organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hy­droxy­ethyl 2-(2,4-di­chloro­anilino)-4,4-di­methyl-6-oxo­cyclo­hex-1-ene­carbo­di­thio­ate

aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 19 February 2009; accepted 19 February 2009; online 25 February 2009)

The six-membered cyclo­hexene ring in the title compound, C17H19Cl2NOS2, adopts an envelope conformation, with the C atom bearing the two methyl groups representing the flap. This atom deviates by 0.716 (3) Å from the plane passing through the other five atoms of the ring (r.m.s. deviation = 0.072 Å). The mol­ecular conformation is stabilized by an intra­molecular N—H⋯S hydrogen bond. The hydr­oxy group engages in inter­molecular O—H⋯O hydrogen bonding with adjacent acceptor atoms to generate a zigzag chain running along the c axis.

Related literature

For background, see: El Ashry et al. (2009[El Ashry, E. S. H., Amer, M. R., Raza Shah, M. & Ng, S. W. (2009). Acta Cryst. E65, o597.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19Cl2NO2S2

  • Mr = 404.35

  • Monoclinic, P 21 /c

  • a = 11.7310 (2) Å

  • b = 14.0903 (2) Å

  • c = 12.0416 (2) Å

  • β = 111.245 (1)°

  • V = 1855.13 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 100 K

  • 0.40 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.895, Tmax = 0.944

  • 17368 measured reflections

  • 4269 independent reflections

  • 3581 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.098

  • S = 1.17

  • 4269 reflections

  • 226 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.48 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.83 (1) 1.92 (1) 2.737 (2) 165 (3)
N1—H1⋯S2 0.88 (1) 2.14 (2) 2.913 (2) 147 (2)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For background, see: El Ashry et al. (2009).

Experimental top

To a solution of (2,4-dichlorophenylamino)-5,5-dimethyl-cyclohex-2-en-1-one (0.1 mol) in DMSO (20 ml) and sodium hydroxide (0.4 g) in water (1 ml), carbon disulfphide (0.3 mol) was added in the course of 30 minutes. The mixture was stirred for 20 min below 283 K, and then 2-bromoethanol (0.1 mol) was added drop wise at room temperature for 30 min. The reaction mixture was left for 24 h and then diluted with water (200 ml) and acidified with 10% hydrochloric acid. The resulting precipitate was collected by filtration, dried and purified on silica gel column (40% ethyl acetate in hexane) to give yellow crystal (34.5% yield; mp.424 K).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

The amino and hydroxy H-atoms were located in a difference Fourier map, and were refined with distance restraints of N–H 0.88±0.01 and O–H 0.84±0.01 Å; their isotropic displacement parameters were freely refined.

The final difference Fourier map had a large peak at 1 Å from S1, but was otherwise featureless.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) plot of C17H19Cl2NO2S2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
2-Hydroxyethyl 2-(2,4-dichloroanilino)-4,4-dimethyl-6-oxocyclohex-1-enecarbodithioate top
Crystal data top
C17H19Cl2NO2S2F(000) = 840
Mr = 404.35Dx = 1.448 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5593 reflections
a = 11.7310 (2) Åθ = 2.3–28.2°
b = 14.0903 (2) ŵ = 0.59 mm1
c = 12.0416 (2) ÅT = 100 K
β = 111.245 (1)°Prism, orange
V = 1855.13 (5) Å30.40 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
4269 independent reflections
Radiation source: fine-focus sealed tube3581 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.895, Tmax = 0.944k = 1818
17368 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.0429P)2 + 0.8915P]
where P = (Fo2 + 2Fc2)/3
4269 reflections(Δ/σ)max = 0.001
226 parametersΔρmax = 1.48 e Å3
2 restraintsΔρmin = 0.49 e Å3
Crystal data top
C17H19Cl2NO2S2V = 1855.13 (5) Å3
Mr = 404.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.7310 (2) ŵ = 0.59 mm1
b = 14.0903 (2) ÅT = 100 K
c = 12.0416 (2) Å0.40 × 0.10 × 0.10 mm
β = 111.245 (1)°
Data collection top
Bruker SMART APEX
diffractometer
4269 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3581 reflections with I > 2σ(I)
Tmin = 0.895, Tmax = 0.944Rint = 0.031
17368 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0372 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.17Δρmax = 1.48 e Å3
4269 reflectionsΔρmin = 0.49 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.50297 (4)0.66542 (3)0.81611 (4)0.02438 (12)
Cl20.69365 (5)0.33055 (4)1.00864 (5)0.02908 (13)
S10.02899 (5)0.74647 (4)0.42522 (4)0.02988 (14)
S20.11953 (5)0.71791 (4)0.68063 (4)0.02937 (14)
O10.05234 (12)0.57916 (11)0.32339 (12)0.0255 (3)
O20.14964 (14)0.95304 (11)0.58309 (13)0.0302 (4)
H20.123 (2)0.954 (2)0.6574 (9)0.048 (8)*
N10.27644 (14)0.55532 (12)0.69084 (14)0.0203 (3)
H10.250 (2)0.6051 (12)0.718 (2)0.038 (7)*
C10.21902 (17)0.53820 (13)0.57550 (17)0.0188 (4)
C20.26758 (19)0.45827 (15)0.52239 (17)0.0239 (4)
H2A0.22470.39890.52780.029*
H2B0.35560.44950.56980.029*
C30.25180 (18)0.47536 (15)0.39220 (17)0.0239 (4)
C40.11563 (19)0.48819 (16)0.32527 (18)0.0266 (4)
H4A0.10280.51100.24390.032*
H4B0.07540.42550.31760.032*
C50.05389 (17)0.55607 (14)0.38206 (16)0.0203 (4)
C60.11713 (16)0.59172 (14)0.50288 (16)0.0191 (4)
C70.2972 (2)0.38762 (17)0.3452 (2)0.0343 (5)
H7A0.28360.39650.26060.051*
H7B0.25230.33150.35490.051*
H7C0.38480.37880.39010.051*
C80.3236 (2)0.56243 (17)0.3788 (2)0.0326 (5)
H8A0.30780.57340.29420.049*
H8B0.41120.55160.42120.049*
H8C0.29770.61810.41240.049*
C90.07364 (17)0.67738 (14)0.54093 (16)0.0203 (4)
C100.0347 (2)0.85810 (15)0.49607 (19)0.0289 (5)
H10A0.04520.86990.56040.035*
H10B0.04960.90990.43700.035*
C110.13386 (19)0.85877 (16)0.5476 (2)0.0293 (5)
H11A0.21140.83580.48730.035*
H11B0.11150.81580.61730.035*
C120.37500 (16)0.50105 (14)0.76960 (16)0.0182 (4)
C130.48643 (17)0.54444 (13)0.83201 (16)0.0175 (4)
C140.58495 (16)0.49276 (14)0.90679 (16)0.0183 (4)
H140.66090.52280.94890.022*
C150.56972 (17)0.39647 (14)0.91836 (16)0.0189 (4)
C160.45843 (18)0.35196 (14)0.86133 (17)0.0216 (4)
H160.44910.28610.87270.026*
C170.36107 (17)0.40498 (14)0.78745 (17)0.0217 (4)
H170.28410.37540.74860.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0248 (2)0.0197 (2)0.0274 (3)0.00018 (18)0.00800 (19)0.00396 (18)
Cl20.0231 (2)0.0295 (3)0.0298 (3)0.0102 (2)0.0038 (2)0.0088 (2)
S10.0367 (3)0.0309 (3)0.0171 (2)0.0127 (2)0.0039 (2)0.0018 (2)
S20.0306 (3)0.0345 (3)0.0157 (2)0.0153 (2)0.0004 (2)0.0050 (2)
O10.0188 (7)0.0343 (8)0.0179 (7)0.0032 (6)0.0001 (5)0.0036 (6)
O20.0316 (8)0.0319 (8)0.0202 (8)0.0137 (7)0.0011 (6)0.0012 (6)
N10.0167 (8)0.0233 (9)0.0166 (8)0.0055 (7)0.0009 (6)0.0029 (6)
C10.0163 (8)0.0212 (9)0.0179 (9)0.0001 (7)0.0051 (7)0.0012 (7)
C20.0247 (10)0.0254 (10)0.0199 (10)0.0071 (8)0.0062 (8)0.0008 (8)
C30.0234 (10)0.0294 (11)0.0178 (9)0.0062 (8)0.0063 (8)0.0033 (8)
C40.0253 (10)0.0339 (11)0.0178 (9)0.0047 (9)0.0045 (8)0.0074 (8)
C50.0199 (9)0.0237 (10)0.0152 (9)0.0006 (8)0.0037 (7)0.0002 (7)
C60.0165 (9)0.0247 (10)0.0142 (9)0.0017 (7)0.0031 (7)0.0015 (7)
C70.0358 (12)0.0372 (13)0.0290 (11)0.0103 (10)0.0107 (10)0.0094 (10)
C80.0306 (11)0.0395 (13)0.0313 (12)0.0024 (10)0.0155 (9)0.0023 (10)
C90.0154 (9)0.0271 (10)0.0160 (9)0.0029 (7)0.0027 (7)0.0006 (7)
C100.0365 (12)0.0255 (10)0.0234 (10)0.0071 (9)0.0093 (9)0.0036 (8)
C110.0247 (10)0.0307 (11)0.0279 (11)0.0055 (9)0.0038 (9)0.0000 (9)
C120.0157 (9)0.0236 (9)0.0137 (8)0.0038 (7)0.0033 (7)0.0014 (7)
C130.0192 (9)0.0192 (9)0.0152 (8)0.0006 (7)0.0075 (7)0.0003 (7)
C140.0136 (8)0.0248 (10)0.0156 (9)0.0002 (7)0.0043 (7)0.0001 (7)
C150.0182 (9)0.0233 (9)0.0144 (9)0.0071 (7)0.0048 (7)0.0033 (7)
C160.0246 (10)0.0188 (9)0.0212 (10)0.0015 (8)0.0081 (8)0.0010 (7)
C170.0184 (9)0.0245 (10)0.0198 (9)0.0018 (8)0.0042 (7)0.0039 (8)
Geometric parameters (Å, º) top
Cl1—C131.7341 (19)C5—C61.462 (3)
Cl2—C151.7358 (18)C6—C91.448 (3)
S1—C91.7671 (19)C7—H7A0.9800
S1—C101.802 (2)C7—H7B0.9800
S2—C91.6701 (19)C7—H7C0.9800
O1—C51.233 (2)C8—H8A0.9800
O2—C111.428 (3)C8—H8B0.9800
O2—H20.834 (10)C8—H8C0.9800
N1—C11.328 (2)C10—C111.504 (3)
N1—C121.424 (2)C10—H10A0.9900
N1—H10.879 (10)C10—H10B0.9900
C1—C61.416 (3)C11—H11A0.9900
C1—C21.505 (3)C11—H11B0.9900
C2—C31.530 (3)C12—C171.389 (3)
C2—H2A0.9900C12—C131.391 (3)
C2—H2B0.9900C13—C141.387 (3)
C3—C41.517 (3)C14—C151.382 (3)
C3—C81.529 (3)C14—H140.9500
C3—C71.533 (3)C15—C161.385 (3)
C4—C51.505 (3)C16—C171.385 (3)
C4—H4A0.9900C16—H160.9500
C4—H4B0.9900C17—H170.9500
C9—S1—C10103.83 (10)C3—C8—H8B109.5
C11—O2—H2106.8 (19)H8A—C8—H8B109.5
C1—N1—C12125.53 (16)C3—C8—H8C109.5
C1—N1—H1115.2 (17)H8A—C8—H8C109.5
C12—N1—H1119.3 (17)H8B—C8—H8C109.5
N1—C1—C6122.96 (17)C6—C9—S2125.58 (14)
N1—C1—C2116.98 (16)C6—C9—S1115.29 (13)
C6—C1—C2120.05 (16)S2—C9—S1118.99 (11)
C1—C2—C3113.19 (16)C11—C10—S1111.57 (16)
C1—C2—H2A108.9C11—C10—H10A109.3
C3—C2—H2A108.9S1—C10—H10A109.3
C1—C2—H2B108.9C11—C10—H10B109.3
C3—C2—H2B108.9S1—C10—H10B109.3
H2A—C2—H2B107.8H10A—C10—H10B108.0
C4—C3—C8111.24 (18)O2—C11—C10109.44 (18)
C4—C3—C2106.04 (16)O2—C11—H11A109.8
C8—C3—C2111.58 (17)C10—C11—H11A109.8
C4—C3—C7109.87 (17)O2—C11—H11B109.8
C8—C3—C7109.25 (18)C10—C11—H11B109.8
C2—C3—C7108.80 (17)H11A—C11—H11B108.2
C5—C4—C3114.95 (16)C17—C12—C13118.99 (17)
C5—C4—H4A108.5C17—C12—N1120.92 (17)
C3—C4—H4A108.5C13—C12—N1120.07 (17)
C5—C4—H4B108.5C14—C13—C12121.26 (17)
C3—C4—H4B108.5C14—C13—Cl1119.19 (14)
H4A—C4—H4B107.5C12—C13—Cl1119.55 (14)
O1—C5—C6121.51 (17)C15—C14—C13118.24 (17)
O1—C5—C4117.40 (17)C15—C14—H14120.9
C6—C5—C4121.08 (16)C13—C14—H14120.9
C1—C6—C9124.33 (17)C14—C15—C16121.83 (17)
C1—C6—C5116.24 (17)C14—C15—Cl2118.61 (14)
C9—C6—C5119.43 (16)C16—C15—Cl2119.55 (15)
C3—C7—H7A109.5C15—C16—C17118.94 (18)
C3—C7—H7B109.5C15—C16—H16120.5
H7A—C7—H7B109.5C17—C16—H16120.5
C3—C7—H7C109.5C16—C17—C12120.60 (18)
H7A—C7—H7C109.5C16—C17—H17119.7
H7B—C7—H7C109.5C12—C17—H17119.7
C3—C8—H8A109.5
C12—N1—C1—C6176.51 (18)C1—C6—C9—S1164.93 (16)
C12—N1—C1—C24.0 (3)C5—C6—C9—S115.1 (2)
N1—C1—C2—C3147.64 (18)C10—S1—C9—C6166.31 (15)
C6—C1—C2—C331.9 (3)C10—S1—C9—S29.62 (15)
C1—C2—C3—C458.6 (2)C9—S1—C10—C1189.89 (16)
C1—C2—C3—C862.7 (2)S1—C10—C11—O2169.55 (13)
C1—C2—C3—C7176.75 (17)C1—N1—C12—C1759.2 (3)
C8—C3—C4—C573.5 (2)C1—N1—C12—C13122.2 (2)
C2—C3—C4—C548.0 (2)C17—C12—C13—C143.2 (3)
C7—C3—C4—C5165.45 (19)N1—C12—C13—C14178.21 (17)
C3—C4—C5—O1170.11 (18)C17—C12—C13—Cl1176.94 (14)
C3—C4—C5—C610.9 (3)N1—C12—C13—Cl11.7 (2)
N1—C1—C6—C98.1 (3)C12—C13—C14—C150.2 (3)
C2—C1—C6—C9171.37 (18)Cl1—C13—C14—C15179.86 (14)
N1—C1—C6—C5171.89 (18)C13—C14—C15—C162.5 (3)
C2—C1—C6—C58.6 (3)C13—C14—C15—Cl2178.31 (14)
O1—C5—C6—C1159.28 (18)C14—C15—C16—C172.3 (3)
C4—C5—C6—C119.6 (3)Cl2—C15—C16—C17178.56 (15)
O1—C5—C6—C920.7 (3)C15—C16—C17—C120.7 (3)
C4—C5—C6—C9160.35 (18)C13—C12—C17—C163.4 (3)
C1—C6—C9—S210.7 (3)N1—C12—C17—C16177.98 (17)
C5—C6—C9—S2169.31 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.83 (1)1.92 (1)2.737 (2)165 (3)
N1—H1···S20.88 (1)2.14 (2)2.913 (2)147 (2)
Symmetry code: (i) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H19Cl2NO2S2
Mr404.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.7310 (2), 14.0903 (2), 12.0416 (2)
β (°) 111.245 (1)
V3)1855.13 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.40 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.895, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
17368, 4269, 3581
Rint0.031
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.098, 1.17
No. of reflections4269
No. of parameters226
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.48, 0.49

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.83 (1)1.92 (1)2.737 (2)165 (3)
N1—H1···S20.88 (1)2.14 (2)2.913 (2)147 (2)
Symmetry code: (i) x, y+3/2, z+1/2.
 

Acknowledgements

We thank the Higher Education Commission of Pakistan and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl Ashry, E. S. H., Amer, M. R., Raza Shah, M. & Ng, S. W. (2009). Acta Cryst. E65, o597.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds