organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[1-(3-Nitro­phen­yl)-2,3-di­hydro-1H-naphtho[1,2-e][1,3]oxazin-3-ylidine]malonaldehyde

aDepartment of Physics, The New College (Autonomous), Chennai 600 014, India, bDepartment of Physics, Presidency College (Autonomous), Chennai 600 005, India, and cOrganic Chemistry Division, Central Leather Research Institute, Chennai 600 020, India
*Correspondence e-mail: a_spandian@yahoo.com

(Received 17 February 2009; accepted 19 February 2009; online 25 February 2009)

The oxazine ring in the title compound, C21H14N2O5, adopts a flattened boat conformation. The nitro­phenyl ring and the naphthalene ring system enclose a dihedral angle of 89.2 (1)°. An intra­molecular hydrogen bond is formed between the NH group and one of the adjacent carbonyl O atoms. In addition, the NH group forms an inter­molecular hydrogen bond to a symmetry equivalent of this carbonyl O atom, connecting the mol­ecules into centrosymmetric dimers. The structure also contains C—H⋯O inter­molecular inter­actions.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C21H14N2O5

  • Mr = 374.34

  • Monoclinic, P 21 /n

  • a = 7.9191 (4) Å

  • b = 23.3876 (11) Å

  • c = 9.6199 (5) Å

  • β = 104.632 (2)°

  • V = 1723.91 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.33 × 0.27 × 0.25 mm

Data collection
  • 'Bruker Kappa APEXII CCD diffractometer'

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.897, Tmax = 0.974

  • 16263 measured reflections

  • 3023 independent reflections

  • 2334 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.102

  • S = 1.00

  • 3023 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯O3i 0.93 2.54 3.395 (2) 153
C18—H18⋯O4ii 0.93 2.44 3.259 (2) 148
N1—H1⋯O4ii 0.86 2.36 3.078 (2) 141
N1—H1⋯O4 0.86 2.02 2.670 (2) 132
Symmetry codes: (i) -x+2, -y, -z+1; (ii) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.])'.

Supporting information


Comment top

A view of the title compound with the atom-numbering scheme is shown in Fig. 1. The bond lengths C1—O1 and C1—N1 in the oxazine ring are 1.344 (2) and 1.307 (2)Å respectively.

The six membered oxazine moiety is not planar, having a total puckering amplitude, QT of 0.329 (2) Å and adopting a boat conformation [θ = 81.8 (1) and ϕ = 171.8 (2)°] (Cremer & Pople, 1975), and the lowest displacement asymmetry parameters ΔS(O1) is 8.0 (1)° (Nardelli, 1983). The dihedral angle between the naphthalene and benzene ring is 89.2 (1)°.

The crystal structure of the title compound is characterized by bifurcated hydrogen bonds between the amine and aldehyde groups (Table 1 and Fig. 2). One interaction is an intramolecular N—H···O hydrogen bond between donor atom N1 and acceptor atom O4, described by the graph-set motif S(6) (Bernstein et al., 1995). Atom N1 in the molecule at (x, y, z) also acts as a hydrogen-bond donor via atom H1 to atom O4 in the molecule at (1 - x, -y, -z). This intermolecular hydrogen bond links the molecules into dimers described by a graph-set motif R22(12). The structure also contains C—H···O intermolecular interactions. Atom C11 and C18 in the molecule at (x, y, z) acts as a hydrogen-bond donor via atom H11 and H18 to atom O3 and O4 in the molecule at (2 - x, -y, 1 - z). This intermolecular hydrogen bond links the molecules into dimers with a cyclic R22(20) and R22(18) ring system, respectively.

Related literature top

For hydrogen-bond motifs, see: Bernstein et al. (1995). Fo ring puckering parameters, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

To the solution containing N-[(3-Nitro-phenyl)-(2-hydroxy-napthalen-1-yl) -methyl]-acetamide (10 mmol) dissolved in DMF (12 equiv), POCl3 (8 eqiuv) was added slowly dropwise (around 15 min) at 273°K, then the reaction mixture was allowed to reach room temperature. The reaction mixture was stirred at 363°K for about 3.5 h. Afer completion of the reaction, it was allowed to cool to room temperature. Then it was poured into crushed ice and refrigerated overnight. The solution was neutralized with sodium acetate and the crude compound was extracted with dichloromethane (3 × 50 ml) and washed with water (3 × 25 ml). Organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The crude product was purified through column chromatography using ethyl acetate: petroleum ether (1:1) as eluent. Single crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a solution in Ethanol.

Refinement top

All H atoms were positioned geometrically, with N—H = 0.86 and C—H = 0.93 and 0.98 Å aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, N), where x = 1.2 for all H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: 'SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009)'.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of compound (I), showing the R22(12), R22(20) and R22(18) rings. Hydrogen bonding is shown as dashed lines. H atoms not involved in the hydrogen bonding have been omitted for clarity. [Symmetry codes: (*)-x + 2, -y, -z + 1, ($)-x + 1, -y, -z]
[1-(3-Nitrophenyl)-2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazin-3- ylidine]malonaldehyde top
Crystal data top
C21H14N2O5F(000) = 776
Mr = 374.34Dx = 1.442 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2334 reflections
a = 7.9191 (4) Åθ = 2.5–25°
b = 23.3876 (11) ŵ = 0.11 mm1
c = 9.6199 (5) ÅT = 293 K
β = 104.632 (2)°Block, colourless
V = 1723.91 (15) Å30.33 × 0.27 × 0.25 mm
Z = 4
Data collection top
'Bruker Kappa APEXII CCD
diffractometer'
3023 independent reflections
Radiation source: fine-focus sealed tube2334 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and ϕ scanθmax = 24.9°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 99
Tmin = 0.897, Tmax = 0.974k = 2727
16263 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0509P)2 + 0.352P]
where P = (Fo2 + 2Fc2)/3
3023 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C21H14N2O5V = 1723.91 (15) Å3
Mr = 374.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.9191 (4) ŵ = 0.11 mm1
b = 23.3876 (11) ÅT = 293 K
c = 9.6199 (5) Å0.33 × 0.27 × 0.25 mm
β = 104.632 (2)°
Data collection top
'Bruker Kappa APEXII CCD
diffractometer'
3023 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2334 reflections with I > 2σ(I)
Tmin = 0.897, Tmax = 0.974Rint = 0.032
16263 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.00Δρmax = 0.12 e Å3
3023 reflectionsΔρmin = 0.17 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.30114 (13)0.16841 (5)0.13932 (12)0.0486 (3)
O20.8553 (2)0.07387 (6)0.43720 (18)0.0878 (5)
O30.8486 (3)0.07086 (8)0.6565 (2)0.1195 (7)
O40.30819 (17)0.00916 (5)0.05620 (14)0.0638 (4)
O50.14205 (16)0.09772 (6)0.06754 (16)0.0718 (4)
N10.47317 (16)0.09268 (5)0.11444 (13)0.0418 (3)
H10.48470.06190.06900.050*
N20.8208 (2)0.04987 (7)0.53794 (19)0.0637 (4)
C10.3180 (2)0.11583 (6)0.08808 (16)0.0401 (4)
C20.62913 (19)0.11553 (6)0.21612 (16)0.0388 (4)
H20.73100.10630.17990.047*
C30.61165 (19)0.17956 (6)0.21877 (16)0.0395 (4)
C40.45014 (19)0.20287 (6)0.18043 (17)0.0412 (4)
C50.4178 (2)0.26167 (7)0.17688 (17)0.0464 (4)
H50.30420.27570.15030.056*
C60.5556 (2)0.29776 (7)0.21305 (18)0.0485 (4)
H60.53630.33700.20880.058*
C70.7285 (2)0.27682 (7)0.25716 (17)0.0439 (4)
C80.8737 (2)0.31383 (8)0.29883 (19)0.0529 (4)
H80.85620.35320.29380.063*
C91.0376 (2)0.29305 (8)0.3459 (2)0.0576 (5)
H91.13130.31810.37390.069*
C101.0666 (2)0.23391 (8)0.35255 (19)0.0555 (5)
H101.17960.21990.38560.067*
C110.9305 (2)0.19657 (7)0.31089 (17)0.0474 (4)
H110.95180.15740.31500.057*
C120.7579 (2)0.21687 (7)0.26167 (16)0.0402 (4)
C130.65335 (18)0.08758 (6)0.36265 (16)0.0370 (3)
C140.6049 (2)0.11392 (7)0.47526 (18)0.0504 (4)
H140.55570.15030.46210.061*
C150.6281 (2)0.08734 (8)0.60702 (19)0.0590 (5)
H150.59470.10600.68120.071*
C160.6998 (2)0.03369 (8)0.62976 (18)0.0510 (4)
H160.71720.01570.71840.061*
C170.7447 (2)0.00769 (7)0.51666 (18)0.0441 (4)
C180.72429 (19)0.03325 (7)0.38466 (17)0.0410 (4)
H180.75780.01420.31100.049*
C190.1647 (2)0.08978 (7)0.00800 (16)0.0425 (4)
C200.0008 (2)0.11766 (8)0.00797 (18)0.0525 (4)
H200.00040.15420.03070.063*
C210.1741 (2)0.03622 (8)0.05856 (18)0.0529 (4)
H210.06910.02000.10870.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0428 (6)0.0418 (7)0.0611 (7)0.0005 (5)0.0128 (5)0.0115 (5)
O20.1298 (13)0.0574 (9)0.0767 (11)0.0390 (9)0.0270 (10)0.0026 (8)
O30.1869 (19)0.1002 (13)0.0839 (12)0.0799 (13)0.0572 (12)0.0540 (10)
O40.0610 (8)0.0556 (8)0.0703 (9)0.0025 (6)0.0082 (6)0.0219 (6)
O50.0463 (7)0.0827 (10)0.0801 (10)0.0028 (7)0.0041 (7)0.0112 (8)
N10.0474 (8)0.0357 (7)0.0391 (7)0.0028 (6)0.0050 (6)0.0071 (6)
N20.0758 (10)0.0516 (9)0.0642 (11)0.0201 (8)0.0189 (8)0.0122 (8)
C10.0477 (9)0.0381 (9)0.0355 (8)0.0008 (7)0.0123 (7)0.0007 (7)
C20.0400 (8)0.0348 (8)0.0408 (9)0.0007 (6)0.0089 (7)0.0045 (7)
C30.0466 (9)0.0352 (8)0.0369 (8)0.0012 (7)0.0111 (7)0.0008 (7)
C40.0447 (9)0.0375 (9)0.0419 (9)0.0009 (7)0.0116 (7)0.0032 (7)
C50.0504 (9)0.0402 (9)0.0490 (10)0.0084 (8)0.0134 (8)0.0002 (7)
C60.0645 (11)0.0330 (9)0.0511 (10)0.0038 (8)0.0202 (8)0.0013 (7)
C70.0582 (10)0.0380 (9)0.0392 (9)0.0041 (7)0.0191 (7)0.0002 (7)
C80.0672 (12)0.0434 (10)0.0530 (11)0.0129 (9)0.0245 (9)0.0026 (8)
C90.0598 (11)0.0612 (12)0.0553 (11)0.0230 (9)0.0211 (9)0.0057 (9)
C100.0486 (10)0.0660 (12)0.0531 (11)0.0078 (9)0.0150 (8)0.0017 (9)
C110.0491 (9)0.0467 (10)0.0470 (10)0.0016 (8)0.0133 (8)0.0000 (8)
C120.0482 (9)0.0386 (9)0.0354 (8)0.0028 (7)0.0136 (7)0.0010 (7)
C130.0338 (7)0.0342 (8)0.0404 (8)0.0017 (6)0.0044 (6)0.0046 (7)
C140.0612 (11)0.0413 (10)0.0485 (10)0.0106 (8)0.0133 (8)0.0042 (8)
C150.0745 (12)0.0609 (12)0.0441 (11)0.0126 (10)0.0197 (9)0.0063 (9)
C160.0554 (10)0.0559 (11)0.0391 (9)0.0020 (8)0.0071 (7)0.0031 (8)
C170.0431 (9)0.0396 (9)0.0466 (10)0.0042 (7)0.0056 (7)0.0025 (7)
C180.0415 (8)0.0389 (9)0.0417 (9)0.0028 (7)0.0088 (7)0.0055 (7)
C190.0448 (9)0.0458 (10)0.0362 (8)0.0034 (7)0.0087 (7)0.0027 (7)
C200.0488 (10)0.0591 (11)0.0482 (10)0.0017 (8)0.0094 (8)0.0038 (8)
C210.0511 (10)0.0563 (11)0.0482 (10)0.0069 (9)0.0068 (8)0.0092 (8)
Geometric parameters (Å, º) top
O1—C11.3440 (18)C8—C91.352 (3)
O1—C41.4009 (18)C8—H80.9300
O2—N21.209 (2)C9—C101.401 (3)
O3—N21.210 (2)C9—H90.9300
O4—C211.232 (2)C10—C111.366 (2)
O5—C201.214 (2)C10—H100.9300
N1—C11.3075 (19)C11—C121.411 (2)
N1—C21.4689 (19)C11—H110.9300
N1—H10.8600C13—C141.382 (2)
N2—C171.468 (2)C13—C181.384 (2)
C1—C191.402 (2)C14—C151.382 (3)
C2—C31.505 (2)C14—H140.9300
C2—C131.521 (2)C15—C161.372 (2)
C2—H20.9800C15—H150.9300
C3—C41.353 (2)C16—C171.370 (2)
C3—C121.425 (2)C16—H160.9300
C4—C51.398 (2)C17—C181.376 (2)
C5—C61.354 (2)C18—H180.9300
C5—H50.9300C19—C211.417 (2)
C6—C71.414 (2)C19—C201.437 (2)
C6—H60.9300C20—H200.9300
C7—C81.414 (2)C21—H210.9300
C7—C121.420 (2)
C1—O1—C4118.37 (12)C11—C10—C9120.65 (17)
C1—N1—C2124.71 (13)C11—C10—H10119.7
C1—N1—H1117.6C9—C10—H10119.7
C2—N1—H1117.6C10—C11—C12120.58 (16)
O2—N2—O3122.89 (17)C10—C11—H11119.7
O2—N2—C17118.80 (16)C12—C11—H11119.7
O3—N2—C17118.31 (17)C11—C12—C7118.71 (14)
N1—C1—O1118.90 (14)C11—C12—C3122.58 (14)
N1—C1—C19124.59 (14)C7—C12—C3118.70 (14)
O1—C1—C19116.51 (13)C14—C13—C18118.15 (15)
N1—C2—C3107.93 (12)C14—C13—C2122.67 (14)
N1—C2—C13110.41 (12)C18—C13—C2119.18 (13)
C3—C2—C13113.73 (12)C13—C14—C15121.30 (16)
N1—C2—H2108.2C13—C14—H14119.3
C3—C2—H2108.2C15—C14—H14119.3
C13—C2—H2108.2C16—C15—C14120.76 (16)
C4—C3—C12118.39 (14)C16—C15—H15119.6
C4—C3—C2118.75 (13)C14—C15—H15119.6
C12—C3—C2122.86 (13)C17—C16—C15117.36 (16)
C3—C4—O1121.07 (13)C17—C16—H16121.3
C3—C4—C5123.91 (15)C15—C16—H16121.3
O1—C4—C5115.02 (13)C16—C17—C18123.15 (15)
C6—C5—C4118.41 (15)C16—C17—N2118.43 (15)
C6—C5—H5120.8C18—C17—N2118.41 (15)
C4—C5—H5120.8C17—C18—C13119.26 (14)
C5—C6—C7121.19 (15)C17—C18—H18120.4
C5—C6—H6119.4C13—C18—H18120.4
C7—C6—H6119.4C1—C19—C21119.67 (15)
C6—C7—C8121.97 (15)C1—C19—C20120.10 (15)
C6—C7—C12119.34 (15)C21—C19—C20120.22 (15)
C8—C7—C12118.69 (15)O5—C20—C19125.67 (18)
C9—C8—C7121.21 (17)O5—C20—H20117.2
C9—C8—H8119.4C19—C20—H20117.2
C7—C8—H8119.4O4—C21—C19126.11 (16)
C8—C9—C10120.15 (16)O4—C21—H21116.9
C8—C9—H9119.9C19—C21—H21116.9
C10—C9—H9119.9
C2—N1—C1—O110.5 (2)C8—C7—C12—C3179.59 (14)
C2—N1—C1—C19169.97 (14)C4—C3—C12—C11176.48 (15)
C4—O1—C1—N118.7 (2)C2—C3—C12—C112.7 (2)
C4—O1—C1—C19160.81 (13)C4—C3—C12—C72.3 (2)
C1—N1—C2—C331.1 (2)C2—C3—C12—C7178.44 (14)
C1—N1—C2—C1393.82 (17)N1—C2—C13—C14100.41 (16)
N1—C2—C3—C424.17 (19)C3—C2—C13—C1421.1 (2)
C13—C2—C3—C498.69 (16)N1—C2—C13—C1878.61 (16)
N1—C2—C3—C12156.62 (13)C3—C2—C13—C18159.90 (13)
C13—C2—C3—C1280.52 (17)C18—C13—C14—C150.8 (2)
C12—C3—C4—O1179.04 (13)C2—C13—C14—C15179.79 (16)
C2—C3—C4—O10.2 (2)C13—C14—C15—C160.2 (3)
C12—C3—C4—C51.6 (2)C14—C15—C16—C170.8 (3)
C2—C3—C4—C5179.12 (15)C15—C16—C17—C181.3 (3)
C1—O1—C4—C324.0 (2)C15—C16—C17—N2179.66 (15)
C1—O1—C4—C5155.39 (14)O2—N2—C17—C16177.49 (18)
C3—C4—C5—C60.4 (2)O3—N2—C17—C163.6 (3)
O1—C4—C5—C6178.97 (14)O2—N2—C17—C183.4 (3)
C4—C5—C6—C71.7 (2)O3—N2—C17—C18175.53 (19)
C5—C6—C7—C8178.35 (16)C16—C17—C18—C130.7 (2)
C5—C6—C7—C120.9 (2)N2—C17—C18—C13179.79 (14)
C6—C7—C8—C9177.48 (16)C14—C13—C18—C170.3 (2)
C12—C7—C8—C91.8 (2)C2—C13—C18—C17179.37 (13)
C7—C8—C9—C100.8 (3)N1—C1—C19—C214.3 (2)
C8—C9—C10—C110.4 (3)O1—C1—C19—C21175.26 (14)
C9—C10—C11—C120.6 (3)N1—C1—C19—C20176.56 (15)
C10—C11—C12—C70.4 (2)O1—C1—C19—C203.9 (2)
C10—C11—C12—C3179.22 (15)C1—C19—C20—O5175.50 (17)
C6—C7—C12—C11177.72 (14)C21—C19—C20—O55.3 (3)
C8—C7—C12—C111.5 (2)C1—C19—C21—O41.5 (3)
C6—C7—C12—C31.2 (2)C20—C19—C21—O4177.67 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O3i0.932.543.395 (2)153
C18—H18···O4ii0.932.443.259 (2)148
N1—H1···O4ii0.862.363.078 (2)141
N1—H1···O40.862.022.670 (2)132
C20—H20···O10.932.372.724 (2)102
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC21H14N2O5
Mr374.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.9191 (4), 23.3876 (11), 9.6199 (5)
β (°) 104.632 (2)
V3)1723.91 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.33 × 0.27 × 0.25
Data collection
Diffractometer'Bruker Kappa APEXII CCD
diffractometer'
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.897, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
16263, 3023, 2334
Rint0.032
(sin θ/λ)max1)0.593
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.102, 1.00
No. of reflections3023
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.17

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), 'SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009)'.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O3i0.932.543.395 (2)152.9
C18—H18···O4ii0.932.443.259 (2)147.6
N1—H1···O4ii0.862.363.078 (2)141.4
N1—H1···O40.862.022.670 (2)132.0
C20—H20···O10.932.372.724 (2)102.3
Symmetry codes: (i) x+2, y, z+1; (ii) x+1, y, z.
 

Acknowledgements

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help in collecting the X-ray intensity data. MNM and ASP thank Dr J. Jothi Kumar, Principal of Presidency College, Chennai, India, for providing the computer and internet facilities.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds