organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Benzyl 2-(4-bromo­anilino)-4,4-di­methyl-6-oxo­cyclo­hex-1-enecarbodi­thio­ate: first triclinic polymorph

aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 19 February 2009; accepted 19 February 2009; online 25 February 2009)

The six-membered cyclo­hexene ring in the title compound, C22H22BrNOS2, adopts an envelope conformation, with the C atom bearing the two methyl groups representing the flap. This atom deviates by 0.686 (4) Å from the plane passing through the other five atoms of the ring (r.m.s. deviation = 0.025 Å). The mol­ecular conformation is stabilized by an intra­molecular N—H⋯S hydrogen bond.

Related literature

For previous work on this topic, see: El Ashry et al. (2005a[El Ashry, E. S. H., Awad, L. F., Abdel Hamid, H. M. & Atta, A. I. (2005a). J. Carbohydr. Chem. 24, 745-753.],b[El Ashry, E. S. H., Rashed, N. & Ibrahim, E. I. (2005b). Curr. Org. Synth. 2, 175-213.], 2006[El Ashry, E. S. H., Awad, L. F. & Atta, A. I. (2006). Tetrahedron, 62, 2943-2998.], 2008a[El Ashry, E. S. H., Rashed, N., Awad, L. F., Ramadan, E. S., Abdel-Maggeed, S. M. & Rezki, N. (2008a). J. Carbohydr. Chem. 27, 70-85.],b[El Ashry, E. S. H., Rashed, N. & Ibrahim, E. I. (2008b). Tetrahedron, 64, 10631-10648.]); El Ashry, Kassem et al. (2009[El Ashry, E. S. H., Kassem, A. A., Abdel-Hamid, H. M., Louis, F., Khattab, Sh. A. N. & Aouad, M. R. (2009). Carbohydr. Res. 28. In the press.]). For the use of enamines in heterocyclic synthesis, see: Tominaga (1989[Tominaga, Y. (1989). J. Heterocycl. Chem. 26, 1167-1204.]); Tominaga et al. (1991[Tominaga, Y., Okuda, H., Kohra, S. & Mazume, H. (1991). J. Heterocycl. Chem. 28, 1245-1255.]). For another triclinic polymorph of the title compound, see El Ashry, Amer et al. (2009[El Ashry, E. S. H., Amer, M. R., Shah, M. R. & Ng, S. W. (2009). Acta Cryst. E65, o598.]).

[Scheme 1]

Experimental

Crystal data
  • C22H22BrNOS2

  • Mr = 460.44

  • Triclinic, [P \overline 1]

  • a = 9.3030 (3) Å

  • b = 9.8099 (3) Å

  • c = 12.3538 (4) Å

  • α = 73.464 (2)°

  • β = 72.391 (2)°

  • γ = 89.916 (2)°

  • V = 1025.73 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.22 mm−1

  • T = 100 K

  • 0.40 × 0.04 × 0.04 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.684, Tmax = 0.917

  • 9757 measured reflections

  • 4709 independent reflections

  • 3490 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.077

  • S = 0.99

  • 4709 reflections

  • 250 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S2 0.88 (1) 2.10 (2) 2.905 (2) 151 (3)

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

The enaminodithiocarboxylates are a class of compounds of crucial significance for designing functionalized molecules that are suitable for studying the biological activity of potentially useful chemicals. They are also important reactants in the synthesis of heterocyclic compounds (Tominaga, 1989; Tominaga et al., 1991). Our interest in such class of compounds revolves around new glycosyl donors (El Ashry et al., 2005a, 2005b, 2006, 2008a, 2008b, El Ashry, Kassem et al.2009). The title compound is to be used in a model study to understand the scope of the reaction that uses cyclic enaminones. A possibility exists that the representative title compound can lead to a fused cyclized product.

Related literature top

For previous work on this topic, see: El Ashry et al. (2005a,b, 2006, 2008a,b); El Ashry, Kassem et al. (2009). For the use of enamines in heterocyclic synthesis, see: Tominaga (1989); Tominaga et al. (1991). For another triclinic polymorph of the title compound, see El Ashry, Amer et al. (2009).

Experimental top

To a solution of 3-(4-bromoanilino)-5,5-dimethyl-cyclohex-2-en-1-one (0.1 mol) in DMSO (20 ml) and sodium hydroxide (0.1 mol) in water (1 ml) was added carbon disulphide (0.3 mol). The mixture was kept at 263 K for 20 min. Benzyl bromide (0.1 mol) was added. The mixture was left for 24 h, after which it was quenched with water (200 ml) and then acidified with 10% hydrochloric acid. The resulting precipitate was collected by filtration, dried and purified on a silica gel column (30% ethyl acetate in hexane) to give orange crystals (40% yield, mp 458 K). HRMS for C22H22BrNOS2, calc.: 459.0326, found, m/z: 459.0316.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C). The methyl groups were allowed to rotate but not to tip.

The amino H-atom was located in a difference Fourier map, and was refined with a distance restraint of N–H 0.88±0.01 Å; its isotropic displacement parameter was freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) plot of C22H22BrNOS2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Benzyl 2-(4-bromoanilino)-4,4-dimethyl-6-oxocyclohex-1-enecarbodithioate top
Crystal data top
C22H22BrNOS2Z = 2
Mr = 460.44F(000) = 472
Triclinic, P1Dx = 1.491 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.3030 (3) ÅCell parameters from 2124 reflections
b = 9.8099 (3) Åθ = 2.4–25.2°
c = 12.3538 (4) ŵ = 2.22 mm1
α = 73.464 (2)°T = 100 K
β = 72.391 (2)°Prism, yellow
γ = 89.916 (2)°0.40 × 0.04 × 0.04 mm
V = 1025.73 (6) Å3
Data collection top
Bruker SMART APEX
diffractometer
4709 independent reflections
Radiation source: fine-focus sealed tube3490 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1112
Tmin = 0.684, Tmax = 0.917k = 1212
9757 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0236P)2 + 0.5453P]
where P = (Fo2 + 2Fc2)/3
4709 reflections(Δ/σ)max = 0.001
250 parametersΔρmax = 0.47 e Å3
1 restraintΔρmin = 0.38 e Å3
Crystal data top
C22H22BrNOS2γ = 89.916 (2)°
Mr = 460.44V = 1025.73 (6) Å3
Triclinic, P1Z = 2
a = 9.3030 (3) ÅMo Kα radiation
b = 9.8099 (3) ŵ = 2.22 mm1
c = 12.3538 (4) ÅT = 100 K
α = 73.464 (2)°0.40 × 0.04 × 0.04 mm
β = 72.391 (2)°
Data collection top
Bruker SMART APEX
diffractometer
4709 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3490 reflections with I > 2σ(I)
Tmin = 0.684, Tmax = 0.917Rint = 0.039
9757 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0371 restraint
wR(F2) = 0.077H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.47 e Å3
4709 reflectionsΔρmin = 0.38 e Å3
250 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.36770 (4)0.20219 (3)1.10143 (3)0.02491 (9)
S10.64466 (8)1.01099 (7)0.25672 (6)0.01823 (16)
S20.74397 (8)0.76685 (8)0.41055 (6)0.02190 (17)
O10.3727 (2)1.0432 (2)0.34593 (18)0.0319 (5)
N10.4826 (3)0.6419 (2)0.6181 (2)0.0182 (5)
H10.5775 (16)0.658 (3)0.571 (2)0.035 (10)*
C10.3918 (3)0.7277 (3)0.5732 (2)0.0153 (6)
C20.2258 (3)0.7000 (3)0.6438 (2)0.0181 (6)
H2A0.20560.75090.70480.022*
H2B0.20240.59660.68600.022*
C30.1189 (3)0.7459 (3)0.5701 (2)0.0179 (6)
C40.1689 (3)0.9016 (3)0.5000 (2)0.0196 (6)
H4A0.10960.93250.44430.024*
H4B0.14370.95940.55600.024*
C50.3345 (3)0.9339 (3)0.4300 (2)0.0192 (6)
C60.4459 (3)0.8392 (3)0.4637 (2)0.0149 (6)
C70.1277 (3)0.6549 (3)0.4872 (3)0.0267 (7)
H7A0.05470.68320.44390.040*
H7B0.10400.55400.53400.040*
H7C0.23020.66890.43040.040*
C80.0436 (3)0.7327 (3)0.6537 (3)0.0256 (7)
H8A0.11170.76620.60670.038*
H8B0.04830.79090.70720.038*
H8C0.07470.63260.70070.038*
C90.6016 (3)0.8658 (3)0.3878 (2)0.0158 (6)
C100.8407 (3)0.9962 (3)0.1768 (2)0.0211 (6)
H10A0.90901.01310.22040.025*
H10B0.85310.90040.16550.025*
C110.8740 (3)1.1104 (3)0.0584 (2)0.0198 (6)
C120.8062 (3)1.0952 (3)0.0244 (3)0.0243 (7)
H120.73921.01270.00550.029*
C130.8346 (3)1.1978 (3)0.1334 (3)0.0290 (7)
H130.78811.18550.18910.035*
C140.9310 (4)1.3184 (3)0.1609 (3)0.0306 (8)
H140.95111.38910.23580.037*
C150.9979 (4)1.3362 (3)0.0802 (3)0.0306 (8)
H151.06371.41940.09920.037*
C160.9693 (3)1.2323 (3)0.0298 (3)0.0250 (7)
H161.01561.24550.08530.030*
C170.4444 (3)0.5381 (3)0.7324 (2)0.0168 (6)
C180.3865 (3)0.5766 (3)0.8354 (2)0.0203 (6)
H180.36490.67240.83080.024*
C190.3599 (3)0.4755 (3)0.9452 (3)0.0212 (6)
H190.31880.50131.01630.025*
C200.3937 (3)0.3364 (3)0.9507 (2)0.0197 (6)
C210.4509 (3)0.2970 (3)0.8484 (2)0.0202 (6)
H210.47320.20140.85310.024*
C220.4755 (3)0.3981 (3)0.7388 (2)0.0202 (6)
H220.51370.37150.66780.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02959 (18)0.02257 (16)0.01791 (15)0.00197 (12)0.00961 (12)0.00337 (12)
S10.0185 (4)0.0162 (3)0.0149 (3)0.0032 (3)0.0018 (3)0.0005 (3)
S20.0162 (4)0.0236 (4)0.0205 (4)0.0054 (3)0.0041 (3)0.0002 (3)
O10.0258 (12)0.0285 (12)0.0251 (12)0.0089 (10)0.0013 (9)0.0094 (9)
N10.0154 (13)0.0186 (12)0.0158 (12)0.0009 (10)0.0043 (10)0.0014 (10)
C10.0181 (15)0.0129 (13)0.0176 (14)0.0016 (11)0.0075 (12)0.0066 (11)
C20.0177 (15)0.0172 (14)0.0153 (14)0.0004 (11)0.0040 (11)0.0001 (11)
C30.0163 (15)0.0191 (14)0.0175 (14)0.0018 (12)0.0060 (12)0.0035 (12)
C40.0173 (15)0.0186 (14)0.0209 (15)0.0046 (12)0.0054 (12)0.0036 (12)
C50.0205 (15)0.0197 (15)0.0154 (14)0.0034 (12)0.0049 (12)0.0027 (12)
C60.0153 (14)0.0166 (13)0.0126 (13)0.0035 (11)0.0060 (11)0.0023 (11)
C70.0238 (17)0.0280 (16)0.0337 (18)0.0017 (13)0.0137 (14)0.0124 (14)
C80.0162 (15)0.0254 (16)0.0288 (17)0.0011 (13)0.0051 (13)0.0004 (13)
C90.0185 (14)0.0148 (13)0.0134 (13)0.0004 (11)0.0048 (11)0.0034 (11)
C100.0168 (15)0.0216 (15)0.0199 (15)0.0026 (12)0.0010 (12)0.0036 (12)
C110.0167 (15)0.0192 (14)0.0190 (15)0.0046 (12)0.0003 (12)0.0052 (12)
C120.0210 (16)0.0254 (16)0.0224 (16)0.0034 (13)0.0029 (13)0.0051 (13)
C130.0250 (17)0.0389 (19)0.0197 (16)0.0040 (14)0.0079 (13)0.0026 (14)
C140.0350 (19)0.0254 (17)0.0206 (16)0.0059 (15)0.0027 (14)0.0032 (13)
C150.0343 (19)0.0179 (15)0.0315 (18)0.0040 (14)0.0017 (15)0.0042 (14)
C160.0258 (17)0.0248 (16)0.0229 (16)0.0013 (13)0.0054 (13)0.0072 (13)
C170.0150 (14)0.0180 (14)0.0160 (14)0.0014 (11)0.0068 (11)0.0009 (11)
C180.0227 (16)0.0164 (14)0.0236 (15)0.0029 (12)0.0106 (13)0.0054 (12)
C190.0236 (16)0.0234 (15)0.0189 (15)0.0034 (13)0.0095 (12)0.0067 (12)
C200.0191 (15)0.0189 (14)0.0165 (14)0.0018 (12)0.0072 (12)0.0033 (12)
C210.0220 (16)0.0139 (14)0.0232 (15)0.0014 (12)0.0076 (12)0.0026 (12)
C220.0207 (15)0.0221 (15)0.0151 (14)0.0040 (12)0.0037 (12)0.0035 (12)
Geometric parameters (Å, º) top
Br1—C201.895 (3)C8—H8C0.9800
S1—C91.763 (3)C10—C111.511 (4)
S1—C101.820 (3)C10—H10A0.9900
S2—C91.686 (3)C10—H10B0.9900
O1—C51.224 (3)C11—C161.384 (4)
N1—C11.321 (3)C11—C121.394 (4)
N1—C171.427 (3)C12—C131.383 (4)
N1—H10.884 (10)C12—H120.9500
C1—C61.424 (3)C13—C141.382 (4)
C1—C21.506 (4)C13—H130.9500
C2—C31.527 (4)C14—C151.373 (4)
C2—H2A0.9900C14—H140.9500
C2—H2B0.9900C15—C161.396 (4)
C3—C41.518 (4)C15—H150.9500
C3—C71.524 (4)C16—H160.9500
C3—C81.532 (4)C17—C181.382 (4)
C4—C51.504 (4)C17—C221.388 (4)
C4—H4A0.9900C18—C191.385 (4)
C4—H4B0.9900C18—H180.9500
C5—C61.465 (4)C19—C201.388 (4)
C6—C91.444 (4)C19—H190.9500
C7—H7A0.9800C20—C211.379 (4)
C7—H7B0.9800C21—C221.385 (4)
C7—H7C0.9800C21—H210.9500
C8—H8A0.9800C22—H220.9500
C8—H8B0.9800
C9—S1—C10104.06 (13)C6—C9—S1116.85 (19)
C1—N1—C17127.3 (2)S2—C9—S1117.21 (16)
C1—N1—H1113 (2)C11—C10—S1104.63 (18)
C17—N1—H1120 (2)C11—C10—H10A110.8
N1—C1—C6122.4 (2)S1—C10—H10A110.8
N1—C1—C2116.2 (2)C11—C10—H10B110.8
C6—C1—C2121.4 (2)S1—C10—H10B110.8
C1—C2—C3114.7 (2)H10A—C10—H10B108.9
C1—C2—H2A108.6C16—C11—C12118.4 (3)
C3—C2—H2A108.6C16—C11—C10121.7 (3)
C1—C2—H2B108.6C12—C11—C10119.9 (3)
C3—C2—H2B108.6C13—C12—C11121.2 (3)
H2A—C2—H2B107.6C13—C12—H12119.4
C4—C3—C7111.0 (2)C11—C12—H12119.4
C4—C3—C2106.0 (2)C14—C13—C12119.6 (3)
C7—C3—C2111.0 (2)C14—C13—H13120.2
C4—C3—C8109.5 (2)C12—C13—H13120.2
C7—C3—C8109.9 (2)C15—C14—C13120.1 (3)
C2—C3—C8109.4 (2)C15—C14—H14119.9
C5—C4—C3115.2 (2)C13—C14—H14119.9
C5—C4—H4A108.5C14—C15—C16120.2 (3)
C3—C4—H4A108.5C14—C15—H15119.9
C5—C4—H4B108.5C16—C15—H15119.9
C3—C4—H4B108.5C11—C16—C15120.4 (3)
H4A—C4—H4B107.5C11—C16—H16119.8
O1—C5—C6121.5 (3)C15—C16—H16119.8
O1—C5—C4117.6 (2)C18—C17—C22120.1 (2)
C6—C5—C4120.9 (2)C18—C17—N1121.1 (2)
C1—C6—C9124.3 (2)C22—C17—N1118.6 (2)
C1—C6—C5116.5 (2)C17—C18—C19120.0 (3)
C9—C6—C5119.2 (2)C17—C18—H18120.0
C3—C7—H7A109.5C19—C18—H18120.0
C3—C7—H7B109.5C18—C19—C20119.4 (3)
H7A—C7—H7B109.5C18—C19—H19120.3
C3—C7—H7C109.5C20—C19—H19120.3
H7A—C7—H7C109.5C21—C20—C19120.9 (3)
H7B—C7—H7C109.5C21—C20—Br1120.2 (2)
C3—C8—H8A109.5C19—C20—Br1118.9 (2)
C3—C8—H8B109.5C20—C21—C22119.4 (3)
H8A—C8—H8B109.5C20—C21—H21120.3
C3—C8—H8C109.5C22—C21—H21120.3
H8A—C8—H8C109.5C21—C22—C17120.1 (3)
H8B—C8—H8C109.5C21—C22—H22120.0
C6—C9—S2125.9 (2)C17—C22—H22120.0
C17—N1—C1—C6172.3 (3)C10—S1—C9—S24.9 (2)
C17—N1—C1—C28.4 (4)C9—S1—C10—C11174.14 (19)
N1—C1—C2—C3152.6 (2)S1—C10—C11—C16109.1 (3)
C6—C1—C2—C326.7 (4)S1—C10—C11—C1269.9 (3)
C1—C2—C3—C453.7 (3)C16—C11—C12—C131.0 (4)
C1—C2—C3—C766.9 (3)C10—C11—C12—C13179.9 (3)
C1—C2—C3—C8171.7 (2)C11—C12—C13—C140.5 (5)
C7—C3—C4—C568.6 (3)C12—C13—C14—C150.2 (5)
C2—C3—C4—C552.0 (3)C13—C14—C15—C160.3 (5)
C8—C3—C4—C5169.9 (2)C12—C11—C16—C150.8 (4)
C3—C4—C5—O1158.1 (3)C10—C11—C16—C15179.9 (3)
C3—C4—C5—C623.4 (4)C14—C15—C16—C110.2 (5)
N1—C1—C6—C93.5 (4)C1—N1—C17—C1858.6 (4)
C2—C1—C6—C9175.8 (2)C1—N1—C17—C22125.4 (3)
N1—C1—C6—C5174.7 (2)C22—C17—C18—C190.2 (4)
C2—C1—C6—C56.0 (4)N1—C17—C18—C19175.6 (2)
O1—C5—C6—C1170.7 (3)C17—C18—C19—C200.8 (4)
C4—C5—C6—C17.8 (4)C18—C19—C20—C211.1 (4)
O1—C5—C6—C97.6 (4)C18—C19—C20—Br1176.4 (2)
C4—C5—C6—C9173.9 (2)C19—C20—C21—C220.3 (4)
C1—C6—C9—S23.1 (4)Br1—C20—C21—C22177.1 (2)
C5—C6—C9—S2178.7 (2)C20—C21—C22—C170.7 (4)
C1—C6—C9—S1179.3 (2)C18—C17—C22—C211.0 (4)
C5—C6—C9—S11.2 (3)N1—C17—C22—C21174.9 (2)
C10—S1—C9—C6172.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S20.88 (1)2.10 (2)2.905 (2)151 (3)

Experimental details

Crystal data
Chemical formulaC22H22BrNOS2
Mr460.44
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.3030 (3), 9.8099 (3), 12.3538 (4)
α, β, γ (°)73.464 (2), 72.391 (2), 89.916 (2)
V3)1025.73 (6)
Z2
Radiation typeMo Kα
µ (mm1)2.22
Crystal size (mm)0.40 × 0.04 × 0.04
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.684, 0.917
No. of measured, independent and
observed [I > 2σ(I)] reflections
9757, 4709, 3490
Rint0.039
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.077, 0.99
No. of reflections4709
No. of parameters250
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.38

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S20.88 (1)2.10 (2)2.905 (2)151 (3)
 

Acknowledgements

We thank the Higher Education Commission of Pakistan and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl Ashry, E. S. H., Amer, M. R., Shah, M. R. & Ng, S. W. (2009). Acta Cryst. E65, o598.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEl Ashry, E. S. H., Awad, L. F., Abdel Hamid, H. M. & Atta, A. I. (2005a). J. Carbohydr. Chem. 24, 745–753.  Web of Science CrossRef CAS Google Scholar
First citationEl Ashry, E. S. H., Awad, L. F. & Atta, A. I. (2006). Tetrahedron, 62, 2943–2998.  Web of Science CrossRef CAS Google Scholar
First citationEl Ashry, E. S. H., Kassem, A. A., Abdel-Hamid, H. M., Louis, F., Khattab, Sh. A. N. & Aouad, M. R. (2009). Carbohydr. Res. 28. In the press.  Google Scholar
First citationEl Ashry, E. S. H., Rashed, N., Awad, L. F., Ramadan, E. S., Abdel-Maggeed, S. M. & Rezki, N. (2008a). J. Carbohydr. Chem. 27, 70–85.  Web of Science CrossRef CAS Google Scholar
First citationEl Ashry, E. S. H., Rashed, N. & Ibrahim, E. I. (2005b). Curr. Org. Synth. 2, 175–213.  Web of Science CrossRef CAS Google Scholar
First citationEl Ashry, E. S. H., Rashed, N. & Ibrahim, E. I. (2008b). Tetrahedron, 64, 10631–10648.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTominaga, Y. (1989). J. Heterocycl. Chem. 26, 1167-1204.  CrossRef CAS Google Scholar
First citationTominaga, Y., Okuda, H., Kohra, S. & Mazume, H. (1991). J. Heterocycl. Chem. 28, 1245–1255.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds