metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[[μ-1,1′-(butane-1,4-di­yl)di­imidazole-κ2N3:N3′](μ-cyclo­hexane-1,4-di­carboxyl­ato-κ4O1,O1′:O4,O4′)nickel(II)] 0.25-hydrate]

aThe Third Hospital of Jilin University, Changchun 130000, People's Republic of China, bSchool of Pharmaceurtical Sciences, Jilin University, Changchun 130000, People's Republic of China, and cThe Second Hospital of Jilin University, Changchun 130000, People's Republic of China
*Correspondence e-mail: weitianyin0431@yahoo.com.cn

(Received 31 January 2009; accepted 3 February 2009; online 11 February 2009)

In the title coordination polymer, {[Ni(C8H10O4)(C10H14N4)]·0.25H2O}n, the coordination of the NiII ion is distorted octa­hedral. The 1,1′-(butane-1,4-di­yl)diimidazole ligand and the cyclo­hexane-1,4-dicarboxyl­ate dianion bridge metal centres, forming a two-dimensional (4,4) network. The network is consolidated by O—H⋯O hydrogen bonds between the statistically occupied water molecules and O atoms of the two carboxylate groups.

Related literature

For potential applications of metal-organic coordination polymers, see: Yang et al. (2008[Yang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233-2235.]). For metal-organic networks with diimidazole-containing ligands, see: Batten & Robson (1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]). For flexible ligands such as 1,1′-(butane-1,4-di­yl)diimidazole, see: Ma et al. (2003[Ma, J.-F., Yang, J., Zheng, G.-L., Li, L. & Liu, J.-F. (2003). Inorg. Chem. 42, 7531-7534.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C8H10O4)(C10H14N4)]·0.25H2O

  • Mr = 423.63

  • Monoclinic, P 21 /c

  • a = 9.0045 (9) Å

  • b = 11.9991 (12) Å

  • c = 17.5811 (17) Å

  • β = 95.755 (2)°

  • V = 1890.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.06 mm−1

  • T = 293 (2) K

  • 0.31 × 0.27 × 0.22 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SAINT; Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.711, Tmax = 0.793

  • 10421 measured reflections

  • 3725 independent reflections

  • 2999 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.097

  • S = 1.03

  • 3725 reflections

  • 259 parameters

  • 5 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—HW12⋯O2i 0.87 (2) 1.99 (5) 2.714 (11) 141 (7)
O1W—HW11⋯O3 0.87 (2) 1.88 (2) 2.663 (12) 149 (4)
Symmetry code: (i) x+1, y, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal-organic coordination polymers are currently of great interest due to their interesting structures and potential applications (Yang et al., 2008). So far, some interesting interpenetrated or entangled metal-organic networks with diimidazole-containing ligands have been documented (Batten & Robson, 1998). Flexible ligands such as 1,1'-(butane-1,4-diyl)diimidazole (L) have not been well explored to date (Ma et al., 2003). In this work, we selected cyclohexane-1,4-dicarboxylatic acid (H2cdc) and L as linkers, generating a new coordination polymer, [Ni(cdc)(L)].0.25H2O, (I), which is reported here.

In compound (I) each NiII atom is six-coordinated by two N atoms from two different L ligands, and four O atoms from two different cdc ligands in a distorted octohedral coordination sphere. The two neighbouring NiII atoms are bridged by the cdc and L ligands to form a two-dimensional (4,4) network. The O–H···O hydrogen bonds observed in the network consolidated the structure of (I) (Table 1).

Related literature top

For potential applications of metal-organic coordination polymers, see: Yang et al. (2008). For metal-organic networks

with diimidazole-containing ligands, see: Batten & Robson (1998). For flexible ligands such as 1,1'-(butane-1,4-diyl)diimidazole, see: Ma et al. (2003).

Experimental top

A mixture of H2cdc (0.5 mmol), L (0.5 mmol), NaOH (1 mmol) and NiCl2.6H2O (0.5 mmol) was suspended in 12 ml of deionized water and sealed in a 20-ml Teflon-lined autoclave. Upon heating at 140°C for three days, the autoclave was slowly cooled to room temperature. The crystals were collected, washed with deionized water and dried.

Refinement top

H atoms on C atoms were generated geometrically and refined as riding atoms with C—H= 0.93Å and Uiso(H)= 1.2 times Ueq(C). A peak of 1.9 eÅ-3 showed up in the final difference map and was refined as a partially (0.25) occupied water molecule, because the U value went up too high when the O atom was refined as fully occupied. The water H-atoms were set to forming the best hydrogen bonds. They were refined with distance restraints of O–H = 0.85±0.02 Å; their isotropic displacement parameters were set to 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot at the 30% probability level; hydrogen atoms are drawn as spheres of arbitrary radius; symmetry operations i: 2 - x, 1/2 + y, 1.5 - z; ii: -x, y - 1/2, 1.5 - z).
[Figure 2] Fig. 2. A view of the two-dimensional (4,4) network of (I).
Poly[[[µ-1,1'-(butane-1,4-diyl)diimidazole- κ2N3:N3'](µ-cyclohexane-1,4-dicarboxylato- κ4O1,O1':O4,O4')nickel(II)] 0.25-hydrate] top
Crystal data top
[Ni(C8H10O4)(C10H14N4)]·0.25H2OF(000) = 890
Mr = 423.63Dx = 1.489 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3725 reflections
a = 9.0045 (9) Åθ = 1.1–26.0°
b = 11.9991 (12) ŵ = 1.06 mm1
c = 17.5811 (17) ÅT = 293 K
β = 95.755 (2)°Block, green
V = 1890.0 (3) Å30.31 × 0.27 × 0.22 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
3725 independent reflections
Radiation source: fine-focus sealed tube2999 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SAINT; Bruker, 1998)
h = 116
Tmin = 0.711, Tmax = 0.793k = 1414
10421 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0493P)2]
where P = (Fo2 + 2Fc2)/3
3725 reflections(Δ/σ)max = 0.002
259 parametersΔρmax = 0.57 e Å3
5 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Ni(C8H10O4)(C10H14N4)]·0.25H2OV = 1890.0 (3) Å3
Mr = 423.63Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0045 (9) ŵ = 1.06 mm1
b = 11.9991 (12) ÅT = 293 K
c = 17.5811 (17) Å0.31 × 0.27 × 0.22 mm
β = 95.755 (2)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
3725 independent reflections
Absorption correction: multi-scan
(SAINT; Bruker, 1998)
2999 reflections with I > 2σ(I)
Tmin = 0.711, Tmax = 0.793Rint = 0.040
10421 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0405 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.57 e Å3
3725 reflectionsΔρmin = 0.27 e Å3
259 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4322 (3)0.2316 (2)0.81343 (15)0.0268 (6)
H10.40400.27020.76840.032*
C20.5387 (3)0.1159 (2)0.89461 (16)0.0324 (7)
H20.59930.05910.91620.039*
C30.4442 (3)0.1774 (2)0.93221 (16)0.0348 (7)
H30.42770.17070.98340.042*
C40.2636 (3)0.3356 (2)0.89436 (17)0.0299 (6)
H4A0.28690.40510.87000.036*
H4B0.26660.34910.94890.036*
C50.1088 (3)0.2991 (2)0.86426 (15)0.0266 (6)
H5A0.08320.23180.89060.032*
H5B0.10700.28180.81030.032*
C60.0072 (3)0.3893 (2)0.87522 (16)0.0259 (6)
H6A0.00550.41570.92760.031*
H6B0.00760.45180.84180.031*
C70.1640 (3)0.3435 (2)0.85724 (15)0.0260 (6)
H7A0.17450.31440.80550.031*
H7B0.17880.28230.89170.031*
C80.3756 (3)0.4666 (2)0.80760 (15)0.0257 (6)
H80.37620.44450.75690.031*
C90.4306 (3)0.5472 (2)0.90939 (16)0.0307 (6)
H90.47750.59230.94270.037*
C100.3131 (3)0.4788 (2)0.92988 (16)0.0315 (7)
H100.26520.46860.97880.038*
C110.8358 (3)0.0059 (2)0.81662 (15)0.0281 (6)
C120.9464 (3)0.0679 (2)0.87253 (16)0.0322 (7)
H120.93300.03880.92350.039*
C131.1072 (3)0.0430 (2)0.85861 (17)0.0341 (7)
H13A1.12180.03710.85760.041*
H13B1.12640.07240.80920.041*
C141.2175 (4)0.0939 (2)0.92035 (17)0.0426 (8)
H14A1.20780.05660.96850.051*
H14B1.31830.08150.90720.051*
C151.1929 (3)0.2187 (2)0.93014 (16)0.0365 (7)
H151.25050.24040.97810.044*
C161.2504 (3)0.2892 (2)0.86740 (15)0.0270 (6)
C171.0291 (4)0.2452 (3)0.93920 (17)0.0432 (8)
H17A1.01550.32540.93880.052*
H17B1.00480.21750.98830.052*
C180.9220 (3)0.1936 (2)0.87602 (17)0.0370 (7)
H18A0.81990.20880.88580.044*
H18B0.93850.22690.82730.044*
N10.5319 (2)0.14977 (17)0.81948 (12)0.0241 (5)
N20.3770 (2)0.25174 (17)0.88028 (12)0.0260 (5)
N30.2796 (2)0.42811 (17)0.86446 (12)0.0233 (5)
N40.4696 (2)0.53970 (17)0.83217 (12)0.0243 (5)
O10.8555 (2)0.09615 (14)0.80581 (12)0.0330 (5)
O20.7224 (2)0.05498 (15)0.78388 (10)0.0297 (4)
O1W1.5782 (13)0.1622 (11)0.8909 (6)0.076 (3)0.25
HW121.597 (7)0.104 (6)0.865 (8)0.115*0.25
HW111.521 (4)0.200 (10)0.858 (6)0.115*0.25
O31.3285 (2)0.24602 (14)0.81902 (10)0.0283 (4)
O41.2237 (2)0.39253 (14)0.86564 (11)0.0328 (5)
Ni10.65187 (3)0.09925 (3)0.733512 (18)0.02147 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0233 (14)0.0298 (14)0.0270 (15)0.0035 (11)0.0003 (12)0.0035 (12)
C20.0332 (16)0.0337 (15)0.0296 (15)0.0115 (12)0.0007 (13)0.0045 (12)
C30.0381 (17)0.0397 (16)0.0266 (15)0.0086 (14)0.0025 (13)0.0046 (13)
C40.0230 (14)0.0305 (14)0.0365 (16)0.0039 (12)0.0046 (12)0.0050 (12)
C50.0243 (14)0.0287 (14)0.0272 (15)0.0011 (11)0.0048 (12)0.0024 (11)
C60.0224 (14)0.0244 (13)0.0313 (15)0.0024 (11)0.0041 (12)0.0001 (11)
C70.0242 (14)0.0230 (13)0.0303 (15)0.0043 (11)0.0007 (12)0.0027 (11)
C80.0243 (14)0.0284 (14)0.0241 (14)0.0022 (11)0.0009 (12)0.0028 (11)
C90.0273 (15)0.0346 (15)0.0302 (15)0.0081 (12)0.0032 (12)0.0073 (12)
C100.0290 (16)0.0365 (15)0.0280 (15)0.0064 (12)0.0017 (12)0.0077 (12)
C110.0257 (15)0.0274 (14)0.0318 (16)0.0069 (12)0.0060 (12)0.0040 (12)
C120.0320 (16)0.0341 (15)0.0299 (15)0.0124 (12)0.0005 (13)0.0042 (12)
C130.0291 (16)0.0247 (14)0.0464 (18)0.0060 (12)0.0067 (14)0.0076 (13)
C140.0414 (18)0.0394 (17)0.0433 (19)0.0163 (14)0.0137 (15)0.0166 (14)
C150.0401 (18)0.0447 (17)0.0231 (15)0.0223 (14)0.0046 (13)0.0018 (13)
C160.0215 (14)0.0299 (14)0.0277 (15)0.0083 (11)0.0064 (12)0.0022 (12)
C170.050 (2)0.0512 (19)0.0307 (17)0.0219 (16)0.0155 (15)0.0141 (14)
C180.0321 (17)0.0372 (16)0.0432 (18)0.0090 (13)0.0115 (14)0.0138 (14)
N10.0179 (11)0.0246 (11)0.0298 (13)0.0026 (9)0.0018 (10)0.0000 (9)
N20.0202 (11)0.0275 (11)0.0305 (13)0.0030 (9)0.0034 (10)0.0006 (10)
N30.0197 (11)0.0241 (11)0.0260 (12)0.0033 (9)0.0013 (9)0.0034 (9)
N40.0189 (11)0.0251 (11)0.0292 (12)0.0018 (9)0.0034 (9)0.0022 (9)
O10.0229 (10)0.0256 (10)0.0488 (13)0.0049 (8)0.0052 (9)0.0014 (9)
O20.0280 (10)0.0236 (9)0.0366 (11)0.0021 (8)0.0016 (9)0.0010 (8)
O1W0.087 (8)0.089 (9)0.053 (7)0.006 (7)0.001 (6)0.003 (6)
O30.0332 (11)0.0220 (9)0.0298 (10)0.0014 (8)0.0041 (9)0.0013 (8)
O40.0275 (11)0.0276 (10)0.0448 (12)0.0037 (8)0.0100 (9)0.0034 (9)
Ni10.01688 (19)0.01940 (18)0.0281 (2)0.00028 (13)0.00193 (14)0.00012 (14)
Geometric parameters (Å, º) top
C1—N11.327 (3)C12—C131.522 (4)
C1—N21.343 (3)C12—C181.527 (4)
C1—H10.9300C12—H120.9800
C2—C31.348 (4)C13—C141.524 (4)
C2—N11.378 (3)C13—H13A0.9700
C2—H20.9300C13—H13B0.9700
C3—N21.373 (3)C14—C151.527 (4)
C3—H30.9300C14—H14A0.9700
C4—N21.472 (3)C14—H14B0.9700
C4—C51.506 (4)C15—C161.521 (4)
C4—H4A0.9700C15—C171.533 (4)
C4—H4B0.9700C15—H150.9800
C5—C61.529 (3)C16—O41.262 (3)
C5—H5A0.9700C16—O31.268 (3)
C5—H5B0.9700C16—Ni1i2.455 (3)
C6—C71.519 (3)C17—C181.527 (4)
C6—H6A0.9700C17—H17A0.9700
C6—H6B0.9700C17—H17B0.9700
C7—N31.469 (3)C18—H18A0.9700
C7—H7A0.9700C18—H18B0.9700
C7—H7B0.9700N1—Ni12.036 (2)
C8—N41.322 (3)N4—Ni1ii2.039 (2)
C8—N31.336 (3)O1—Ni12.1237 (18)
C8—H80.9300O2—Ni12.1213 (18)
C9—C101.359 (4)O1W—HW120.87 (2)
C9—N41.371 (3)O1W—HW110.87 (2)
C9—H90.9300O3—Ni1i2.0890 (17)
C10—N31.361 (3)O4—Ni1i2.1668 (19)
C10—H100.9300Ni1—N4iii2.039 (2)
C11—O11.254 (3)Ni1—O3iv2.0890 (17)
C11—O21.266 (3)Ni1—O4iv2.1668 (19)
C11—C121.522 (4)Ni1—C16iv2.455 (3)
C11—Ni12.446 (3)
N1—C1—N2111.7 (2)C14—C15—C17111.5 (2)
N1—C1—H1124.1C16—C15—H15106.7
N2—C1—H1124.1C14—C15—H15106.7
C3—C2—N1109.8 (2)C17—C15—H15106.7
C3—C2—H2125.1O4—C16—O3120.2 (2)
N1—C2—H2125.1O4—C16—C15119.1 (3)
C2—C3—N2106.7 (2)O3—C16—C15120.7 (2)
C2—C3—H3126.7O4—C16—Ni1i61.85 (14)
N2—C3—H3126.7O3—C16—Ni1i58.32 (13)
N2—C4—C5112.0 (2)C15—C16—Ni1i178.8 (2)
N2—C4—H4A109.2C18—C17—C15112.6 (2)
C5—C4—H4A109.2C18—C17—H17A109.1
N2—C4—H4B109.2C15—C17—H17A109.1
C5—C4—H4B109.2C18—C17—H17B109.1
H4A—C4—H4B107.9C15—C17—H17B109.1
C4—C5—C6111.7 (2)H17A—C17—H17B107.8
C4—C5—H5A109.3C17—C18—C12110.3 (3)
C6—C5—H5A109.3C17—C18—H18A109.6
C4—C5—H5B109.3C12—C18—H18A109.6
C6—C5—H5B109.3C17—C18—H18B109.6
H5A—C5—H5B107.9C12—C18—H18B109.6
C7—C6—C5110.5 (2)H18A—C18—H18B108.1
C7—C6—H6A109.5C1—N1—C2105.0 (2)
C5—C6—H6A109.5C1—N1—Ni1124.44 (18)
C7—C6—H6B109.5C2—N1—Ni1130.41 (18)
C5—C6—H6B109.5C1—N2—C3106.7 (2)
H6A—C6—H6B108.1C1—N2—C4126.5 (2)
N3—C7—C6112.6 (2)C3—N2—C4126.8 (2)
N3—C7—H7A109.1C8—N3—C10107.2 (2)
C6—C7—H7A109.1C8—N3—C7125.8 (2)
N3—C7—H7B109.1C10—N3—C7126.9 (2)
C6—C7—H7B109.1C8—N4—C9105.0 (2)
H7A—C7—H7B107.8C8—N4—Ni1ii123.59 (18)
N4—C8—N3111.9 (2)C9—N4—Ni1ii130.52 (17)
N4—C8—H8124.1C11—O1—Ni188.94 (16)
N3—C8—H8124.1C11—O2—Ni188.73 (15)
C10—C9—N4109.8 (2)HW12—O1W—HW11102 (3)
C10—C9—H9125.1C16—O3—Ni1i90.59 (15)
N4—C9—H9125.1C16—O4—Ni1i87.25 (16)
C9—C10—N3106.2 (2)N1—Ni1—N4iii93.90 (8)
C9—C10—H10126.9N1—Ni1—O3iv97.95 (8)
N3—C10—H10126.9N4iii—Ni1—O3iv99.21 (8)
O1—C11—O2120.3 (2)N1—Ni1—O296.24 (8)
O1—C11—C12118.8 (2)N4iii—Ni1—O296.94 (8)
O2—C11—C12120.8 (2)O3iv—Ni1—O2157.65 (7)
O1—C11—Ni160.23 (14)N1—Ni1—O192.94 (8)
O2—C11—Ni160.11 (13)N4iii—Ni1—O1158.47 (7)
C12—C11—Ni1176.46 (19)O3iv—Ni1—O1100.02 (7)
C11—C12—C13111.8 (2)O2—Ni1—O162.00 (7)
C11—C12—C18114.9 (2)N1—Ni1—O4iv159.91 (8)
C13—C12—C18110.1 (2)N4iii—Ni1—O4iv90.69 (8)
C11—C12—H12106.5O3iv—Ni1—O4iv61.99 (7)
C13—C12—H12106.5O2—Ni1—O4iv102.61 (7)
C18—C12—H12106.5O1—Ni1—O4iv89.85 (8)
C12—C13—C14111.7 (3)N1—Ni1—C1195.04 (8)
C12—C13—H13A109.3N4iii—Ni1—C11128.02 (9)
C14—C13—H13A109.3O3iv—Ni1—C11129.80 (8)
C12—C13—H13B109.3O2—Ni1—C1131.17 (8)
C14—C13—H13B109.3O1—Ni1—C1130.83 (8)
H13A—C13—H13B107.9O4iv—Ni1—C1197.49 (8)
C13—C14—C15112.5 (2)N1—Ni1—C16iv129.02 (9)
C13—C14—H14A109.1N4iii—Ni1—C16iv96.21 (8)
C15—C14—H14A109.1O3iv—Ni1—C16iv31.09 (8)
C13—C14—H14B109.1O2—Ni1—C16iv131.55 (8)
C15—C14—H14B109.1O1—Ni1—C16iv95.26 (8)
H14A—C14—H14B107.8O4iv—Ni1—C16iv30.90 (8)
C16—C15—C14113.6 (3)C11—Ni1—C16iv116.26 (9)
C16—C15—C17111.2 (3)
Symmetry codes: (i) x+2, y1/2, z+3/2; (ii) x, y+1/2, z+3/2; (iii) x, y1/2, z+3/2; (iv) x+2, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—HW12···O2v0.87 (2)1.99 (5)2.714 (11)141 (7)
O1W—HW11···O30.87 (2)1.88 (2)2.663 (12)149 (4)
Symmetry code: (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C8H10O4)(C10H14N4)]·0.25H2O
Mr423.63
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.0045 (9), 11.9991 (12), 17.5811 (17)
β (°) 95.755 (2)
V3)1890.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.06
Crystal size (mm)0.31 × 0.27 × 0.22
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SAINT; Bruker, 1998)
Tmin, Tmax0.711, 0.793
No. of measured, independent and
observed [I > 2σ(I)] reflections
10421, 3725, 2999
Rint0.040
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.097, 1.03
No. of reflections3725
No. of parameters259
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.27

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—HW12···O2i0.87 (2)1.99 (5)2.714 (11)141 (7)
O1W—HW11···O30.87 (2)1.88 (2)2.663 (12)149 (4)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

We thank the Third Hospital of Jilin University for supporting this study.

References

First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMa, J.-F., Yang, J., Zheng, G.-L., Li, L. & Liu, J.-F. (2003). Inorg. Chem. 42, 7531–7534.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233–2235.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds