organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[4-(2-benzyl­­idene­propyl­­idene­amino)phen­yl] ether

aDepartment of Science, Golestan University, Gorgan, Iran, bDepartment of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran, cInstitute of Physics of the ASCR, Na Slovance 2, 182 21 Prague 8, Czech Republic, and dDepartment of Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-43464, Iran
*Correspondence e-mail: dusek@fzu.cz

(Received 10 February 2009; accepted 11 February 2009; online 18 February 2009)

The title compound, C32H28N2O, is a flexible Schiff base displaying a trans configuration across the C=N double bond. It was prepared in high yield by condensation of α-methyl­cinnamaldehyde and bis­(4-amino­phen­yl) ether in methanol at room temperature. The sample, with pseudo-ortho­rhom­bic cell parameters, exhibited merohedral twinning by rotation 180° around a*, with a refined twin domain fraction of 0.722 (1). The elongated shape of the elementary cell corresponds to the shape and direction of the mol­ecules. The dihedral angle between the O-linked aromatic rings is 57.86 (8)°.

Related literature

For the synthesis of the title compound, see: Khalaji & Ng (2008[Khalaji, A. D. & Ng, S. W. (2008). Acta Cryst. E64, o1771.]). For related structures, see: Hu et al. (2008[Hu, S.-L., Li, Y.-T. & Cao, L.-P. (2008). Acta Cryst. E64, o115.]); Xu et al. (2008[Xu, H.-W., Li, J.-X. & Li, Y.-H. (2008). Acta Cryst. E64, o1145.]). For background to transition metal complexes, see: Laye (2007[Laye, R. H. (2007). Inorg. Chim. Acta, 360, 439-447.]); Huang et al. (2005[Huang, Z., Tian, J.-L. & Bu, X. H. (2005). Inorg. Chem. Commun. 8, 194-198.]); Chu & Huang (2007[Chu, Z. & Huang, W. (2007). J. Mol. Struct. 837, 15-22.]).

[Scheme 1]

Experimental

Crystal data
  • C32H28N2O

  • Mr = 456.6

  • Monoclinic, P 21 /n

  • a = 7.4737 (3) Å

  • b = 55.929 (3) Å

  • c = 6.0275 (3) Å

  • β = 90.022 (4)°

  • V = 2519.5 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.56 mm−1

  • T = 295 K

  • 0.51 × 0.38 × 0.02 mm

Data collection
  • Oxford Diffraction Gemini diffractometer with Atlas CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.682, Tmax = 0.99

  • 15440 measured reflections

  • 3838 independent reflections

  • 3428 reflections with I > 3σ(I)

  • Rint = 0.016

  • θmax = 61.4°

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.120

  • S = 2.32

  • 3838 reflections

  • 317 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR2002 (Burla et al., 2003[Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.]); program(s) used to refine structure: JANA2006 (Petříček et al., 2008[Petříček, V., Dušek, M. & Palatinus, L. (2008). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: JANA2006.

Supporting information


Comment top

Flexible Schiff-base ligands have received a lot of attention in the field of supramolecular coordination chemistry (Laye, 2007; Huang et al., 2005; Chu & Huang, 2007). Because of easy syntheses of these compounds by condensation between aldehydes (or ketones) and amines, many of them were designed and sued to prepare transition metal complexes in recent years. Here, we report the synthesis and crystal structure of a new flexible Schiff-base compound (I). The molecule of (I) is shown in Fig. 1. Bond lengths and angles are comparable with those observed in similar compounds (Hu et al., 2008; Xu et al., 2008). The C(7)=N(1) and C(23)=N(2) bond lengths of 1.266 (3) and 1.270 (3) Å, respectively, conform to the usual value for a C=N double bond. Each half of the molecule displays a trans configuration across the C=N double bond. The prolongated shape of the molecule is reflected by very long b axis about 55 Å. The molecules are isolated (Fig. 2), with no intermolecular contacts. From crystallographic point of view merohedric twinning by rotation 180° around a* and pseudo-orthorhombic cell parameters should be noted. The twinning has occurred regularly in all tested samples.

Related literature top

For the synthesis of the title compound, see: Khalaji & Ng (2008). For related structures, see: Hu et al. (2008); Xu et al. (2008). For background to transition metal complexes, see: Laye (2007); Huang et al. (2005); Chu & Huang (2007).

Experimental top

The title compound was synthesized using a method analogous to the literature procedure of Khalaji and Ng (2008). Crystals appropriate for data collection were obtained by slow evaporation from a methanol-chloroform mixture (1:5 v/v) at room temperature (yield; 88%).

Refinement top

All H atoms were found in difference Fourier maps, but they were constrained to ideal positions. The isotropic atomic displacement parameters of hydrogen atoms were set to 1.2Ueq of the parent atom. The sample had a pseudo-orthorhombic cell parameters and exhibited a merohedric twinning by rotation 180° around a* (with twinning matrix 1 0 0 / 0 - 1 0 / 0 0 - 1 applied to indices expressed like row vectors). The volume fraction of the second domain was refined to 0.278 (1).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2008).

Figures top
[Figure 1] Fig. 1. The molecule of (I) viewed along a with atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The packing of (I) viewed along c.
Bis[4-(2-benzylidenepropylideneamino)phenyl] ether top
Crystal data top
C32H28N2OF(000) = 968
Mr = 456.6Dx = 1.203 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2ynCell parameters from 9034 reflections
a = 7.4737 (3) Åθ = 3.2–61.2°
b = 55.929 (3) ŵ = 0.56 mm1
c = 6.0275 (3) ÅT = 295 K
β = 90.022 (4)°Plate, yellow
V = 2519.5 (2) Å30.51 × 0.38 × 0.02 mm
Z = 4
Data collection top
Oxford Diffraction Gemini
diffractometer with Atlas CCD detector
3838 independent reflections
Radiation source: X-ray tube3428 reflections with I > 3σ(I)
Mirrors monochromatorRint = 0.016
Detector resolution: 20.7567 pixels mm-1θmax = 61.4°, θmin = 3.2°
Rotation method data acquisition using ω scansh = 88
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 6262
Tmin = 0.682, Tmax = 0.99l = 66
15440 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: difference Fourier map
wR(F2) = 0.120H-atom parameters constrained
S = 2.32Weighting scheme based on measured s.u.'s w = 1/[σ2(I) + 0.0016I2]
3838 reflections(Δ/σ)max = 0.001
317 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.18 e Å3
112 constraints
Crystal data top
C32H28N2OV = 2519.5 (2) Å3
Mr = 456.6Z = 4
Monoclinic, P21/nCu Kα radiation
a = 7.4737 (3) ŵ = 0.56 mm1
b = 55.929 (3) ÅT = 295 K
c = 6.0275 (3) Å0.51 × 0.38 × 0.02 mm
β = 90.022 (4)°
Data collection top
Oxford Diffraction Gemini
diffractometer with Atlas CCD detector
3838 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
3428 reflections with I > 3σ(I)
Tmin = 0.682, Tmax = 0.99Rint = 0.016
15440 measured reflectionsθmax = 61.4°
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 2.32Δρmax = 0.19 e Å3
3838 reflectionsΔρmin = 0.18 e Å3
317 parameters
Special details top

Refinement. The refinement was carried out against all reflections. The conventional R-factor is always based on F. The goodness of fit as well as the weighted R-factor are based on F and F2 for refinement carried out on F and F2, respectively. The threshold expression is used only for calculating R-factors etc. and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see _refine_ls_weighting_details, that does not force S to be one. Therefore the values of S are usually larger than the ones from the SHELX program.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.41159 (19)0.25020 (2)1.1527 (2)0.0638 (4)
N10.4123 (2)0.33936 (3)0.7401 (3)0.0617 (5)
N20.4264 (2)0.16126 (3)0.7377 (3)0.0623 (5)
C10.4131 (2)0.27183 (3)1.0403 (3)0.0548 (5)
C20.4984 (2)0.29047 (3)1.1464 (3)0.0613 (6)
C30.4970 (2)0.31299 (3)1.0534 (3)0.0635 (6)
C40.4118 (2)0.31709 (3)0.8503 (3)0.0568 (5)
C50.3295 (2)0.29795 (3)0.7467 (3)0.0601 (6)
C60.3268 (2)0.27553 (3)0.8402 (3)0.0616 (6)
C70.4096 (2)0.35875 (3)0.8483 (3)0.0636 (6)
C80.4215 (2)0.38208 (3)0.7420 (3)0.0600 (6)
C90.4227 (2)0.40156 (3)0.8727 (3)0.0639 (6)
C100.4388 (2)0.42689 (3)0.8176 (3)0.0602 (6)
C110.5287 (3)0.43555 (4)0.6318 (4)0.0723 (7)
C120.5396 (3)0.45964 (4)0.5896 (4)0.0859 (9)
C130.4641 (3)0.47591 (4)0.7318 (4)0.0875 (9)
C140.3778 (3)0.46796 (4)0.9185 (4)0.0842 (8)
C150.3661 (3)0.44386 (4)0.9620 (4)0.0712 (7)
C160.4273 (3)0.38214 (4)0.4939 (3)0.0780 (8)
C170.4135 (2)0.22865 (3)1.0395 (3)0.0555 (5)
C180.3308 (2)0.20971 (3)1.1439 (3)0.0613 (6)
C190.3356 (2)0.18727 (3)1.0517 (3)0.0628 (6)
C200.4223 (2)0.18353 (3)0.8484 (3)0.0574 (5)
C210.5012 (2)0.20285 (3)0.7441 (3)0.0606 (6)
C220.5005 (2)0.22525 (3)0.8389 (3)0.0612 (6)
C230.4375 (2)0.14192 (4)0.8456 (3)0.0648 (6)
C240.4369 (2)0.11855 (3)0.7384 (3)0.0609 (6)
C250.4481 (2)0.09907 (3)0.8688 (3)0.0644 (6)
C260.4490 (2)0.07366 (3)0.8136 (3)0.0612 (6)
C270.3678 (3)0.06393 (4)0.6255 (4)0.0716 (7)
C280.3726 (3)0.03972 (4)0.5842 (4)0.0843 (8)
C290.4589 (3)0.02459 (4)0.7274 (4)0.0854 (8)
C300.5381 (3)0.03360 (4)0.9145 (4)0.0862 (9)
C310.5324 (3)0.05778 (4)0.9586 (4)0.0741 (7)
C320.4306 (3)0.11845 (4)0.4907 (3)0.0773 (8)
H20.5586920.2877651.2847870.0735*
H30.5550120.3259791.1287550.0762*
H50.2726970.3003910.6056230.0721*
H60.2657790.2626080.767520.0739*
H110.5840730.4244770.5313630.0868*
H120.6007380.465150.4591630.1031*
H130.4717120.4927230.7008980.105*
H140.3251980.4792571.019140.1011*
H150.3068210.4385871.0945480.0855*
H180.269530.2122261.2818990.0736*
H190.2794150.1741151.1266140.0753*
H210.5577680.2006010.6026120.0728*
H220.5595530.2383630.766850.0734*
H270.3073930.0743050.5230360.0859*
H280.3152010.0334140.4542390.1011*
H290.4638020.007760.6967170.1024*
H300.5979980.0230171.015510.1035*
H310.5867830.0637831.0916860.0889*
H70.3992030.3580451.0069140.0763*
H90.4109470.3982591.0283380.0767*
H230.4465970.1426631.0042790.0778*
H250.4570480.1024631.0244920.0773*
H16a0.3593470.368880.4380360.0936*
H16b0.377140.3968080.4393360.0936*
H16c0.5491680.3807820.4452480.0936*
H32a0.4932570.1321620.4346810.0927*
H32b0.4863020.1041480.4359390.0927*
H32c0.3083130.1189630.4422920.0927*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0715 (8)0.0641 (7)0.0559 (7)0.0001 (5)0.0032 (7)0.0004 (6)
N10.0581 (8)0.0672 (9)0.0598 (9)0.0006 (6)0.0011 (7)0.0000 (7)
N20.0611 (8)0.0675 (9)0.0585 (9)0.0007 (7)0.0045 (7)0.0004 (7)
C10.0445 (8)0.0641 (10)0.0559 (9)0.0018 (7)0.0061 (7)0.0017 (8)
C20.0571 (9)0.0713 (11)0.0554 (9)0.0006 (8)0.0064 (8)0.0025 (9)
C30.0600 (10)0.0670 (11)0.0634 (11)0.0034 (8)0.0054 (8)0.0080 (9)
C40.0503 (8)0.0659 (10)0.0543 (9)0.0003 (7)0.0039 (8)0.0023 (8)
C50.0541 (9)0.0719 (11)0.0543 (9)0.0012 (7)0.0042 (8)0.0032 (8)
C60.0505 (8)0.0688 (11)0.0655 (11)0.0027 (7)0.0066 (8)0.0065 (9)
C70.0698 (11)0.0701 (11)0.0508 (9)0.0010 (8)0.0035 (9)0.0014 (9)
C80.0553 (9)0.0703 (11)0.0543 (10)0.0018 (8)0.0024 (8)0.0043 (8)
C90.0703 (11)0.0720 (11)0.0495 (9)0.0028 (8)0.0028 (8)0.0042 (9)
C100.0555 (9)0.0704 (11)0.0547 (10)0.0015 (8)0.0040 (8)0.0020 (8)
C110.0742 (11)0.0766 (13)0.0662 (11)0.0011 (9)0.0119 (10)0.0048 (10)
C120.0964 (15)0.0807 (14)0.0807 (15)0.0061 (11)0.0132 (12)0.0151 (11)
C130.0925 (15)0.0701 (13)0.1000 (17)0.0013 (11)0.0004 (14)0.0106 (12)
C140.0870 (14)0.0745 (13)0.0912 (16)0.0068 (10)0.0064 (13)0.0108 (12)
C150.0702 (12)0.0789 (13)0.0645 (11)0.0009 (9)0.0054 (9)0.0040 (9)
C160.0973 (16)0.0812 (13)0.0555 (11)0.0032 (11)0.0008 (11)0.0019 (9)
C170.0456 (8)0.0639 (10)0.0572 (9)0.0009 (7)0.0010 (7)0.0014 (8)
C180.0559 (9)0.0714 (11)0.0568 (10)0.0012 (8)0.0096 (8)0.0040 (9)
C190.0580 (9)0.0670 (11)0.0634 (11)0.0028 (8)0.0117 (8)0.0062 (9)
C200.0493 (8)0.0668 (10)0.0562 (9)0.0013 (7)0.0027 (8)0.0026 (8)
C210.0560 (9)0.0718 (11)0.0541 (9)0.0001 (7)0.0104 (8)0.0029 (8)
C220.0539 (9)0.0674 (11)0.0623 (10)0.0032 (7)0.0109 (8)0.0061 (8)
C230.0715 (11)0.0708 (11)0.0522 (9)0.0025 (8)0.0015 (9)0.0015 (9)
C240.0593 (10)0.0709 (11)0.0524 (10)0.0004 (8)0.0033 (8)0.0021 (8)
C250.0706 (11)0.0733 (11)0.0493 (9)0.0008 (8)0.0002 (8)0.0044 (9)
C260.0570 (9)0.0723 (11)0.0543 (10)0.0016 (8)0.0022 (8)0.0002 (8)
C270.0707 (11)0.0774 (12)0.0667 (12)0.0016 (9)0.0099 (10)0.0022 (10)
C280.0925 (15)0.0827 (14)0.0776 (14)0.0149 (11)0.0013 (12)0.0131 (12)
C290.0934 (15)0.0725 (13)0.0901 (16)0.0043 (11)0.0137 (13)0.0041 (12)
C300.0947 (15)0.0747 (13)0.0892 (16)0.0011 (11)0.0021 (13)0.0167 (12)
C310.0793 (13)0.0799 (14)0.0630 (11)0.0062 (10)0.0057 (10)0.0078 (10)
C320.0954 (15)0.0798 (13)0.0567 (11)0.0036 (11)0.0032 (11)0.0016 (9)
Geometric parameters (Å, º) top
O1—C11.386 (2)C16—H16a0.96
O1—C171.385 (2)C16—H16b0.96
N1—C41.412 (2)C16—H16c0.96
N1—C71.266 (2)C17—C181.378 (2)
N2—C201.414 (2)C17—C221.386 (3)
N2—C231.264 (2)C18—C191.373 (3)
C1—C21.379 (2)C18—H180.96
C1—C61.384 (3)C19—C201.402 (3)
C2—C31.379 (3)C19—H190.96
C2—H20.96C20—C211.383 (3)
C3—C41.398 (3)C21—C221.377 (3)
C3—H30.96C21—H210.96
C4—C51.384 (2)C22—H220.96
C5—C61.375 (3)C23—C241.458 (3)
C5—H50.96C23—H230.96
C6—H60.96C24—C251.346 (3)
C7—C81.456 (3)C24—C321.494 (3)
C7—H70.96C25—C261.459 (3)
C8—C91.345 (3)C25—H250.96
C8—C161.496 (3)C26—C271.396 (3)
C9—C101.460 (3)C26—C311.393 (3)
C9—H90.96C27—C281.377 (3)
C10—C111.393 (3)C27—H270.96
C10—C151.398 (3)C28—C291.370 (3)
C11—C121.374 (3)C28—H280.96
C11—H110.96C29—C301.370 (4)
C12—C131.372 (3)C29—H290.96
C12—H120.96C30—C311.379 (3)
C13—C141.372 (4)C30—H300.96
C13—H130.96C31—H310.96
C14—C151.376 (3)C32—H32a0.96
C14—H140.96C32—H32b0.96
C15—H150.96C32—H32c0.96
C1—O1—C17121.25 (14)H16b—C16—H16c109.4707
C4—N1—C7120.89 (16)O1—C17—C18116.07 (16)
C20—N2—C23120.83 (16)O1—C17—C22123.64 (15)
O1—C1—C2115.92 (15)C18—C17—C22120.20 (16)
O1—C1—C6123.52 (15)C17—C18—C19120.40 (17)
C2—C1—C6120.45 (16)C17—C18—H18119.7986
C1—C2—C3119.92 (17)C19—C18—H18119.8003
C1—C2—H2120.0388C18—C19—C20120.14 (16)
C3—C2—H2120.0374C18—C19—H19119.9296
C2—C3—C4120.58 (17)C20—C19—H19119.9325
C2—C3—H3119.7093N2—C20—C19123.66 (15)
C4—C3—H3119.7097N2—C20—C21117.67 (16)
N1—C4—C3123.73 (15)C19—C20—C21118.60 (16)
N1—C4—C5118.11 (16)C20—C21—C22121.35 (17)
C3—C4—C5118.09 (16)C20—C21—H21119.326
C4—C5—C6121.81 (17)C22—C21—H21119.3271
C4—C5—H5119.0935C17—C22—C21119.28 (16)
C6—C5—H5119.0919C17—C22—H22120.3631
C1—C6—C5119.12 (16)C20—C22—H22149.7198
C1—C6—H6120.4391N2—C23—C24122.61 (18)
C5—C6—H6120.4404N2—C23—H23118.6934
N1—C7—C8122.68 (17)C24—C23—H23118.6931
N1—C7—H7118.6563C23—C24—C25117.85 (17)
C8—C7—H7118.6616C23—C24—C32116.50 (16)
C7—C8—C9117.94 (17)C25—C24—C32125.61 (17)
C7—C8—C16116.35 (16)C24—C25—C26130.95 (17)
C9—C8—C16125.70 (17)C24—C25—H25114.5252
C8—C9—C10130.80 (17)C26—C25—H25114.5237
C8—C9—H9114.598C25—C26—C27124.25 (17)
C10—C9—H9114.6038C25—C26—C31118.67 (17)
C9—C10—C11124.07 (17)C27—C26—C31117.06 (18)
C9—C10—C15119.02 (17)C26—C27—C28121.3 (2)
C11—C10—C15116.87 (18)C26—C27—H27119.375
C10—C11—C12121.3 (2)C28—C27—H27119.3729
C10—C11—H11119.3764C27—C28—C29120.4 (2)
C12—C11—H11119.3736C27—C28—H28119.8062
C11—C12—C13120.7 (2)C29—C28—H28119.8072
C11—C12—H12119.6501C28—C29—C30119.7 (2)
C13—C12—H12119.6503C28—C29—H29120.1738
C12—C13—C14119.4 (2)C30—C29—H29120.1722
C12—C13—H13120.2841C29—C30—C31120.4 (2)
C14—C13—H13120.2831C29—C30—H30119.7998
C13—C14—C15120.3 (2)C31—C30—H30119.7949
C13—C14—H14119.8703C26—C31—C30121.2 (2)
C15—C14—H14119.8702C26—C31—H31119.3916
C10—C15—C14121.5 (2)C30—C31—H31119.3905
C10—C15—H15119.2735C24—C32—H32a109.4703
C14—C15—H15119.2764C24—C32—H32b109.4721
C8—C16—H16a109.4718C24—C32—H32c109.4709
C8—C16—H16b109.4708H32a—C32—H32b109.4716
C8—C16—H16c109.4712H32a—C32—H32c109.4711
H16a—C16—H16b109.4705H32b—C32—H32c109.4713
H16a—C16—H16c109.4723

Experimental details

Crystal data
Chemical formulaC32H28N2O
Mr456.6
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)7.4737 (3), 55.929 (3), 6.0275 (3)
β (°) 90.022 (4)
V3)2519.5 (2)
Z4
Radiation typeCu Kα
µ (mm1)0.56
Crystal size (mm)0.51 × 0.38 × 0.02
Data collection
DiffractometerOxford Diffraction Gemini
diffractometer with Atlas CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.682, 0.99
No. of measured, independent and
observed [I > 3σ(I)] reflections
15440, 3838, 3428
Rint0.016
θmax (°)61.4
(sin θ/λ)max1)0.569
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.120, 2.32
No. of reflections3838
No. of parameters317
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.18

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SIR2002 (Burla et al., 2003), JANA2006 (Petříček et al., 2008), DIAMOND (Brandenburg & Putz, 2005).

 

Acknowledgements

We thank Gorgan University of Agricultural Sciences and Natural Resources (GUASNR) and the Grant Agency of the Czech Republic (grant No. 202/07/J007) for supporting this study. ADK thanks Dr Jan Fabry (Institute of Physics of ASCR) for his collaboration.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.  CrossRef IUCr Journals Google Scholar
First citationChu, Z. & Huang, W. (2007). J. Mol. Struct. 837, 15-22.  Web of Science CSD CrossRef CAS Google Scholar
First citationHu, S.-L., Li, Y.-T. & Cao, L.-P. (2008). Acta Cryst. E64, o115.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHuang, Z., Tian, J.-L. & Bu, X. H. (2005). Inorg. Chem. Commun. 8, 194-198.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhalaji, A. D. & Ng, S. W. (2008). Acta Cryst. E64, o1771.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLaye, R. H. (2007). Inorg. Chim. Acta, 360, 439-447.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPetříček, V., Dušek, M. & Palatinus, L. (2008). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationXu, H.-W., Li, J.-X. & Li, Y.-H. (2008). Acta Cryst. E64, o1145.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds