metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(5-chloro­quinolin-8-olato-κ2N,O)bis­­(propan-2-olato-κO)titanium(IV)

aDepartment of Chemistry, General Campus, Shahid Beheshti University, Tehran 1983963113, Iran, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 5 February 2009; accepted 6 February 2009; online 13 February 2009)

The TiIV atom in the title compound, [Ti(C9H5ClNO)2(C3H7O)2], is chelated by the substituted quinolin-8-olate anions in a distorted octa­hedral geometry. The N-donor atoms are in a cis alignment as are the O atoms of the propan-2-olate groups; the O atoms of the quinolin-8-olate groups are trans to each other. One C atom of one propan-2-olate group is disordered over two positions with occupancies of 0.733 (8):0.267 (8).

Related literature

For diisoproxidobis(quinolin-8-olato)titanium(IV), see: Zeng et al. (2002[Zeng, W. F., Chen, Y. S., Chiang, M. Y., Chern, S. S. & Cheng, C. P. (2002). Polyhedron, 21, 1081-1087.]). For diisopropoxidobis(2-methyl­quinolin-8-olato)titanium(IV), see: Faza­eli et al. (2008[Fazaeli, Y., Amini, M. M. & Ng, S. W. (2008). Acta Cryst. E64, m1509.]).

[Scheme 1]

Experimental

Crystal data
  • [Ti(C9H5ClNO)2(C3H7O)2]

  • Mr = 523.25

  • Triclinic, [P \overline 1]

  • a = 8.2170 (2) Å

  • b = 12.1847 (3) Å

  • c = 13.8113 (3) Å

  • α = 109.555 (1)°

  • β = 105.090 (1)°

  • γ = 103.785 (1)°

  • V = 1174.89 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.63 mm−1

  • T = 100 (2) K

  • 0.40 × 0.08 × 0.08 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.788, Tmax = 0.952

  • 9665 measured reflections

  • 5285 independent reflections

  • 4126 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.102

  • S = 1.04

  • 5285 reflections

  • 308 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For diisoproxidobis(quinolin-8-olato)titanium, see: Zeng et al. (2002). For diisopropoxidobis(2-methylquinolin-8-olato)titanium, see: Fazaeli et al. (2008).

Experimental top

5-Chloro-8-hydroxyquinoline (1.79 g, 10 mmol) was added to titanium isoproxide (2.84 g, 10 mmol) in toluene (20 ml).The mixture was stirred for a day and the solvent then removed under reduced pressure to furnish a deep yellow solid. The solid was crystallized from a dichloromethane/n-hexane to give yellow crystals, m.p. 439 K.

Refinement top

H-atoms were placed in calculated positions (C—H 0.93–0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2–1.5U(C).

The C19 atom is disordered over two positions. This was refined was two atoms, and the C–C distances were restrained to 1.54±0.01 Å. The O–C distances were restrained to 1.45 + 0.01 Å. The anisotropic displacement parameters of the two disordered atoms were restrained to be nearly isotropic. The disorder refined to a 0.733 (8):0.267 (8) ratio.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of Ti(C3H7O)2(C9H5ClNO)2(C3H7O)2; ellipsoids are drawn at the 70% probability level and H atoms of arbitrary radius. Only the major occupied site of the disordered atom is shown.
Bis(5-chloroquinolin-8-olato-κ2N,O)bis(propan-2-olato- κO)titanium(IV) top
Crystal data top
[Ti(C9H5ClNO)2(C3H7O)2]Z = 2
Mr = 523.25F(000) = 540
Triclinic, P1Dx = 1.479 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2170 (2) ÅCell parameters from 2883 reflections
b = 12.1847 (3) Åθ = 2.6–28.1°
c = 13.8113 (3) ŵ = 0.63 mm1
α = 109.555 (1)°T = 100 K
β = 105.090 (1)°Prism, yellow
γ = 103.785 (1)°0.40 × 0.08 × 0.08 mm
V = 1174.89 (5) Å3
Data collection top
Bruker SMART APEX
diffractometer
5285 independent reflections
Radiation source: fine-focus sealed tube4126 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.788, Tmax = 0.952k = 1515
9665 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0434P)2 + 0.5978P]
where P = (Fo2 + 2Fc2)/3
5285 reflections(Δ/σ)max = 0.001
308 parametersΔρmax = 0.35 e Å3
18 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Ti(C9H5ClNO)2(C3H7O)2]γ = 103.785 (1)°
Mr = 523.25V = 1174.89 (5) Å3
Triclinic, P1Z = 2
a = 8.2170 (2) ÅMo Kα radiation
b = 12.1847 (3) ŵ = 0.63 mm1
c = 13.8113 (3) ÅT = 100 K
α = 109.555 (1)°0.40 × 0.08 × 0.08 mm
β = 105.090 (1)°
Data collection top
Bruker SMART APEX
diffractometer
5285 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4126 reflections with I > 2σ(I)
Tmin = 0.788, Tmax = 0.952Rint = 0.024
9665 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03918 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.04Δρmax = 0.35 e Å3
5285 reflectionsΔρmin = 0.32 e Å3
308 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ti10.36699 (5)0.46368 (4)0.21132 (3)0.02005 (11)
Cl10.42848 (9)0.06005 (6)0.18350 (5)0.03744 (17)
Cl20.23370 (8)1.01980 (5)0.47176 (5)0.02848 (15)
O10.3245 (2)0.35579 (15)0.28814 (13)0.0251 (4)
O20.3248 (2)0.59246 (14)0.16226 (12)0.0222 (3)
O30.6063 (2)0.52223 (15)0.27602 (14)0.0283 (4)
O40.3252 (2)0.34879 (15)0.07709 (13)0.0257 (4)
N10.0664 (2)0.40036 (17)0.17023 (15)0.0199 (4)
N20.3560 (2)0.60873 (17)0.35960 (15)0.0196 (4)
C10.1581 (3)0.2891 (2)0.27005 (18)0.0217 (5)
C20.1141 (3)0.1993 (2)0.30843 (19)0.0260 (5)
H20.20720.18360.35290.031*
C30.0671 (4)0.1311 (2)0.28229 (19)0.0286 (5)
H30.09450.06920.30890.034*
C40.2052 (3)0.1516 (2)0.21957 (19)0.0259 (5)
C50.1694 (3)0.2452 (2)0.18031 (18)0.0218 (5)
C60.0136 (3)0.3111 (2)0.20600 (18)0.0197 (4)
C70.2991 (3)0.2793 (2)0.11910 (19)0.0259 (5)
H70.42400.23860.10090.031*
C80.2436 (3)0.3709 (2)0.08642 (19)0.0260 (5)
H80.32960.39540.04650.031*
C90.0594 (3)0.4286 (2)0.11196 (19)0.0233 (5)
H90.02310.49040.08650.028*
C100.3085 (3)0.6930 (2)0.22925 (18)0.0191 (4)
C110.2780 (3)0.7874 (2)0.20186 (19)0.0240 (5)
H110.27100.78420.13110.029*
C120.2573 (3)0.8885 (2)0.2785 (2)0.0238 (5)
H120.23380.95180.25780.029*
C130.2702 (3)0.8977 (2)0.38176 (19)0.0213 (5)
C140.3095 (3)0.8066 (2)0.41672 (18)0.0191 (4)
C150.3243 (3)0.7044 (2)0.33780 (18)0.0179 (4)
C160.3405 (3)0.8113 (2)0.52348 (18)0.0223 (5)
H160.33490.87960.57980.027*
C170.3787 (3)0.7167 (2)0.54536 (19)0.0229 (5)
H170.40290.71960.61750.027*
C180.3819 (3)0.6154 (2)0.46011 (18)0.0217 (5)
H180.40360.54870.47540.026*
C190.7545 (4)0.6058 (3)0.3799 (3)0.0259 (11)0.733 (8)
H190.70470.61900.44000.031*0.733 (8)
C19'0.7943 (8)0.5966 (6)0.3237 (6)0.017 (2)0.267 (8)
H19'0.84200.58360.26280.020*0.267 (8)
C200.8248 (4)0.7275 (2)0.3771 (3)0.0434 (7)
H20A0.72500.75640.35650.065*0.733 (8)
H20B0.88250.71870.32250.065*0.733 (8)
H20C0.91350.78820.45030.065*0.733 (8)
H20D0.71370.74230.34830.065*0.267 (8)
H20E0.92140.77550.36210.065*0.267 (8)
H20F0.86000.75370.45710.065*0.267 (8)
C210.8883 (3)0.5458 (2)0.4018 (2)0.0340 (6)
H21A0.99280.60470.46910.051*0.733 (8)
H21B0.92750.52150.33900.051*0.733 (8)
H21C0.83330.47160.41160.051*0.733 (8)
H21D0.98970.61480.46510.051*0.267 (8)
H21E0.93310.48460.36170.051*0.267 (8)
H21F0.80190.50600.42800.051*0.267 (8)
C220.1934 (3)0.2575 (2)0.0269 (2)0.0297 (5)
H220.08790.28460.04470.036*
C230.1300 (4)0.1341 (2)0.0203 (2)0.0415 (7)
H23A0.07990.14390.03790.062*
H23B0.23220.10640.00290.062*
H23C0.03680.07180.09150.062*
C240.2717 (4)0.2478 (3)0.1150 (2)0.0473 (8)
H24A0.31140.32940.11680.071*
H24B0.17970.18680.18710.071*
H24C0.37500.22100.09870.071*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.0143 (2)0.0191 (2)0.0242 (2)0.00694 (16)0.00535 (16)0.00694 (17)
Cl10.0332 (4)0.0336 (4)0.0379 (4)0.0009 (3)0.0177 (3)0.0117 (3)
Cl20.0310 (3)0.0203 (3)0.0383 (3)0.0130 (2)0.0161 (3)0.0121 (3)
O10.0194 (8)0.0224 (8)0.0315 (9)0.0097 (7)0.0038 (7)0.0118 (7)
O20.0233 (8)0.0226 (8)0.0226 (8)0.0087 (7)0.0102 (7)0.0100 (7)
O30.0164 (8)0.0224 (9)0.0354 (10)0.0067 (7)0.0038 (7)0.0045 (7)
O40.0188 (8)0.0233 (8)0.0267 (8)0.0074 (7)0.0057 (7)0.0033 (7)
N10.0181 (10)0.0209 (10)0.0229 (9)0.0088 (8)0.0078 (8)0.0103 (8)
N20.0147 (9)0.0205 (10)0.0244 (10)0.0069 (8)0.0063 (8)0.0107 (8)
C10.0251 (12)0.0156 (11)0.0212 (11)0.0084 (9)0.0077 (9)0.0042 (9)
C20.0327 (14)0.0216 (12)0.0229 (12)0.0118 (10)0.0072 (10)0.0093 (10)
C30.0412 (15)0.0214 (12)0.0250 (12)0.0093 (11)0.0147 (11)0.0115 (10)
C40.0284 (13)0.0206 (12)0.0238 (12)0.0027 (10)0.0133 (10)0.0053 (10)
C50.0238 (12)0.0210 (11)0.0207 (11)0.0080 (10)0.0114 (9)0.0064 (9)
C60.0209 (11)0.0176 (11)0.0197 (11)0.0080 (9)0.0076 (9)0.0062 (9)
C70.0165 (11)0.0302 (13)0.0251 (12)0.0066 (10)0.0076 (10)0.0062 (10)
C80.0199 (12)0.0335 (13)0.0262 (12)0.0124 (10)0.0079 (10)0.0130 (11)
C90.0210 (12)0.0270 (12)0.0257 (12)0.0103 (10)0.0086 (10)0.0145 (10)
C100.0140 (10)0.0195 (11)0.0234 (11)0.0039 (9)0.0071 (9)0.0100 (9)
C110.0216 (12)0.0262 (12)0.0266 (12)0.0065 (10)0.0088 (10)0.0154 (10)
C120.0206 (12)0.0228 (12)0.0330 (13)0.0089 (10)0.0094 (10)0.0171 (10)
C130.0174 (11)0.0169 (11)0.0284 (12)0.0059 (9)0.0087 (9)0.0081 (9)
C140.0134 (10)0.0181 (11)0.0247 (11)0.0049 (9)0.0061 (9)0.0088 (9)
C150.0137 (10)0.0190 (11)0.0228 (11)0.0050 (9)0.0068 (9)0.0114 (9)
C160.0199 (11)0.0212 (11)0.0231 (11)0.0060 (9)0.0076 (9)0.0074 (9)
C170.0200 (11)0.0283 (12)0.0224 (11)0.0071 (10)0.0084 (9)0.0139 (10)
C180.0186 (11)0.0244 (12)0.0252 (12)0.0092 (9)0.0066 (9)0.0143 (10)
C190.0175 (17)0.0293 (18)0.0232 (19)0.0073 (14)0.0032 (14)0.0064 (14)
C19'0.013 (4)0.026 (4)0.015 (4)0.006 (3)0.010 (3)0.008 (3)
C200.0372 (16)0.0251 (14)0.0494 (17)0.0050 (12)0.0017 (13)0.0123 (13)
C210.0277 (14)0.0329 (14)0.0380 (15)0.0077 (11)0.0046 (11)0.0190 (12)
C220.0214 (12)0.0307 (13)0.0245 (12)0.0076 (11)0.0023 (10)0.0034 (10)
C230.0440 (17)0.0293 (14)0.0328 (14)0.0005 (12)0.0151 (13)0.0006 (12)
C240.0478 (18)0.0468 (18)0.0278 (14)0.0001 (14)0.0102 (13)0.0080 (13)
Geometric parameters (Å, º) top
Ti1—O31.7788 (16)C12—H120.9500
Ti1—O41.7936 (16)C13—C141.420 (3)
Ti1—O11.9707 (16)C14—C161.408 (3)
Ti1—O21.9723 (16)C14—C151.410 (3)
Ti1—N22.2527 (18)C16—C171.369 (3)
Ti1—N12.2554 (18)C16—H160.9500
Cl1—C41.742 (2)C17—C181.403 (3)
Cl2—C131.738 (2)C17—H170.9500
O1—C11.323 (3)C18—H180.9500
O2—C101.327 (3)C19—C201.475 (4)
O3—C19'1.430 (6)C19—C211.481 (4)
O3—C191.449 (3)C19—H191.0000
O4—C221.421 (3)C19'—C201.441 (7)
N1—C91.325 (3)C19'—C211.543 (6)
N1—C61.365 (3)C19'—H19'1.0000
N2—C181.319 (3)C20—H20A0.9800
N2—C151.362 (3)C20—H20B0.9800
C1—C21.381 (3)C20—H20C0.9800
C1—C61.424 (3)C20—H20D0.9800
C2—C31.402 (4)C20—H20E0.9800
C2—H20.9500C20—H20F0.9800
C3—C41.367 (3)C21—H21A0.9800
C3—H30.9500C21—H21B0.9800
C4—C51.421 (3)C21—H21C0.9800
C5—C61.410 (3)C21—H21D0.9800
C5—C71.414 (3)C21—H21E0.9800
C7—C81.364 (3)C21—H21F0.9800
C7—H70.9500C22—C241.503 (4)
C8—C91.400 (3)C22—C231.512 (4)
C8—H80.9500C22—H221.0000
C9—H90.9500C23—H23A0.9800
C10—C111.381 (3)C23—H23B0.9800
C10—C151.427 (3)C23—H23C0.9800
C11—C121.410 (3)C24—H24A0.9800
C11—H110.9500C24—H24B0.9800
C12—C131.366 (3)C24—H24C0.9800
O3—Ti1—O4103.15 (7)O3—C19—H19107.6
O3—Ti1—O195.29 (7)C20—C19—H19107.6
O4—Ti1—O1100.15 (7)C21—C19—H19107.6
O3—Ti1—O2101.90 (7)O3—C19'—C20111.7 (5)
O4—Ti1—O296.17 (7)O3—C19'—C21107.1 (4)
O1—Ti1—O2152.90 (7)C20—C19'—C21113.8 (5)
O3—Ti1—N289.20 (7)O3—C19'—H19'108.0
O4—Ti1—N2166.55 (7)C20—C19'—H19'108.0
O1—Ti1—N283.74 (7)C21—C19'—H19'108.0
O2—Ti1—N275.79 (6)C19'—C20—C1936.0 (3)
O3—Ti1—N1166.54 (7)C19'—C20—H20A118.7
O4—Ti1—N188.50 (7)C19—C20—H20A109.5
O1—Ti1—N175.78 (6)C19'—C20—H20B73.8
O2—Ti1—N183.22 (7)C19—C20—H20B109.5
N2—Ti1—N179.93 (7)H20A—C20—H20B109.5
C1—O1—Ti1120.40 (14)C19'—C20—H20C127.4
C10—O2—Ti1120.95 (13)C19—C20—H20C109.5
C19'—O3—C1936.5 (3)H20A—C20—H20C109.5
C19'—O3—Ti1165.3 (3)H20B—C20—H20C109.5
C19—O3—Ti1142.82 (19)C19'—C20—H20D109.5
C22—O4—Ti1146.48 (15)C19—C20—H20D102.1
C9—N1—C6118.54 (19)H20A—C20—H20D9.2
C9—N1—Ti1130.57 (15)H20B—C20—H20D107.9
C6—N1—Ti1110.63 (14)H20C—C20—H20D118.0
C18—N2—C15118.38 (19)C19'—C20—H20E109.5
C18—N2—Ti1130.30 (15)C19—C20—H20E141.0
C15—N2—Ti1111.26 (14)H20A—C20—H20E104.6
O1—C1—C2124.8 (2)H20B—C20—H20E39.1
O1—C1—C6117.6 (2)H20C—C20—H20E75.3
C2—C1—C6117.6 (2)H20D—C20—H20E109.5
C1—C2—C3120.5 (2)C19'—C20—H20F109.5
C1—C2—H2119.8C19—C20—H20F79.8
C3—C2—H2119.8H20A—C20—H20F104.7
C4—C3—C2121.7 (2)H20B—C20—H20F138.4
C4—C3—H3119.2H20C—C20—H20F34.5
C2—C3—H3119.2H20D—C20—H20F109.5
C3—C4—C5120.7 (2)H20E—C20—H20F109.5
C3—C4—Cl1120.28 (19)C19—C21—C19'34.6 (3)
C5—C4—Cl1118.97 (19)C19—C21—H21A109.5
C6—C5—C7117.1 (2)C19'—C21—H21A118.5
C6—C5—C4116.6 (2)C19—C21—H21B109.5
C7—C5—C4126.4 (2)C19'—C21—H21B75.1
N1—C6—C5122.5 (2)H21A—C21—H21B109.5
N1—C6—C1114.56 (19)C19—C21—H21C109.5
C5—C6—C1122.9 (2)C19'—C21—H21C127.0
C8—C7—C5119.6 (2)H21A—C21—H21C109.5
C8—C7—H7120.2H21B—C21—H21C109.5
C5—C7—H7120.2C19—C21—H21D102.1
C7—C8—C9119.8 (2)C19'—C21—H21D109.5
C7—C8—H8120.1H21A—C21—H21D9.1
C9—C8—H8120.1H21B—C21—H21D108.2
N1—C9—C8122.5 (2)H21C—C21—H21D117.7
N1—C9—H9118.8C19—C21—H21E140.1
C8—C9—H9118.8C19'—C21—H21E109.5
O2—C10—C11124.9 (2)H21A—C21—H21E104.7
O2—C10—C15117.33 (19)H21B—C21—H21E37.6
C11—C10—C15117.7 (2)H21C—C21—H21E76.7
C10—C11—C12120.2 (2)H21D—C21—H21E109.5
C10—C11—H11119.9C19—C21—H21F81.1
C12—C11—H11119.9C19'—C21—H21F109.5
C13—C12—C11121.6 (2)H21A—C21—H21F104.8
C13—C12—H12119.2H21B—C21—H21F137.4
C11—C12—H12119.2H21C—C21—H21F33.1
C12—C13—C14120.9 (2)H21D—C21—H21F109.5
C12—C13—Cl2120.29 (17)H21E—C21—H21F109.5
C14—C13—Cl2118.76 (17)O4—C22—C24109.4 (2)
C16—C14—C15117.36 (19)O4—C22—C23109.6 (2)
C16—C14—C13126.0 (2)C24—C22—C23111.8 (2)
C15—C14—C13116.59 (19)O4—C22—H22108.7
N2—C15—C14122.49 (19)C24—C22—H22108.7
N2—C15—C10114.65 (19)C23—C22—H22108.7
C14—C15—C10122.86 (19)C22—C23—H23A109.5
C17—C16—C14119.4 (2)C22—C23—H23B109.5
C17—C16—H16120.3H23A—C23—H23B109.5
C14—C16—H16120.3C22—C23—H23C109.5
C16—C17—C18119.3 (2)H23A—C23—H23C109.5
C16—C17—H17120.4H23B—C23—H23C109.5
C18—C17—H17120.4C22—C24—H24A109.5
N2—C18—C17122.9 (2)C22—C24—H24B109.5
N2—C18—H18118.5H24A—C24—H24B109.5
C17—C18—H18118.5C22—C24—H24C109.5
O3—C19—C20108.7 (3)H24A—C24—H24C109.5
O3—C19—C21109.4 (2)H24B—C24—H24C109.5
C20—C19—C21115.5 (3)
O3—Ti1—O1—C1178.69 (16)C4—C5—C6—N1177.79 (19)
O4—Ti1—O1—C176.91 (16)C7—C5—C6—C1177.9 (2)
O2—Ti1—O1—C149.2 (2)C4—C5—C6—C11.5 (3)
N2—Ti1—O1—C190.08 (16)O1—C1—C6—N10.1 (3)
N1—Ti1—O1—C18.91 (15)C2—C1—C6—N1179.7 (2)
O3—Ti1—O2—C1086.92 (16)O1—C1—C6—C5179.4 (2)
O4—Ti1—O2—C10168.21 (15)C2—C1—C6—C50.4 (3)
O1—Ti1—O2—C1041.3 (2)C6—C5—C7—C81.1 (3)
N2—Ti1—O2—C100.82 (15)C4—C5—C7—C8179.5 (2)
N1—Ti1—O2—C1080.46 (16)C5—C7—C8—C91.2 (3)
O4—Ti1—O3—C19'107.6 (14)C6—N1—C9—C80.4 (3)
O1—Ti1—O3—C19'150.7 (14)Ti1—N1—C9—C8173.98 (17)
O2—Ti1—O3—C19'8.3 (14)C7—C8—C9—N12.0 (4)
N2—Ti1—O3—C19'67.0 (14)Ti1—O2—C10—C11179.65 (17)
N1—Ti1—O3—C19'103.0 (15)Ti1—O2—C10—C150.5 (3)
O4—Ti1—O3—C19174.9 (3)O2—C10—C11—C12178.0 (2)
O1—Ti1—O3—C1973.2 (3)C15—C10—C11—C122.2 (3)
O2—Ti1—O3—C1985.8 (3)C10—C11—C12—C131.3 (3)
N2—Ti1—O3—C1910.5 (3)C11—C12—C13—C141.5 (3)
N1—Ti1—O3—C1925.5 (5)C11—C12—C13—Cl2177.04 (17)
O3—Ti1—O4—C22179.3 (3)C12—C13—C14—C16174.5 (2)
O1—Ti1—O4—C2281.4 (3)Cl2—C13—C14—C166.9 (3)
O2—Ti1—O4—C2276.9 (3)C12—C13—C14—C153.3 (3)
N2—Ti1—O4—C2224.4 (5)Cl2—C13—C14—C15175.28 (16)
N1—Ti1—O4—C226.1 (3)C18—N2—C15—C143.2 (3)
O3—Ti1—N1—C9128.4 (3)Ti1—N2—C15—C14179.36 (16)
O4—Ti1—N1—C981.3 (2)C18—N2—C15—C10176.46 (19)
O1—Ti1—N1—C9177.9 (2)Ti1—N2—C15—C101.0 (2)
O2—Ti1—N1—C915.1 (2)C16—C14—C15—N24.1 (3)
N2—Ti1—N1—C991.8 (2)C13—C14—C15—N2177.96 (19)
O3—Ti1—N1—C657.6 (4)C16—C14—C15—C10175.5 (2)
O4—Ti1—N1—C692.72 (15)C13—C14—C15—C102.4 (3)
O1—Ti1—N1—C68.15 (14)O2—C10—C15—N20.4 (3)
O2—Ti1—N1—C6170.88 (15)C11—C10—C15—N2179.40 (19)
N2—Ti1—N1—C694.18 (14)O2—C10—C15—C14179.95 (19)
O3—Ti1—N2—C1873.6 (2)C11—C10—C15—C140.2 (3)
O4—Ti1—N2—C18129.5 (3)C15—C14—C16—C171.6 (3)
O1—Ti1—N2—C1821.80 (19)C13—C14—C16—C17179.3 (2)
O2—Ti1—N2—C18176.1 (2)C14—C16—C17—C181.5 (3)
N1—Ti1—N2—C1898.4 (2)C15—N2—C18—C170.2 (3)
O3—Ti1—N2—C15103.48 (15)Ti1—N2—C18—C17176.69 (16)
O4—Ti1—N2—C1553.4 (4)C16—C17—C18—N22.6 (3)
O1—Ti1—N2—C15161.11 (15)C19'—O3—C19—C2059.8 (5)
O2—Ti1—N2—C150.99 (14)Ti1—O3—C19—C2095.6 (4)
N1—Ti1—N2—C1584.50 (14)C19'—O3—C19—C2167.2 (5)
Ti1—O1—C1—C2171.39 (17)Ti1—O3—C19—C21137.4 (2)
Ti1—O1—C1—C68.4 (3)C19—O3—C19'—C2064.4 (6)
O1—C1—C2—C3178.3 (2)Ti1—O3—C19'—C2032.8 (18)
C6—C1—C2—C31.5 (3)C19—O3—C19'—C2160.8 (5)
C1—C2—C3—C40.7 (4)Ti1—O3—C19'—C21158.0 (10)
C2—C3—C4—C51.3 (4)O3—C19'—C20—C1963.7 (5)
C2—C3—C4—Cl1177.01 (18)C21—C19'—C20—C1957.7 (5)
C3—C4—C5—C62.3 (3)O3—C19—C20—C19'60.2 (5)
Cl1—C4—C5—C6176.04 (16)C21—C19—C20—C19'63.2 (5)
C3—C4—C5—C7177.1 (2)O3—C19—C21—C19'63.4 (5)
Cl1—C4—C5—C74.6 (3)C20—C19—C21—C19'59.6 (5)
C9—N1—C6—C52.1 (3)O3—C19'—C21—C1963.4 (5)
Ti1—N1—C6—C5172.73 (16)C20—C19'—C21—C1960.5 (5)
C9—N1—C6—C1178.61 (19)Ti1—O4—C22—C24150.1 (2)
Ti1—N1—C6—C16.6 (2)Ti1—O4—C22—C2387.0 (3)
C7—C5—C6—N12.8 (3)

Experimental details

Crystal data
Chemical formula[Ti(C9H5ClNO)2(C3H7O)2]
Mr523.25
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.2170 (2), 12.1847 (3), 13.8113 (3)
α, β, γ (°)109.555 (1), 105.090 (1), 103.785 (1)
V3)1174.89 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.40 × 0.08 × 0.08
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.788, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
9665, 5285, 4126
Rint0.024
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.102, 1.04
No. of reflections5285
No. of parameters308
No. of restraints18
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.32

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

 

Acknowledgements

The authors thank Shahid Beheshti University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFazaeli, Y., Amini, M. M. & Ng, S. W. (2008). Acta Cryst. E64, m1509.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationZeng, W. F., Chen, Y. S., Chiang, M. Y., Chern, S. S. & Cheng, C. P. (2002). Polyhedron, 21, 1081–1087.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds