organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

E-Notopterol

aInstitute of Pharmaceutical Sciences, Department of Pharmacognosy, Karl-Franzens University Graz, Universitätsplatz 4, A-8010 Graz, Austria, bInstitute of Chemistry, Karl-Franzens University Graz, Schubertstrasse 1, A-8010 Graz, Austria, and cInstitute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, Karl-Franzens University Graz, Universitätsplatz 1, A-8010 Graz, Austria
*Correspondence e-mail: ferdinand.belaj@uni-graz.at

(Received 11 February 2009; accepted 11 February 2009; online 18 February 2009)

The title compound (systematic name: 4-{[(2E)-5-hydr­oxy-3,7-dimethylocta-2,6-dien-1-yl]­oxy}-7H-furo[3,2-g][1]benzopyran-7-one), C21H22O5, is a known furan­ocoumarin, which was isolated from the Chinese herbal product Radix seu Rhizoma Notopterygii. The crystal structure shows a weak O—H⋯O hydrogen bond.

Related literature

For the isolation, see: Yang et al. (1994[Yang, X., Yan, Z., Gu, Z., Zhou, G., Hattori, M. & Namba, T. (1994). Zhongguo Yaoxue Zazhi, 29, 141-143.]); Xiao et al. (1994[Xiao, Y., Sun, Y. & Liu, K. (1994). Zhongguo Zhongyao Zazhi, 19, 421-422.]). For NMR shifts and coupling constants of related compounds, see: Hasegawa et al. (1999[Hasegawa, A., Nakamura, H., Watanabe, T., Okuyama, E., Ohmori, S., Ishikawa, T. & Kitada, M. (1999). Biol. Pharm. Bull. 22, 725-726.]); Chemical Abstract Service (2009[Chemical Abstract Service (2009). The SciFinder database. Chemical Abstracts Service, Columbus, Ohio, USA.]).

[Scheme 1]

Experimental

Crystal data
  • C21H22O5

  • Mr = 354.39

  • Triclinic, [P \overline 1]

  • a = 6.4317 (10) Å

  • b = 8.0912 (16) Å

  • c = 17.206 (3) Å

  • α = 91.802 (15)°

  • β = 94.240 (13)°

  • γ = 97.473 (15)°

  • V = 884.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 95 K

  • 0.48 × 0.44 × 0.32 mm

Data collection
  • Stoe four-circle diffractometer

  • Absorption correction: none

  • 4234 measured reflections

  • 3462 independent reflections

  • 2941 reflections with I > 2σ(I)

  • Rint = 0.023

  • 3 standard reflections every 100 reflections intensity decay: 0.4%

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.113

  • S = 1.04

  • 3462 reflections

  • 249 parameters

  • Only H-atom displacement parameters refined

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H51⋯O8i 0.84 2.57 3.2193 (16) 135
Symmetry code: (i) -x+1, -y+2, -z+1.

Data collection: local software; cell refinement: local software; data reduction: local software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: modified ORTEP (Johnson, 1965[Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Rhizoma seu Radix Notopterygii is a herbal preparation commonly used in traditional Chinese medicine. It may either contain roots or rhizomes of N. incisum or N. forbesii (Apiaceae) or a mixture of both plants. The isolation of E-Notopterol (Fig.1) has been previously reported for both species (Yang et al., 1994; Xiao et al. 1994), which naturally occur in the region of South Central Asia, but the crystal structure has not been reported until now. In the process of structure elucidation, the title compound was primarily identified by 1H and 13C NMR experiments. Observed chemical shifts and coupling constants were in compliance with previously published literature (Hasegawa et al., 1999; Chemical Abstract Service, 2009). Further support was provided by the ESI-MS analysis, indicating the pseudo molecular ion at 377.29 m/z [M—Na+].

The crystal structure analysis confirmed the proposed structure as 4-{[(2E)-5-hydroxy-3,7-dimethyl- octa-2,6-dien-1-yl]oxy}-7H-furo[3,2-g][1]benzopyran-7-one. All the atoms are lying on general positions. In Fig. 1 the S-enantiomer of the racemate is shown. The least-squares plane through the non-H atoms around the double bond C42=C43 enclose an angle of 12.36 (9)° with the plane through the atoms around C46=C47, and further an angle of 41.35 (6)° with the plane through the tricycle. The packing is dominated by an antiparallel stacking of the tricycles (s. Fig. 2) preventing the formation of a strong hydrogen bond of the OH group [O5—H51···.O8i 134.5°, O5···.O8i 3.2193 (16) Å; symmetry transformation used to generate the equivalent atom: (i) 1 - x, 2 - y, 1 - z].

Related literature top

For the isolation, see: Yang et al. (1994); Xiao et al. (1994). For NMR shifts and coupling constants of related compounds, see: Hasegawa et al. (1999); Chemical Abstract Service (2009).

Experimental top

Plant Material: Rhizoma seu Radix Notopterygii was purchased from Plantasia (Oberndorf, Austria).

Isolation and purification: Plant material (2000 g) was grinded and extracted with 11 L dichloromethane at room temperature, yielding 381.87 g of dried extract after vacuum evaporation. Next 100 g dried extract were fractionated on a Silicagel 60 column (230–400 mesh, Merck, Darmstadt, Germany; size: 8.5 x 20 cm). In the process a stepwise gradient elution starting from 100% hexane (Hex) and going to 100% ethylacetate (EtOAc) was performed. For each step (2400 ml) the content of Hex in the eluent was reduced by 16.7 vol.%, and 6–8 subfractions were collected. Subfraction D7 collected between 2030 ml and 2400 ml from eluent D (Hex:EtOAc: 50:50, v:v) yielded in the isolation of 86.49 mg crystallized 1. Finally the colourless block crystals were washed with eluent C (Hex:EtOAc: 67:33, v:v) before being analyzed.

NMR analysis: 1H and 13C NMR spectra were recorded at 293 K on a Varian UnityInova 400 NMR spectrometer with a 5 mm broadband probe. E-Notpterol was dissolved in chloroform-d (Aldrich, USA) and TMS was used as internal standard.

NMR results: 1H NMR (CDCl3, 400 MHz) δ 1.70 (3H, d, J = 1.2, H-50), 1.72 (3H, d, J = 1.2, H-48), 1.77 (3H, s, H-49), 2.22 (1H, dd, J = 13.7, 5.0, H-44b), 2.31 (1H, dd, J = 13.7, 8.2, H-44a), 4.52 (1H, m, H-45), 4.98 (2H, d, J = 6.9, H-41), 5.18 (1H, pseudo td, J = 8.4, 1.3, H-46), 5.65 (1H, pseudo dt, J = 6.7, 1.0, H-42), 6.28 (1H, d, J = 9.8, H-6), 6.98 (1H, dd, J = 2.4, 0.8, H-3), 7.16 (1H, s, H-9), 7.60 (1H, d, J = 2.4, H-2), 8.16 (1H, d, J = 9.8, H-5); 13C NMR (CDCl3, 400 MHz) δ 17.0 (CH3, C-49), 18.2 (CH3, C-50), 25.7 (CH3, C-48), 47.7 (CH2, C-44), 66.4 (CH, C-45), 69.4 (CH2, C-41), 94.3 (CH, C-9), 105.0 (CH, C-3), 107.4 (C, C-14), 112.6 (CH, C-6), 114.0 (C, C-13), 122.4 (CH, C-42), 127.3 (CH, C-46), 135.6 (C, C-47), 139.5 (C, C-43), 139.5 (CH, C-5), 145.0 (CH, C-2), 148.7 (C, C-4), 152.6 (C, C-18), 158.1 (C, C-19), 161.3 (C, C-7).

LC—MS-analysis: Experiments were performed on a Thermo Finnigan Surveyor liquid chromatograph interfaced with a LCQTM Deca XPPLUS mass detector. E-Notopterol was dissolved in methanol (HPLC grade, Merck, Darmstadt, Germany) and analyzed in the ESI+ mode under following conditions: Sheath gas flow: 70 units, ionization voltage: 5,50 kV, capillary voltage 15 V, tube lens offset: 50 V, capillary temperature: 623 K.

Refinement top

H atoms were located in a difference map, but geometrically positioned with Caromatic-H = 0.95Å, Cmethyl-H = 0.98Å, Cmethylene-H = 0.99Å and O-H = 0.84Å. The torsion angle about the C-O bond was also refined. The U values of the H atoms were refined using the same U values for similar H atoms.

Computing details top

Data collection: local software; cell refinement: local software; data reduction: local software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: modified ORTEP (Johnson, 1965); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP plot (Johnson, 1965) showing the atomic numbering scheme. The probability ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Stereoscopic ORTEP plot (Johnson, 1965) of the packing. The atoms are drawn with arbitrary radii.
4-{[(2E)-5-hydroxy-3,7-dimethyl- octa-2,6-dien-1-yl]oxy}-7H-furo[3,2-g][1]benzopyran-7-one top
Crystal data top
C21H22O5Z = 2
Mr = 354.39F(000) = 376
Triclinic, P1Dx = 1.330 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 6.4317 (10) ÅCell parameters from 60 reflections
b = 8.0912 (16) Åθ = 16.0–19.8°
c = 17.206 (3) ŵ = 0.09 mm1
α = 91.802 (15)°T = 95 K
β = 94.240 (13)°Block, colourless
γ = 97.473 (15)°0.48 × 0.44 × 0.32 mm
V = 884.6 (3) Å3
Data collection top
Stoe four-circle
diffractometer
Rint = 0.023
Radiation source: fine-focus sealed tubeθmax = 26.0°, θmin = 2.5°
Graphite monochromatorh = 77
ω–2θ scansk = 91
4234 measured reflectionsl = 2121
3462 independent reflections3 standard reflections every 100 reflections
2941 reflections with I > 2σ(I) intensity decay: 0.4%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113Only H-atom displacement parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.2588P]
where P = (Fo2 + 2Fc2)/3
3462 reflections(Δ/σ)max < 0.001
249 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C21H22O5γ = 97.473 (15)°
Mr = 354.39V = 884.6 (3) Å3
Triclinic, P1Z = 2
a = 6.4317 (10) ÅMo Kα radiation
b = 8.0912 (16) ŵ = 0.09 mm1
c = 17.206 (3) ÅT = 95 K
α = 91.802 (15)°0.48 × 0.44 × 0.32 mm
β = 94.240 (13)°
Data collection top
Stoe four-circle
diffractometer
Rint = 0.023
4234 measured reflections3 standard reflections every 100 reflections
3462 independent reflections intensity decay: 0.4%
2941 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.113Only H-atom displacement parameters refined
S = 1.04Δρmax = 0.38 e Å3
3462 reflectionsΔρmin = 0.21 e Å3
249 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The non-hydrogen atoms were refined with anisotropic displacement parameters without any constraints. The H atoms of the 7H-Furo[3,2-g][1]benzopyran-7-one ring system were put at the external bisector of the C—C—C angle at a C—H distance of 0.95 Å and a common isotropic displacement parameter was refined (AFIX 43 of SHELXL97). The H atoms of the CH2 groups were refined with common isotropic displacement parameters for the H atoms of the same group and idealized geometry with approximately tetrahedral angles and C—H distances of 0.99 Å (AFIX 23 of SHELXL97). The H atoms bonded to a C atom of a C=C double bond were put at the external bisector of the C—C—C angle at a C—H distance of 0.95 Å but the individual isotropic displacement parameters are free to refine (AFIX 43 of SHELXL97). The H atom of the tertiary C—H group was refined with an individual isotropic displacement parameter and all X—C—H angles equal at a C—H distance of 1.00 Å (AFIX 13 of SHELXL97). The H atoms of the methyl groups were refined with common isotropic displacement parameters for the H atoms of the same group and idealized geometry with tetrahedral angles, enabling rotation around the X—C bond, and C—H distances of 0.98 Å (AFIX 137 of SHELXL97). The H atom of the OH group was refined with a tetrahedral C—O—H angle, enabling rotation around the C—O bond, O—H distance of 0.84 Å, and with an individual isotropic displacement parameter (AFIX 147 of SHELXL97).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.08010 (16)1.43591 (14)0.41654 (6)0.0244 (3)
C20.0927 (2)1.43677 (19)0.33658 (9)0.0246 (3)
H20.00371.48270.30160.028 (2)*
C30.2568 (2)1.36524 (19)0.31406 (9)0.0226 (3)
H30.29571.35240.26220.028 (2)*
C40.5403 (2)1.23232 (17)0.40535 (8)0.0177 (3)
C50.7767 (2)1.13743 (18)0.51262 (9)0.0202 (3)
H50.86701.10180.47600.028 (2)*
C60.8224 (2)1.11882 (19)0.58937 (9)0.0225 (3)
H60.94451.07070.60590.028 (2)*
C70.6889 (2)1.17088 (19)0.64707 (9)0.0228 (3)
O70.71375 (18)1.15883 (16)0.71723 (6)0.0305 (3)
O80.51411 (17)1.24050 (14)0.62003 (6)0.0231 (3)
C90.2897 (2)1.33880 (19)0.52396 (9)0.0216 (3)
H90.20451.37320.56260.028 (2)*
C130.3631 (2)1.31129 (18)0.38445 (8)0.0185 (3)
C140.5942 (2)1.21012 (17)0.48527 (8)0.0179 (3)
C180.4657 (2)1.26325 (18)0.54174 (8)0.0189 (3)
C190.2464 (2)1.36067 (18)0.44558 (9)0.0200 (3)
O40.66912 (16)1.17002 (14)0.35580 (6)0.0223 (3)
C410.6201 (2)1.17328 (19)0.27226 (8)0.0206 (3)
H4110.65161.28800.25400.022 (3)*
H4120.46951.13280.25840.022 (3)*
C420.7567 (2)1.05985 (18)0.23652 (8)0.0197 (3)
H420.89561.06330.26010.030 (5)*
C430.7031 (2)0.95436 (18)0.17484 (8)0.0198 (3)
C440.8569 (2)0.84090 (19)0.14954 (9)0.0215 (3)
H4410.99360.87250.18010.031 (3)*
H4420.87970.85760.09390.031 (3)*
C450.7817 (3)0.6553 (2)0.16021 (9)0.0247 (4)
H450.65690.61790.12280.026 (4)*
O50.7265 (2)0.62481 (16)0.23818 (7)0.0342 (3)
H510.65370.69730.25280.068 (8)*
C460.9538 (3)0.5518 (2)0.14538 (9)0.0246 (3)
H461.08630.58690.17310.022 (4)*
C470.9430 (3)0.4165 (2)0.09793 (9)0.0251 (3)
C481.1328 (3)0.3278 (2)0.08976 (10)0.0322 (4)
H4811.25430.38910.12070.042 (3)*
H4821.16280.32210.03480.042 (3)*
H4831.10480.21460.10850.042 (3)*
C490.4927 (3)0.9353 (2)0.12808 (9)0.0248 (3)
H4910.41201.02300.14480.043 (3)*
H4920.41500.82580.13650.043 (3)*
H4930.51460.94480.07250.043 (3)*
C500.7499 (3)0.3374 (2)0.04907 (10)0.0335 (4)
H5010.62980.39450.06080.058 (4)*
H5020.72040.21940.06090.058 (4)*
H5030.77370.34700.00630.058 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0215 (5)0.0223 (6)0.0295 (6)0.0061 (4)0.0006 (4)0.0023 (5)
C20.0264 (8)0.0193 (8)0.0272 (8)0.0028 (6)0.0037 (6)0.0002 (6)
C30.0268 (8)0.0172 (7)0.0236 (8)0.0043 (6)0.0013 (6)0.0002 (6)
C40.0202 (7)0.0113 (7)0.0212 (7)0.0004 (6)0.0036 (6)0.0027 (6)
C50.0224 (8)0.0142 (7)0.0234 (8)0.0002 (6)0.0025 (6)0.0003 (6)
C60.0241 (8)0.0178 (7)0.0247 (8)0.0007 (6)0.0012 (6)0.0025 (6)
C70.0239 (8)0.0191 (8)0.0227 (8)0.0053 (6)0.0015 (6)0.0015 (6)
O70.0328 (6)0.0363 (7)0.0199 (6)0.0044 (5)0.0006 (5)0.0032 (5)
O80.0251 (6)0.0251 (6)0.0183 (5)0.0006 (5)0.0026 (4)0.0005 (4)
C90.0199 (7)0.0190 (8)0.0254 (8)0.0001 (6)0.0053 (6)0.0041 (6)
C130.0212 (7)0.0118 (7)0.0217 (7)0.0011 (6)0.0005 (6)0.0018 (6)
C140.0201 (7)0.0120 (7)0.0208 (7)0.0001 (6)0.0014 (6)0.0016 (6)
C180.0224 (7)0.0144 (7)0.0185 (7)0.0026 (6)0.0014 (6)0.0013 (6)
C190.0180 (7)0.0131 (7)0.0283 (8)0.0016 (6)0.0001 (6)0.0014 (6)
O40.0263 (6)0.0255 (6)0.0168 (5)0.0100 (5)0.0020 (4)0.0023 (4)
C410.0266 (8)0.0184 (7)0.0167 (7)0.0033 (6)0.0014 (6)0.0002 (6)
C420.0217 (7)0.0186 (7)0.0192 (7)0.0032 (6)0.0022 (6)0.0020 (6)
C430.0255 (8)0.0163 (7)0.0181 (7)0.0032 (6)0.0037 (6)0.0038 (6)
C440.0277 (8)0.0195 (8)0.0180 (7)0.0043 (6)0.0043 (6)0.0008 (6)
C450.0281 (8)0.0212 (8)0.0256 (8)0.0058 (7)0.0039 (6)0.0000 (6)
O50.0427 (7)0.0292 (7)0.0366 (7)0.0163 (6)0.0186 (6)0.0099 (5)
C460.0267 (8)0.0224 (8)0.0253 (8)0.0058 (7)0.0028 (6)0.0017 (6)
C470.0329 (9)0.0202 (8)0.0233 (8)0.0049 (7)0.0062 (6)0.0053 (6)
C480.0444 (10)0.0266 (9)0.0290 (9)0.0141 (8)0.0090 (7)0.0005 (7)
C490.0306 (9)0.0237 (8)0.0200 (7)0.0047 (7)0.0004 (6)0.0013 (6)
C500.0424 (10)0.0243 (9)0.0322 (9)0.0008 (8)0.0030 (8)0.0013 (7)
Geometric parameters (Å, º) top
O1—C191.3688 (18)C41—H4120.99
O1—C21.3843 (19)C42—C431.336 (2)
C2—C31.343 (2)C42—H420.95
C2—H20.95C43—C491.509 (2)
C3—C131.454 (2)C43—C441.512 (2)
C3—H30.95C44—C451.537 (2)
C4—O41.3613 (18)C44—H4410.99
C4—C131.407 (2)C44—H4420.99
C4—C141.416 (2)C45—O51.4336 (19)
C5—C61.349 (2)C45—C461.504 (2)
C5—C141.436 (2)C45—H451.00
C5—H50.95O5—H510.84
C6—C71.447 (2)C46—C471.337 (2)
C6—H60.95C46—H460.95
C7—O71.2145 (19)C47—C501.504 (2)
C7—O81.3788 (19)C47—C481.507 (2)
O8—C181.3834 (18)C48—H4810.98
C9—C181.375 (2)C48—H4820.98
C9—C191.378 (2)C48—H4830.98
C9—H90.95C49—H4910.98
C13—C191.413 (2)C49—H4920.98
C14—C181.413 (2)C49—H4930.98
O4—C411.4504 (17)C50—H5010.98
C41—C421.499 (2)C50—H5020.98
C41—H4110.99C50—H5030.98
C19—O1—C2105.94 (12)C43—C42—H42116.7
C3—C2—O1112.26 (14)C41—C42—H42116.7
C3—C2—H2123.9C42—C43—C49124.47 (14)
O1—C2—H2123.9C42—C43—C44119.56 (14)
C2—C3—C13106.62 (14)C49—C43—C44115.95 (13)
C2—C3—H3126.7C43—C44—C45113.08 (13)
C13—C3—H3126.7C43—C44—H441109.0
O4—C4—C13126.59 (13)C45—C44—H441109.0
O4—C4—C14114.47 (13)C43—C44—H442109.0
C13—C4—C14118.94 (13)C45—C44—H442109.0
C6—C5—C14121.15 (14)H441—C44—H442107.8
C6—C5—H5119.4O5—C45—C46106.58 (13)
C14—C5—H5119.4O5—C45—C44111.88 (13)
C5—C6—C7121.23 (15)C46—C45—C44110.45 (13)
C5—C6—H6119.4O5—C45—H45109.3
C7—C6—H6119.4C46—C45—H45109.3
O7—C7—O8116.20 (14)C44—C45—H45109.3
O7—C7—C6126.77 (15)C45—O5—H51109.5
O8—C7—C6117.03 (13)C47—C46—C45127.87 (15)
C7—O8—C18122.82 (12)C47—C46—H46116.1
C18—C9—C19114.72 (14)C45—C46—H46116.1
C18—C9—H9122.6C46—C47—C50125.44 (16)
C19—C9—H9122.6C46—C47—C48120.82 (15)
C4—C13—C19117.12 (13)C50—C47—C48113.73 (15)
C4—C13—C3138.18 (14)C47—C48—H481109.5
C19—C13—C3104.68 (13)C47—C48—H482109.5
C18—C14—C4119.34 (13)H481—C48—H482109.5
C18—C14—C5117.56 (13)C47—C48—H483109.5
C4—C14—C5123.09 (13)H481—C48—H483109.5
C9—C18—O8116.11 (13)H482—C48—H483109.5
C9—C18—C14123.71 (14)C43—C49—H491109.5
O8—C18—C14120.18 (13)C43—C49—H492109.5
O1—C19—C9123.36 (14)H491—C49—H492109.5
O1—C19—C13110.49 (13)C43—C49—H493109.5
C9—C19—C13126.15 (14)H491—C49—H493109.5
C4—O4—C41119.53 (11)H492—C49—H493109.5
O4—C41—C42105.47 (12)C47—C50—H501109.5
O4—C41—H411110.6C47—C50—H502109.5
C42—C41—H411110.6H501—C50—H502109.5
O4—C41—H412110.6C47—C50—H503109.5
C42—C41—H412110.6H501—C50—H503109.5
H411—C41—H412108.8H502—C50—H503109.5
C43—C42—C41126.62 (14)
C19—O1—C2—C30.41 (17)C4—C14—C18—O8179.09 (12)
O1—C2—C3—C130.19 (18)C5—C14—C18—O81.7 (2)
C14—C5—C6—C70.2 (2)C2—O1—C19—C9178.89 (14)
C5—C6—C7—O7179.33 (15)C2—O1—C19—C130.87 (16)
C5—C6—C7—O80.2 (2)C18—C9—C19—O1178.88 (13)
O7—C7—O8—C18179.60 (13)C18—C9—C19—C130.9 (2)
C6—C7—O8—C180.8 (2)C4—C13—C19—O1179.76 (12)
O4—C4—C13—C19177.50 (13)C3—C13—C19—O10.98 (16)
C14—C4—C13—C191.4 (2)C4—C13—C19—C90.0 (2)
O4—C4—C13—C34.3 (3)C3—C13—C19—C9178.78 (14)
C14—C4—C13—C3176.88 (16)C13—C4—O4—C413.8 (2)
C2—C3—C13—C4179.08 (17)C14—C4—O4—C41175.09 (12)
C2—C3—C13—C190.70 (16)C4—O4—C41—C42166.21 (12)
O4—C4—C14—C18177.18 (12)O4—C41—C42—C43141.31 (15)
C13—C4—C14—C181.8 (2)C41—C42—C43—C492.1 (2)
O4—C4—C14—C53.7 (2)C41—C42—C43—C44176.19 (14)
C13—C4—C14—C5177.31 (13)C42—C43—C44—C45113.54 (16)
C6—C5—C14—C180.8 (2)C49—C43—C44—C4564.89 (17)
C6—C5—C14—C4179.90 (14)C43—C44—C45—O553.12 (17)
C19—C9—C18—O8179.60 (12)C43—C44—C45—C46171.68 (13)
C19—C9—C18—C140.4 (2)O5—C45—C46—C47109.83 (18)
C7—O8—C18—C9178.14 (13)C44—C45—C46—C47128.43 (17)
C7—O8—C18—C141.8 (2)C45—C46—C47—C500.7 (3)
C4—C14—C18—C90.9 (2)C45—C46—C47—C48179.69 (15)
C5—C14—C18—C9178.22 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O8i0.842.573.2193 (16)135
Symmetry code: (i) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC21H22O5
Mr354.39
Crystal system, space groupTriclinic, P1
Temperature (K)95
a, b, c (Å)6.4317 (10), 8.0912 (16), 17.206 (3)
α, β, γ (°)91.802 (15), 94.240 (13), 97.473 (15)
V3)884.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.48 × 0.44 × 0.32
Data collection
DiffractometerStoe four-circle
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4234, 3462, 2941
Rint0.023
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.113, 1.04
No. of reflections3462
No. of parameters249
H-atom treatmentOnly H-atom displacement parameters refined
Δρmax, Δρmin (e Å3)0.38, 0.21

Computer programs: local software, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), modified ORTEP (Johnson, 1965).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O8i0.842.573.2193 (16)134.5
Symmetry code: (i) x+1, y+2, z+1.
 

Acknowledgements

Funding provided by the Austrian Science Fund (FWF) within project S107 (Drugs from Nature Targeting Inflammation) is gratefully acknowledged.

References

First citationChemical Abstract Service (2009). The SciFinder database. Chemical Abstracts Service, Columbus, Ohio, USA.  Google Scholar
First citationHasegawa, A., Nakamura, H., Watanabe, T., Okuyama, E., Ohmori, S., Ishikawa, T. & Kitada, M. (1999). Biol. Pharm. Bull. 22, 725–726.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJohnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXiao, Y., Sun, Y. & Liu, K. (1994). Zhongguo Zhongyao Zazhi, 19, 421–422.  CAS PubMed Google Scholar
First citationYang, X., Yan, Z., Gu, Z., Zhou, G., Hattori, M. & Namba, T. (1994). Zhongguo Yaoxue Zazhi, 29, 141–143.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds