (13)0.0036 (12)0.0050 (11)0.0018 (12)
C140.0347 (13)0.0459 (15)0.0331 (13)0.0014 (11)0.0012 (10)0.0010 (11)
C150.0373 (13)0.0477 (15)0.0335 (13)0.0042 (11)0.0007 (10)0.0019 (11)
C160.0427 (15)0.0526 (17)0.0425 (15)0.0014 (13)0.0065 (12)0.0058 (13)
C170.0470 (15)0.0495 (17)0.0508 (17)0.0020 (13)0.0015 (13)0.0084 (13)
C180.0599 (19)0.0549 (18)0.0437 (16)0.0056 (15)0.0068 (14)0.0108 (14)
C190.0535 (17)0.0579 (18)0.0388 (15)0.0058 (14)0.0109 (13)0.0043 (13)
C200.0381 (14)0.0500 (16)0.0370 (14)0.0040 (12)0.0011 (11)0.0007 (12)
C210.0501 (14)0.0442 (15)0.0407 (14)0.0049 (12)0.0022 (10)0.0010 (12)
C220.0426 (15)0.0519 (17)0.0434 (15)0.0052 (12)0.0069 (11)0.0041 (12)
C230.065 (2)0.0474 (17)0.0579 (18)0.0049 (15)0.0049 (14)0.0143 (14)
C240.067 (2)0.065 (2)0.067 (2)0.0017 (18)0.0189 (17)0.0188 (18)
C250.080 (3)0.068 (2)0.082 (3)0.024 (2)0.022 (2)0.013 (2)
N10.0422 (12)0.0502 (14)0.0337 (11)0.0010 (10)0.0041 (9)0.0006 (10)
O10.0533 (13)0.0639 (13)0.0514 (12)0.0212 (11)0.0061 (10)0.0004 (10)
O20.0627 (14)0.0726 (15)0.0460 (12)0.0020 (11)0.0226 (10)0.0019 (11)
O30.0739 (16)0.0571 (14)0.0775 (17)0.0132 (12)0.0235 (13)0.0201 (12)
S10.0414 (4)0.0569 (5)0.0353 (4)0.0058 (3)0.0090 (3)0.0010 (3)
S20.0622 (5)0.0464 (4)0.0435 (4)0.0082 (3)0.0120 (3)0.0020 (3)
S30.0713 (6)0.0670 (6)0.0867 (7)0.0164 (5)0.0298 (5)0.0227 (5)
Geometric parameters (Å, º) top
C1—C61.380 (5)C14—C151.446 (4)
C1—C21.388 (4)C15—C161.389 (4)
C1—S11.750 (3)C15—C201.390 (4)
C2—C31.379 (6)C16—C171.383 (4)
C2—H20.9300C16—H160.9300
C3—C41.376 (7)C17—O31.368 (4)
C3—H30.9300C17—C181.393 (4)
C4—C51.347 (7)C18—C191.374 (5)
C4—H40.9300C18—H180.9300
C5—C61.388 (5)C19—C201.385 (4)
C5—H50.9300C19—H190.9300
C6—H60.9300C20—N11.449 (4)
C7—C81.379 (4)C21—C221.422 (4)
C7—C141.411 (4)C21—S31.707 (3)
C7—N11.434 (3)C22—C231.413 (4)
C8—C91.393 (4)C22—H220.9300
C8—H80.9300C23—C241.311 (5)
C9—C121.412 (4)C23—H230.9300
C9—S21.734 (3)C24—S31.692 (4)
C10—C111.354 (4)C24—H240.9300
C10—C211.457 (4)C25—O31.422 (4)
C10—S21.743 (3)C25—H25A0.9600
C11—C121.434 (4)C25—H25B0.9600
C11—H110.9300C25—H25C0.9600
C12—C131.394 (4)N1—S11.674 (2)
C13—C141.384 (4)O1—S11.422 (2)
C13—H130.9300O2—S11.424 (2)
C6—C1—C2121.4 (3)C17—C16—C15117.9 (3)
C6—C1—S1118.7 (2)C17—C16—H16121.1
C2—C1—S1119.8 (3)C15—C16—H16121.1
C3—C2—C1118.1 (4)O3—C17—C16124.4 (3)
C3—C2—H2121.0O3—C17—C18114.6 (3)
C1—C2—H2121.0C16—C17—C18121.0 (3)
C4—C3—C2120.8 (4)C19—C18—C17121.5 (3)
C4—C3—H3119.6C19—C18—H18119.2
C2—C3—H3119.6C17—C18—H18119.2
C5—C4—C3120.5 (4)C18—C19—C20117.4 (3)
C5—C4—H4119.7C18—C19—H19121.3
C3—C4—H4119.7C20—C19—H19121.3
C4—C5—C6120.8 (4)C19—C20—C15121.8 (3)
C4—C5—H5119.6C19—C20—N1128.9 (3)
C6—C5—H5119.6C15—C20—N1109.3 (2)
C1—C6—C5118.5 (4)C22—C21—C10127.9 (3)
C1—C6—H6120.7C22—C21—S3110.4 (2)
C5—C6—H6120.7C10—C21—S3121.7 (2)
C8—C7—C14122.8 (2)C23—C22—C21109.7 (3)
C8—C7—N1128.3 (2)C23—C22—H22125.1
C14—C7—N1108.9 (2)C21—C22—H22125.1
C7—C8—C9115.7 (3)C24—C23—C22114.7 (3)
C7—C8—H8122.2C24—C23—H23122.7
C9—C8—H8122.2C22—C23—H23122.7
C8—C9—C12123.4 (3)C23—C24—S3112.9 (3)
C8—C9—S2125.4 (2)C23—C24—H24123.6
C12—C9—S2111.2 (2)S3—C24—H24123.6
C11—C10—C21129.8 (3)O3—C25—H25A109.5
C11—C10—S2112.2 (2)O3—C25—H25B109.5
C21—C10—S2118.0 (2)H25A—C25—H25B109.5
C10—C11—C12113.5 (3)O3—C25—H25C109.5
C10—C11—H11123.3H25A—C25—H25C109.5
C12—C11—H11123.3H25B—C25—H25C109.5
C13—C12—C9118.9 (2)C7—N1—C20106.1 (2)
C13—C12—C11129.6 (3)C7—N1—S1118.85 (19)
C9—C12—C11111.5 (2)C20—N1—S1118.30 (18)
C14—C13—C12119.1 (3)C17—O3—C25117.3 (3)
C14—C13—H13120.5O1—S1—O2119.31 (14)
C12—C13—H13120.5O1—S1—N1106.77 (13)
C13—C14—C7120.1 (3)O2—S1—N1106.37 (13)
C13—C14—C15132.2 (3)O1—S1—C1109.39 (15)
C7—C14—C15107.7 (2)O2—S1—C1109.64 (15)
C16—C15—C20120.4 (3)N1—S1—C1104.24 (12)
C16—C15—C14131.6 (2)C9—S2—C1091.58 (13)
C20—C15—C14108.0 (2)C24—S3—C2192.11 (16)
C6—C1—C2—C30.5 (5)C16—C15—C20—C191.1 (4)
S1—C1—C2—C3175.8 (3)C14—C15—C20—C19179.0 (3)
C1—C2—C3—C40.3 (6)C16—C15—C20—N1179.9 (2)
C2—C3—C4—C50.7 (7)C14—C15—C20—N10.2 (3)
C3—C4—C5—C60.2 (7)C11—C10—C21—C22165.1 (3)
C2—C1—C6—C50.8 (5)S2—C10—C21—C2214.8 (4)
S1—C1—C6—C5175.4 (3)C11—C10—C21—S316.4 (5)
C4—C5—C6—C10.5 (6)S2—C10—C21—S3163.72 (17)
C14—C7—C8—C92.2 (4)C10—C21—C22—C23177.0 (3)
N1—C7—C8—C9179.5 (3)S3—C21—C22—C234.4 (3)
C7—C8—C9—C121.4 (4)C21—C22—C23—C243.9 (4)
C7—C8—C9—S2179.3 (2)C22—C23—C24—S31.7 (4)
C21—C10—C11—C12179.9 (3)C8—C7—N1—C20179.9 (3)
S2—C10—C11—C120.2 (3)C14—C7—N1—C201.4 (3)
C8—C9—C12—C130.8 (4)C8—C7—N1—S143.8 (4)
S2—C9—C12—C13178.6 (2)C14—C7—N1—S1137.7 (2)
C8—C9—C12—C11179.5 (3)C19—C20—N1—C7179.6 (3)
S2—C9—C12—C111.2 (3)C15—C20—N1—C71.0 (3)
C10—C11—C12—C13179.0 (3)C19—C20—N1—S143.8 (4)
C10—C11—C12—C90.7 (4)C15—C20—N1—S1137.5 (2)
C9—C12—C13—C142.3 (4)C16—C17—O3—C2513.9 (5)
C11—C12—C13—C14178.0 (3)C18—C17—O3—C25167.9 (3)
C12—C13—C14—C71.6 (4)C7—N1—S1—O150.2 (2)
C12—C13—C14—C15177.5 (3)C20—N1—S1—O1178.7 (2)
C8—C7—C14—C130.7 (4)C7—N1—S1—O2178.7 (2)
N1—C7—C14—C13179.3 (2)C20—N1—S1—O250.3 (2)
C8—C7—C14—C15179.9 (2)C7—N1—S1—C165.5 (2)
N1—C7—C14—C151.3 (3)C20—N1—S1—C165.6 (2)
C13—C14—C15—C160.0 (5)C6—C1—S1—O122.2 (3)
C7—C14—C15—C16179.2 (3)C2—C1—S1—O1161.4 (2)
C13—C14—C15—C20179.9 (3)C6—C1—S1—O2154.8 (3)
C7—C14—C15—C200.7 (3)C2—C1—S1—O228.9 (3)
C20—C15—C16—C170.7 (4)C6—C1—S1—N191.6 (3)
C14—C15—C16—C17179.1 (3)C2—C1—S1—N184.7 (3)
C15—C16—C17—O3179.6 (3)C8—C9—S2—C10179.6 (3)
C15—C16—C17—C181.5 (5)C12—C9—S2—C101.1 (2)
O3—C17—C18—C19178.7 (3)C11—C10—S2—C90.7 (2)
C16—C17—C18—C190.4 (5)C21—C10—S2—C9179.4 (2)
C17—C18—C19—C201.4 (5)C23—C24—S3—C210.9 (3)
C18—C19—C20—C152.2 (4)C22—C21—S3—C243.1 (3)
C18—C19—C20—N1179.3 (3)C10—C21—S3—C24178.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.932.572.930 (4)103
C8—H8···O10.932.392.940 (3)117
C19—H19···O20.932.392.943 (4)118
C22—H22···S2i0.932.803.684 (3)158
Symmetry code: (i) x+2, y1, z.

Experimental details

Crystal data
Chemical formulaC25H17NO3S3
Mr475.58
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)295
a, b, c (Å)15.3900 (12), 10.1269 (7), 28.233 (2)
V3)4400.2 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.25 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEX2
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.914, 0.931
No. of measured, independent and
observed [I > 2σ(I)] reflections
25628, 5212, 3570
Rint0.040
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.175, 1.04
No. of reflections5212
No. of parameters290
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.55

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.932.572.930 (4)103
C8—H8···O10.932.392.940 (3)117
C19—H19···O20.932.392.943 (4)118
C22—H22···S2i0.932.803.684 (3)158
Symmetry code: (i) x+2, y1, z.
 

Acknowledgements

The authors acknowledge the Sophisticated Analytical Instrument Facility, Indian Institute of Technology, Madras, for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008a). Acta Cryst. E64, o1667–o1668.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008b). Acta Cryst. E64, o1712–o1713.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationDiaz, J. L., Villacampa, B., Lopez-Calahorra, F. & Velasco, D. (2002). Chem. Mater. 14, 2240–2251.  Web of Science CrossRef CAS Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGovindasamy, L., Velmurugan, D., Ravikumar, K. & Mohanakrishnan, A. K. (1998). Acta Cryst. C54, 277–279.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Gündüz, H., Patir, S. & Uludaug, N. (1998). Acta Cryst. C54, 1297–1299.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationItoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod. 63, 893–897.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRamsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444–447.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTachibana, Y., Kikuzaki, H., Lajis, N. H. & Nakatani, N. (2001). J. Agric. Food Chem. 49, 5589–5594.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhang, Q., Chen, J., Cheng, Y., Wang, L., Ma, D., Jing, X. & Wang, F. (2004). J. Mater. Chem. 14, 895–900.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages o464-o465
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds