organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-Phenyl­nicotinamide

aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India, and bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India
*Correspondence e-mail: nawaz_f@yahoo.co.in

(Received 9 February 2009; accepted 10 February 2009; online 21 February 2009)

In the title compound, C12H10N2O, the dihedral angle between the phenyl and pyridine rings is 64.81 (1)°. Inter­molecular N—H⋯O hydrogen bonds connect the mol­ecules into chains running along the b axis.

Related literature

For general background, see: de Souza et al. (2005[Souza, M. V. N. de, Vasconcelos, T. R. A., Wardell, S. M. S. V., Wardell, J. L., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o204-o208.]); Gdaniec et al. (1979[Gdaniec, M., Jaskolski, M. & Kosturkiewicz, Z. (1979). Pol. J. Chem. 53, 2563-2569.]). For related crystal structures, see: Cuffini et al. (2006[Cuffini, S., Glidewell, C., Low, J. N., de Oliveira, A. G., de Souza, M. V. N., Vasconcelos, T. R. A., Wardell, S. M. S. V. & Wardell, J. L. (2006). Acta Cryst. B62, 651-665.]). For graph-set motifs, see Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N2O

  • Mr = 198.22

  • Monoclinic, C 2/c

  • a = 18.732 (4) Å

  • b = 5.2766 (11) Å

  • c = 20.248 (4) Å

  • β = 103.746 (4)°

  • V = 1944.0 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 290 K

  • 0.23 × 0.15 × 0.11 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.917, Tmax = 0.990

  • 6923 measured reflections

  • 1813 independent reflections

  • 1287 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.112

  • S = 1.03

  • 1813 reflections

  • 140 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2N⋯O1i 0.91 (3) 2.26 (3) 3.088 (2) 152 (2)
Symmetry code: (i) x, y+1, z.

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS90 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Nicotinamides were involved in biological processes such as production of energy, the synthesis of fatty acids, cholesterol and steroids, signal transduction, and the maintenance of the integrity of the genome (de Souza et al., 2005). Nicotinamides play a major role in the prevention or delay of the onset of type 1 diabetes mellitus. They also have anti-oxidant, anti-inflammatory and anti-carcinogenic activities (Gdaniec et al., 1979; Cuffini et al., 2006).

The title compound is non planar molecule with a dihedral angle of 64.81 (1)° between the phenyl and pyridine ring. N—H···O intermolecular hydrogen bonds connect the molecules to one dimensional molecular chains along the b axis and forming a C(4) graph-set motif (Bernstein et al., 1995).

Related literature top

For general background, see: de Souza et al. (2005); Gdaniec et al. (1979). For related crystal structures, see: Cuffini et al. (2006). For graph-set motifs, see Bernstein et al. (1995).

Experimental top

Nicotinoyl chloride and aniline in tetrahydrofuran solution was stirred for 8 h at ambient temperature in the presence of a catalytic quantity of triethylamine. The reaction mixture was neutralized with a saturated aqueous sodium hydrogencarbonate solution and the resulting aqueous mixture was extracted with ethyl acetate and then concentrated under reduced pressure. Then, it was subjected to chromatography on silica, using hexane–ethyl acetate gradients. Crystals were grown from an ethanolic solution.

Refinement top

H atoms bonded to C were positioned geometrically and refined using a riding model with C—H bond lengths of 0.93 Å and Uiso(H) = 1.2Ueq(C). The H atom bonded to N was located from a difference Fourier map and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS90 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1999) and PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound shown with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing diagram of the title compound. The dotted lines indicate N—H···O intermolecular hydrogen bonds forming molecular chains along the b axis. All H atoms not involved in hydrogen bonds have been omitted for clarity.
N-Phenylnicotinamide top
Crystal data top
C12H10N2OF(000) = 832
Mr = 198.22Dx = 1.355 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 829 reflections
a = 18.732 (4) Åθ = 2.0–24.4°
b = 5.2766 (11) ŵ = 0.09 mm1
c = 20.248 (4) ÅT = 290 K
β = 103.746 (4)°Cylindrical, colourless
V = 1944.0 (7) Å30.23 × 0.15 × 0.11 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
1813 independent reflections
Radiation source: fine-focus sealed tube1287 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ϕ and ω scansθmax = 25.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2221
Tmin = 0.917, Tmax = 0.990k = 66
6923 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.7301P]
where P = (Fo2 + 2Fc2)/3
1813 reflections(Δ/σ)max < 0.001
140 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C12H10N2OV = 1944.0 (7) Å3
Mr = 198.22Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.732 (4) ŵ = 0.09 mm1
b = 5.2766 (11) ÅT = 290 K
c = 20.248 (4) Å0.23 × 0.15 × 0.11 mm
β = 103.746 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1813 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1287 reflections with I > 2σ(I)
Tmin = 0.917, Tmax = 0.990Rint = 0.039
6923 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.19 e Å3
1813 reflectionsΔρmin = 0.21 e Å3
140 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.70535 (8)0.6222 (2)0.07461 (7)0.0535 (5)
N10.50992 (9)0.7693 (3)0.06750 (9)0.0510 (5)
N20.72283 (9)1.0437 (3)0.09527 (8)0.0403 (4)
H2N0.7016 (12)1.196 (5)0.0809 (11)0.075 (8)*
C10.78193 (10)1.0299 (3)0.15450 (9)0.0343 (5)
C20.83422 (11)0.8400 (4)0.16449 (10)0.0430 (5)
H20.83160.71270.13220.052*
C30.89028 (11)0.8406 (4)0.22253 (10)0.0480 (6)
H30.92550.71280.22920.058*
C40.89503 (12)1.0271 (4)0.27086 (11)0.0480 (6)
H40.93271.02500.31020.058*
C50.84308 (11)1.2170 (4)0.26008 (10)0.0465 (6)
H50.84601.34510.29220.056*
C60.78691 (11)1.2189 (4)0.20234 (9)0.0403 (5)
H60.75221.34820.19550.048*
C70.68817 (11)0.8434 (3)0.05987 (9)0.0380 (5)
C80.62589 (10)0.9088 (3)0.00086 (9)0.0342 (5)
C90.62425 (11)1.1201 (3)0.03994 (9)0.0392 (5)
H90.66201.23870.03030.047*
C100.56564 (11)1.1513 (4)0.09499 (10)0.0458 (5)
H100.56331.29000.12380.055*
C110.51068 (12)0.9730 (4)0.10646 (10)0.0489 (6)
H110.47140.99550.14390.059*
C120.56755 (11)0.7414 (4)0.01519 (10)0.0427 (5)
H120.56870.60000.01250.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0640 (10)0.0257 (7)0.0580 (9)0.0019 (7)0.0108 (8)0.0037 (6)
N10.0437 (11)0.0428 (10)0.0586 (12)0.0019 (8)0.0036 (10)0.0025 (9)
N20.0454 (11)0.0298 (9)0.0410 (10)0.0004 (8)0.0012 (8)0.0012 (7)
C10.0331 (11)0.0339 (10)0.0336 (10)0.0032 (8)0.0036 (9)0.0021 (8)
C20.0419 (12)0.0383 (11)0.0455 (12)0.0003 (9)0.0038 (10)0.0076 (9)
C30.0403 (12)0.0385 (11)0.0590 (14)0.0078 (9)0.0006 (11)0.0027 (10)
C40.0416 (13)0.0482 (12)0.0454 (12)0.0047 (10)0.0070 (10)0.0019 (10)
C50.0513 (14)0.0401 (12)0.0437 (12)0.0049 (10)0.0028 (11)0.0094 (9)
C60.0403 (12)0.0344 (10)0.0431 (12)0.0012 (9)0.0036 (10)0.0019 (9)
C70.0433 (12)0.0308 (10)0.0392 (11)0.0019 (9)0.0083 (9)0.0010 (8)
C80.0347 (11)0.0349 (10)0.0318 (10)0.0022 (9)0.0052 (9)0.0020 (8)
C90.0383 (11)0.0364 (10)0.0403 (11)0.0026 (9)0.0039 (10)0.0027 (9)
C100.0512 (14)0.0365 (11)0.0460 (12)0.0057 (10)0.0042 (11)0.0048 (9)
C110.0449 (13)0.0468 (12)0.0456 (12)0.0093 (10)0.0076 (10)0.0033 (10)
C120.0441 (13)0.0342 (11)0.0464 (12)0.0007 (9)0.0038 (11)0.0021 (9)
Geometric parameters (Å, º) top
O1—C71.228 (2)C4—H40.9300
N1—C121.329 (2)C5—C61.375 (3)
N1—C111.335 (3)C5—H50.9300
N2—C71.354 (2)C6—H60.9300
N2—C11.428 (2)C7—C81.498 (3)
N2—H2N0.91 (2)C8—C121.382 (3)
C1—C61.378 (3)C8—C91.384 (2)
C1—C21.382 (3)C9—C101.376 (3)
C2—C31.377 (3)C9—H90.9300
C2—H20.9300C10—C111.373 (3)
C3—C41.376 (3)C10—H100.9300
C3—H30.9300C11—H110.9300
C4—C51.378 (3)C12—H120.9300
C12—N1—C11116.06 (18)C5—C6—H6119.9
C7—N2—C1125.70 (17)C1—C6—H6119.9
C7—N2—H2N113.6 (14)O1—C7—N2123.27 (18)
C1—N2—H2N120.3 (14)O1—C7—C8121.46 (17)
C6—C1—C2119.65 (17)N2—C7—C8115.27 (16)
C6—C1—N2117.58 (17)C12—C8—C9118.05 (17)
C2—C1—N2122.76 (17)C12—C8—C7117.55 (17)
C3—C2—C1119.56 (18)C9—C8—C7124.36 (17)
C3—C2—H2120.2C10—C9—C8118.71 (18)
C1—C2—H2120.2C10—C9—H9120.6
C4—C3—C2121.05 (19)C8—C9—H9120.6
C4—C3—H3119.5C11—C10—C9118.47 (19)
C2—C3—H3119.5C11—C10—H10120.8
C3—C4—C5118.93 (19)C9—C10—H10120.8
C3—C4—H4120.5N1—C11—C10124.37 (19)
C5—C4—H4120.5N1—C11—H11117.8
C6—C5—C4120.61 (19)C10—C11—H11117.8
C6—C5—H5119.7N1—C12—C8124.33 (18)
C4—C5—H5119.7N1—C12—H12117.8
C5—C6—C1120.20 (18)C8—C12—H12117.8
C7—N2—C1—C6148.13 (19)O1—C7—C8—C1231.6 (3)
C7—N2—C1—C233.3 (3)N2—C7—C8—C12147.87 (18)
C6—C1—C2—C30.7 (3)O1—C7—C8—C9145.9 (2)
N2—C1—C2—C3179.18 (18)N2—C7—C8—C934.6 (3)
C1—C2—C3—C40.1 (3)C12—C8—C9—C101.2 (3)
C2—C3—C4—C50.8 (3)C7—C8—C9—C10176.34 (18)
C3—C4—C5—C60.7 (3)C8—C9—C10—C111.0 (3)
C4—C5—C6—C10.1 (3)C12—N1—C11—C101.0 (3)
C2—C1—C6—C50.8 (3)C9—C10—C11—N10.2 (3)
N2—C1—C6—C5179.35 (17)C11—N1—C12—C80.8 (3)
C1—N2—C7—O11.5 (3)C9—C8—C12—N10.3 (3)
C1—N2—C7—C8177.91 (17)C7—C8—C12—N1177.39 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.91 (3)2.26 (3)3.088 (2)152 (2)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC12H10N2O
Mr198.22
Crystal system, space groupMonoclinic, C2/c
Temperature (K)290
a, b, c (Å)18.732 (4), 5.2766 (11), 20.248 (4)
β (°) 103.746 (4)
V3)1944.0 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.23 × 0.15 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.917, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
6923, 1813, 1287
Rint0.039
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.112, 1.03
No. of reflections1813
No. of parameters140
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.21

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS90 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1999) and PLATON (Spek, 2009), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.91 (3)2.26 (3)3.088 (2)152 (2)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors thank the Department of Science and Technology, India, for use of the CCD facility set up under the IRHPA–DST programme at the IISc. We thank Professor T. N. Guru Row, IISc, Bangalore, for useful crystallographic discussions. FNK thanks the DST for Fast Track Proposal funding.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCuffini, S., Glidewell, C., Low, J. N., de Oliveira, A. G., de Souza, M. V. N., Vasconcelos, T. R. A., Wardell, S. M. S. V. & Wardell, J. L. (2006). Acta Cryst. B62, 651–665.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGdaniec, M., Jaskolski, M. & Kosturkiewicz, Z. (1979). Pol. J. Chem. 53, 2563–2569.  CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSouza, M. V. N. de, Vasconcelos, T. R. A., Wardell, S. M. S. V., Wardell, J. L., Low, J. N. & Glidewell, C. (2005). Acta Cryst. C61, o204–o208.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds