metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Ammonio­ethyl)pyridinium hexa­chloridorhenate(IV)

aFaculty of Chemistry, University of Wrocław, 14 Joliot-Curie Street, 50-383 Wrocław, Poland
*Correspondence e-mail: andrzej@wcheto.chem.uni.wroc.pl

(Received 9 October 2008; accepted 28 December 2008; online 4 February 2009)

In the title anti­ferromagnetic material, (C7H12N2)[ReCl6], the Néel temperature is observed at 5 K. The salt is stabilized by an extensive network of N—H⋯Cl and C—H⋯Cl hydrogen bonds, where hydrogen-bonded anion chains and characteristic cation–anion motifs are present. Similar systems play an important role in crystal engineering as hydrogen bonds that can transmit magnetic inter­actions.

Related literature

For related literature, see: Kepert et al. (1997[Kepert, C. J., Kurmoo, M. & Day, P. (1997). J. Mater. Chem. 7, 221-228.]); Mrozinski et al. (2002[Mrozinski, J., Kochel, A. & Lis, T. (2002). J. Mol. Struct. 641, 109-117.]); Sawusch & Schilde (1999[Sawusch, S. & Schilde, U. (1999). Z. Kristallogr. New Cryst. Struct. 214, 79-81.]); Kochel (2004[Kochel, A. (2004). Acta Cryst. E60, m859-m860.]); Koenig (1966[Koenig, E. (1966). In Magnetic Properties of Coordination and Organometallic Transition Metal Compounds. Berlin: Springer Verlag.]).

[Scheme 1]

Experimental

Crystal data
  • (C7H12N2)[ReCl6]

  • Mr = 523.10

  • Triclinic, [P \overline 1]

  • a = 7.371 (2) Å

  • b = 14.204 (3) Å

  • c = 15.159 (3) Å

  • α = 66.87 (2)°

  • β = 84.74 (2)°

  • γ = 75.61 (2)°

  • V = 1413.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 9.70 mm−1

  • T = 100 (2) K

  • 0.14 × 0.10 × 0.06 mm

Data collection
  • Oxford Diffraction KM-4-CCD diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Poland, Wrocław, Poland.]) Tmin = 0.367, Tmax = 0.559

  • 21570 measured reflections

  • 10147 independent reflections

  • 8098 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.053

  • S = 0.98

  • 10147 reflections

  • 313 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.07 e Å−3

  • Δρmin = −1.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Cl3i 0.86 2.76 3.280 (3) 120
N1—H1⋯Cl12ii 0.86 2.56 3.208 (3) 133
N2—H2N⋯Cl1iii 0.93 (4) 2.47 (4) 3.313 (3) 152 (3)
N3—H3A⋯Cl7iv 0.86 2.71 3.431 (3) 142
N3—H3A⋯Cl12iv 0.86 2.65 3.326 (3) 136
N2—H3N⋯Cl1i 0.83 (5) 2.50 (5) 3.328 (3) 174 (4)
N4—H6N⋯Cl2 0.93 (6) 2.43 (5) 3.291 (4) 155 (4)
N4—H9N⋯Cl7 1.04 (6) 2.70 (5) 3.199 (3) 110 (3)
N4—H9N⋯Cl8 1.04 (6) 2.52 (6) 3.541 (3) 166 (4)
N4—H10N⋯Cl11iii 0.87 (5) 2.45 (4) 3.240 (4) 152 (4)
C4—H4⋯Cl11 0.93 2.83 3.621 (3) 144
C7—H7B⋯Cl1v 0.97 2.80 3.711 (3) 156
C22—H22⋯Cl2vi 0.93 2.69 3.602 (4) 166
C26—H26B⋯Cl8 0.97 2.82 3.589 (3) 137
C27—H27B⋯Cl5 0.97 2.81 3.610 (3) 140
Symmetry codes: (i) x-1, y+1, z-1; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+1, -z+1; (iv) x-1, y, z; (v) x, y+1, z-1; (vi) -x+1, -y, -z+1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Poland, Wrocław, Poland.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Poland, Wrocław, Poland.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Rhenium(IV) salts with ammonium cations are known and have been described previously (Sawusch et al., 1999, Mrozinski et al., 2002, Kochel 2004). Some of the hexachlororhenates(IV) have interesting properties, e.g. as semiconductors (Kepert et al., 1997). The title salt comprises of 2-(2-aminoethyl)pyridinium cations and ReCl62- anions. Figure 1 illustrates the two independent formula units of compound (1). The anion bond lengths are comparable to those for other anions of this type (see table in supplementary material). The crystal structure is stabilized by an extensive network of N—H···Cl and C—H···Cl hydrogen bonds (Fig. 2). Almost all amino H atoms bonded to the organic cation participate in hydrogen bonds as donors. Some of the hydrogen bonds e.g. N3—H3···Cl12, N3—H3···Cl1 are bifurcated. The hydrogen bonding parameters are included in Table 1. The use of small low-symmetry ammonium cations enable these ions to occupy general positions, so that the Re···Re distances are much smaller. In the crystal packing, two types of arrangement of molecules may be distinguished: in the [100] direction a layered arrangement [alternating anions and cations] is observed, while in the [010] direction, and the whole is stabilized by a network of hydrogen bonds. The shortest Re1···Re1i distance is 7.371 (2)Å [symmetry code: (i) x - 1,y,z]. The magnetic susceptibility of (1) is measured in the temperature range from 2 to 300 K under the applied magnetic field of 0.5 T (Figure 3). The χmT values decrease slowly upon cooling. The effective magnetic moment of 3.55 B. M. at 300 K is reduced in comparison to the spin-only value (3.87 uB), and in 2 K is 0.84 B. M. Generally, the complex shows linear χm versus T behaviour in the 300–50 K range with C = 1.70 cm3 mol-1 K, Q = -14.5 K. The susceptibility curves exhibit the maximum at 5 K, indicating directly the presence of antiferromagnetic interactions.

The χmT at 300 K is 1.58 cm3 Kmol-1 and this value is expected for an isolated Re(IV) ion. As the temperature is lowered, χmT decreases, and the value is 0.896 cm3 Kmol-1 at 2 K. This behaviour indicates antiferromagnetic interactions between the Re(IV) ions. The occurrence of antiferromagentic interactions could be related to aspects of the structure. The smallest Re—Re distance is 7.371 (2) Å, and a substantial value, however, there are numerous hydrogen bonds in the crystal structure, forming a three-dimensional framework. The hydrogen bonds stabilize the crystal structure layered arrangement. Probably the hydrogen bonding system enhances the magnetic exchange interactions. Future perspectives concerning this work will involve further studies on hexachlororhenates(IV) as potential materials used as semiconductors.

Related literature top

For related literature, see: Kepert et al. (1997); Mrozinski et al. (2002); Sawusch & Schilde (1999); Kochel (2004); Koenig (1966).

Experimental top

(NH4)2ReCl6 (0.15 g) was dissolved in water (50 ml) with concentrated HCl (2 ml) and the mixture was heated under reflux at 340 K. After 30 min, 2-(2-aminoethyl)pyridine (0.25 g) was added. The mixture was heated for further 5 h. After cooling, the yellow precipitate was filtered off and washed with ethanol. Crystals for X-ray study were obtained by slow evaporation of an aqueous solution of the yellow precipitate with addition of 1 ml HCl solution. The crystals are in the form of plates. For data collection a small plate was used, cut from a larger one.

Elemental analysis of C, H, Cl, and N for C7 H12 Cl6 N2 Re1: calcd. for C, 16.07; H, 2.31; Cl, 40.66; found: C, 15.03; H, 2.01; Cl, 39.12;

IR spectra were collected for samples prepared as KBr pellets on a BRUKER spectrometer.

(1) 3456 (s), 3010 (s), 2574 (m), 2015 (m), 1610 (m), 1545 (s), 1431 (s), 1403 (m), 1321 (s), 1120 (s), 935 (s), 715 (versus), 645 (versus), 554 (versus), 435 (versus), 303 (m), 295 (versus), 211 (versus), 174 (versus), 160 (versus).

The magnetic measurements of polycrystalline samples were carried out over the temperature range of 2–300 K using a Quantum design SQUID-Based Magnetometer MPMSXL5. The SQUID magnetometer was calibrated with a palladium rod sample, for which the gram susceptibility was assumed as 5.30 x 10–6 cm3g-1 at 293 K (National Bureau of Standards, USA). The susceptibility measurements were made in the field of 0.5 T. Corrections were done for the diamagnetic response of the sample rod and of the sample using Pascal's constants (Koenig, 1966).

Refinement top

The structure (1) was solved by direct methods using SHELXS97 software (Sheldrick, 2008) and refined using SHELXL97 (Sheldrick, 2008). In case of (1) DFIX restraints were used for all C—H bond lengths (0.93–0.97 Å with the allowed deviation of 0.002 Å. All H atoms were refined with Ueq set at 1.2 Ueq (parent atom). H atoms associated with N atoms were located on difference maps and then freely refined. In the final difference maps the following highest peaks were found: for (1) the maximum of -1.30 and 2.07 e/Å3 at 0.68 and 0.78 Å from the Re(2) atom

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (1). Thermal ellipsoids are drawn at 50% probability level.
[Figure 2] Fig. 2. The crystal structure packing scheme viewed along [100] showing the hydrogen bonds system.
[Figure 3] Fig. 3. The χm and χmT temperature dependence (χm - the molar magnetic susceptibility) for compund (1).
2-(2-Ammonioethyl)pyridinium hexachloridorhenate(IV) top
Crystal data top
(C7H12N2)[ReCl6]Z = 4
Mr = 523.10F(000) = 980
Triclinic, P1Dx = 2.458 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.371 (2) ÅCell parameters from 7350 reflections
b = 14.204 (3) Åθ = 2.7–36.9°
c = 15.159 (3) ŵ = 9.70 mm1
α = 66.87 (2)°T = 100 K
β = 84.74 (2)°Needle, yellow
γ = 75.61 (2)°0.14 × 0.10 × 0.06 mm
V = 1413.7 (6) Å3
Data collection top
Oxford Diffraction KM-4-CCD
diffractometer
10147 independent reflections
Radiation source: fine-focus sealed tube8098 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
/w scansθmax = 36.9°, θmin = 2.7°
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
h = 1210
Tmin = 0.367, Tmax = 0.559k = 2318
21570 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.053H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.0289P)2]
where P = (Fo2 + 2Fc2)/3
10147 reflections(Δ/σ)max = 0.001
313 parametersΔρmax = 2.07 e Å3
0 restraintsΔρmin = 1.31 e Å3
Crystal data top
(C7H12N2)[ReCl6]γ = 75.61 (2)°
Mr = 523.10V = 1413.7 (6) Å3
Triclinic, P1Z = 4
a = 7.371 (2) ÅMo Kα radiation
b = 14.204 (3) ŵ = 9.70 mm1
c = 15.159 (3) ÅT = 100 K
α = 66.87 (2)°0.14 × 0.10 × 0.06 mm
β = 84.74 (2)°
Data collection top
Oxford Diffraction KM-4-CCD
diffractometer
10147 independent reflections
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2006)
8098 reflections with I > 2σ(I)
Tmin = 0.367, Tmax = 0.559Rint = 0.023
21570 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.053H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 2.07 e Å3
10147 reflectionsΔρmin = 1.31 e Å3
313 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0792 (4)0.6798 (2)0.06898 (17)0.0146 (5)
H10.11790.70040.12730.018*
N20.2688 (4)0.9123 (2)0.05025 (19)0.0160 (5)
C10.0762 (4)0.6422 (3)0.0503 (2)0.0182 (6)
H1A0.14040.64000.09920.022*
C20.1379 (4)0.6072 (3)0.0424 (2)0.0189 (7)
H20.24420.57980.05750.023*
C30.0401 (4)0.6128 (3)0.1141 (2)0.0177 (6)
H30.08060.58880.17730.021*
C40.1171 (4)0.6543 (3)0.0911 (2)0.0160 (6)
H40.18090.65970.13840.019*
C50.1791 (4)0.6877 (2)0.0029 (2)0.0126 (5)
C60.3564 (4)0.7241 (3)0.0333 (2)0.0161 (6)
H6A0.35930.75420.10280.019*
H6B0.46100.66330.01160.019*
C70.3845 (4)0.8048 (3)0.0037 (2)0.0160 (6)
H7A0.35160.78320.07110.019*
H7B0.51570.80700.00170.019*
N30.0641 (4)0.2257 (2)0.46864 (18)0.0164 (5)
H3A0.00820.28470.43480.020*
N40.3743 (4)0.3282 (3)0.6043 (2)0.0194 (6)
C210.1078 (5)0.1501 (3)0.4337 (2)0.0213 (7)
H210.06100.16210.37440.026*
C220.2226 (5)0.0542 (3)0.4860 (2)0.0188 (6)
H220.25260.00030.46310.023*
C230.2926 (4)0.0396 (3)0.5741 (2)0.0164 (6)
H230.37200.02400.61010.020*
C240.2437 (4)0.1201 (3)0.6074 (2)0.0145 (6)
H240.29010.11020.66620.017*
C250.1265 (4)0.2152 (2)0.55434 (19)0.0136 (6)
C260.0569 (4)0.3072 (3)0.5838 (2)0.0144 (6)
H26A0.06200.30120.61620.017*
H26B0.03380.37120.52640.017*
C270.1872 (4)0.3179 (3)0.6489 (2)0.0155 (6)
H27A0.13090.37930.66370.019*
H27B0.20370.25660.70860.019*
Re10.774116 (15)0.011796 (9)0.795978 (7)0.00979 (3)
Cl10.82082 (10)0.09836 (6)0.96174 (4)0.01273 (13)
Cl20.72966 (10)0.12498 (6)0.63386 (5)0.01403 (13)
Cl31.05734 (10)0.08752 (6)0.75988 (5)0.01415 (13)
Cl40.93941 (10)0.12262 (6)0.82086 (5)0.01445 (14)
Cl50.48903 (10)0.10735 (6)0.83435 (5)0.01483 (14)
Cl60.61222 (10)0.10277 (6)0.77706 (5)0.01580 (14)
Re20.540061 (16)0.419170 (10)0.306599 (7)0.01145 (3)
Cl70.66713 (10)0.42137 (6)0.44425 (5)0.01578 (14)
Cl80.23337 (11)0.46658 (7)0.36098 (5)0.02068 (16)
Cl90.54298 (12)0.24161 (7)0.38861 (6)0.02359 (17)
Cl100.43132 (12)0.42195 (7)0.16505 (6)0.02313 (17)
Cl110.53303 (10)0.60222 (6)0.22842 (5)0.01651 (14)
Cl120.85405 (10)0.37428 (7)0.25762 (5)0.01766 (15)
H2N0.290 (5)0.961 (3)0.028 (3)0.019 (9)*
H3N0.155 (6)0.915 (3)0.050 (3)0.029 (11)*
H4N0.298 (5)0.933 (3)0.107 (3)0.024 (10)*
H6N0.444 (6)0.262 (4)0.610 (3)0.035 (12)*
H9N0.346 (6)0.378 (4)0.533 (4)0.047 (14)*
H10N0.440 (6)0.341 (3)0.641 (3)0.024 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0165 (12)0.0168 (13)0.0139 (11)0.0070 (11)0.0019 (9)0.0079 (10)
N20.0175 (14)0.0154 (14)0.0168 (12)0.0064 (12)0.0007 (10)0.0066 (11)
C10.0161 (15)0.0213 (17)0.0184 (13)0.0066 (14)0.0016 (11)0.0071 (13)
C20.0172 (15)0.0171 (16)0.0214 (14)0.0071 (14)0.0024 (11)0.0048 (13)
C30.0172 (15)0.0170 (16)0.0178 (13)0.0030 (13)0.0001 (11)0.0059 (12)
C40.0167 (14)0.0161 (15)0.0146 (12)0.0040 (13)0.0007 (10)0.0048 (12)
C50.0132 (13)0.0104 (14)0.0135 (12)0.0015 (12)0.0006 (10)0.0046 (11)
C60.0129 (14)0.0154 (15)0.0217 (14)0.0023 (13)0.0009 (11)0.0096 (13)
C70.0143 (14)0.0149 (15)0.0194 (13)0.0019 (13)0.0042 (10)0.0071 (12)
N30.0154 (12)0.0187 (14)0.0151 (11)0.0031 (11)0.0031 (9)0.0063 (11)
N40.0157 (13)0.0189 (15)0.0286 (14)0.0056 (12)0.0005 (11)0.0135 (13)
C210.0271 (17)0.0229 (18)0.0180 (14)0.0059 (15)0.0026 (12)0.0115 (14)
C220.0197 (15)0.0181 (16)0.0218 (14)0.0040 (14)0.0000 (12)0.0112 (13)
C230.0166 (14)0.0141 (15)0.0181 (13)0.0042 (13)0.0003 (11)0.0053 (12)
C240.0141 (14)0.0172 (16)0.0115 (11)0.0075 (13)0.0016 (10)0.0027 (11)
C250.0126 (14)0.0158 (15)0.0136 (12)0.0047 (13)0.0008 (10)0.0062 (12)
C260.0126 (13)0.0145 (15)0.0171 (12)0.0038 (12)0.0008 (10)0.0064 (12)
C270.0157 (14)0.0167 (16)0.0156 (12)0.0028 (13)0.0005 (10)0.0083 (12)
Re10.01005 (5)0.01098 (6)0.00933 (4)0.00349 (5)0.00008 (3)0.00430 (4)
Cl10.0146 (3)0.0142 (3)0.0096 (3)0.0050 (3)0.0005 (2)0.0040 (2)
Cl20.0158 (3)0.0139 (3)0.0114 (3)0.0034 (3)0.0010 (2)0.0037 (3)
Cl30.0135 (3)0.0146 (3)0.0139 (3)0.0017 (3)0.0017 (2)0.0063 (3)
Cl40.0148 (3)0.0152 (3)0.0159 (3)0.0069 (3)0.0001 (2)0.0065 (3)
Cl50.0118 (3)0.0171 (4)0.0168 (3)0.0028 (3)0.0013 (2)0.0084 (3)
Cl60.0183 (3)0.0174 (4)0.0159 (3)0.0087 (3)0.0002 (2)0.0079 (3)
Re20.01206 (6)0.01075 (6)0.01218 (5)0.00259 (5)0.00074 (4)0.00493 (4)
Cl70.0174 (3)0.0174 (4)0.0127 (3)0.0018 (3)0.0019 (2)0.0069 (3)
Cl80.0133 (3)0.0242 (4)0.0225 (3)0.0029 (3)0.0022 (3)0.0081 (3)
Cl90.0262 (4)0.0128 (4)0.0297 (4)0.0066 (3)0.0014 (3)0.0044 (3)
Cl100.0263 (4)0.0244 (4)0.0228 (4)0.0010 (4)0.0093 (3)0.0155 (3)
Cl110.0193 (3)0.0126 (3)0.0170 (3)0.0048 (3)0.0037 (2)0.0034 (3)
Cl120.0151 (3)0.0214 (4)0.0140 (3)0.0007 (3)0.0017 (2)0.0066 (3)
Geometric parameters (Å, º) top
N1—C11.342 (4)N4—H10N0.87 (4)
N1—C51.349 (4)C21—C221.379 (5)
N1—H10.8600C21—H210.9300
N2—C71.492 (4)C22—C231.396 (4)
N2—H2N0.94 (4)C22—H220.9300
N2—H3N0.83 (4)C23—C241.381 (5)
N2—H4N0.82 (4)C23—H230.9300
C1—C21.370 (4)C24—C251.383 (4)
C1—H1A0.9300C24—H240.9300
C2—C31.396 (4)C25—C261.501 (4)
C2—H20.9300C26—C271.511 (4)
C3—C41.383 (4)C26—H26A0.9700
C3—H30.9300C26—H26B0.9700
C4—C51.386 (4)C27—H27A0.9700
C4—H40.9300C27—H27B0.9700
C5—C61.492 (4)Re1—Cl22.3480 (9)
C6—C71.522 (4)Re1—Cl62.3556 (8)
C6—H6A0.9700Re1—Cl52.3611 (10)
C6—H6B0.9700Re1—Cl32.3624 (10)
C7—H7A0.9700Re1—Cl42.3682 (8)
C7—H7B0.9700Re1—Cl12.3839 (9)
N3—C211.333 (4)Re2—Cl92.3284 (10)
N3—C251.359 (4)Re2—Cl102.3412 (9)
N3—H3A0.8600Re2—Cl82.3624 (10)
N4—C271.495 (4)Re2—Cl122.3744 (10)
N4—H6N0.92 (5)Re2—Cl72.3783 (8)
N4—H9N1.04 (5)Re2—Cl112.3856 (10)
C1—N1—C5124.7 (2)C24—C23—C22119.7 (3)
C1—N1—H1117.6C24—C23—H23120.1
C5—N1—H1117.6C22—C23—H23120.1
C7—N2—H2N111 (2)C23—C24—C25120.7 (3)
C7—N2—H3N114 (3)C23—C24—H24119.6
H2N—N2—H3N110 (4)C25—C24—H24119.6
C7—N2—H4N111 (3)N3—C25—C24117.1 (3)
H2N—N2—H4N106 (4)N3—C25—C26116.7 (3)
H3N—N2—H4N105 (4)C24—C25—C26126.1 (3)
N1—C1—C2118.5 (3)C25—C26—C27115.2 (3)
N1—C1—H1A120.8C25—C26—H26A108.5
C2—C1—H1A120.8C27—C26—H26A108.5
C1—C2—C3119.5 (3)C25—C26—H26B108.5
C1—C2—H2120.3C27—C26—H26B108.5
C3—C2—H2120.3H26A—C26—H26B107.5
C4—C3—C2120.0 (3)N4—C27—C26112.1 (2)
C4—C3—H3120.0N4—C27—H27A109.2
C2—C3—H3120.0C26—C27—H27A109.2
C3—C4—C5119.7 (3)N4—C27—H27B109.2
C3—C4—H4120.2C26—C27—H27B109.2
C5—C4—H4120.2H27A—C27—H27B107.9
N1—C5—C4117.7 (3)Cl2—Re1—Cl692.04 (3)
N1—C5—C6118.6 (2)Cl2—Re1—Cl589.96 (4)
C4—C5—C6123.6 (3)Cl6—Re1—Cl589.52 (3)
C5—C6—C7115.3 (3)Cl2—Re1—Cl390.99 (4)
C5—C6—H6A108.4Cl6—Re1—Cl389.50 (3)
C7—C6—H6A108.4Cl5—Re1—Cl3178.66 (2)
C5—C6—H6B108.4Cl2—Re1—Cl490.04 (3)
C7—C6—H6B108.4Cl6—Re1—Cl4177.91 (2)
H6A—C6—H6B107.5Cl5—Re1—Cl490.64 (3)
N2—C7—C6112.2 (2)Cl3—Re1—Cl490.31 (3)
N2—C7—H7A109.2Cl2—Re1—Cl1178.08 (3)
C6—C7—H7A109.2Cl6—Re1—Cl189.74 (3)
N2—C7—H7B109.2Cl5—Re1—Cl189.34 (4)
C6—C7—H7B109.2Cl3—Re1—Cl189.74 (4)
H7A—C7—H7B107.9Cl4—Re1—Cl188.17 (3)
C21—N3—C25124.1 (3)Cl9—Re2—Cl1092.44 (4)
C21—N3—H3A118.0Cl9—Re2—Cl890.47 (4)
C25—N3—H3A118.0Cl10—Re2—Cl892.67 (4)
C27—N4—H6N109 (3)Cl9—Re2—Cl1290.34 (4)
C27—N4—H9N105 (2)Cl10—Re2—Cl1290.12 (3)
H6N—N4—H9N111 (4)Cl8—Re2—Cl12177.06 (3)
C27—N4—H10N109 (3)Cl9—Re2—Cl789.92 (4)
H6N—N4—H10N100 (4)Cl10—Re2—Cl7176.13 (3)
H9N—N4—H10N122 (4)Cl8—Re2—Cl790.37 (3)
N3—C21—C22119.7 (3)Cl12—Re2—Cl786.80 (3)
N3—C21—H21120.1Cl9—Re2—Cl11177.67 (3)
C22—C21—H21120.1Cl10—Re2—Cl1189.43 (4)
C21—C22—C23118.6 (3)Cl8—Re2—Cl1188.05 (4)
C21—C22—H22120.7Cl12—Re2—Cl1191.05 (4)
C23—C22—H22120.7Cl7—Re2—Cl1188.28 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl3i0.862.763.280 (3)120
N1—H1···Cl12ii0.862.563.208 (3)133
N2—H2N···Cl1iii0.93 (4)2.47 (4)3.313 (3)152 (3)
N3—H3A···Cl7iv0.862.713.431 (3)142
N3—H3A···Cl12iv0.862.653.326 (3)136
N2—H3N···Cl1i0.83 (5)2.50 (5)3.328 (3)174 (4)
N4—H6N···Cl20.93 (6)2.43 (5)3.291 (4)155 (4)
N4—H9N···Cl71.04 (6)2.70 (5)3.199 (3)110 (3)
N4—H9N···Cl81.04 (6)2.52 (6)3.541 (3)166 (4)
N4—H10N···Cl11iii0.87 (5)2.45 (4)3.240 (4)152 (4)
C4—H4···Cl110.932.833.621 (3)144
C7—H7B···Cl1v0.972.803.711 (3)156
C22—H22···Cl2vi0.932.693.602 (4)166
C26—H26B···Cl80.972.823.589 (3)137
C27—H27B···Cl50.972.813.610 (3)140
Symmetry codes: (i) x1, y+1, z1; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x1, y, z; (v) x, y+1, z1; (vi) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula(C7H12N2)[ReCl6]
Mr523.10
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.371 (2), 14.204 (3), 15.159 (3)
α, β, γ (°)66.87 (2), 84.74 (2), 75.61 (2)
V3)1413.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)9.70
Crystal size (mm)0.14 × 0.10 × 0.06
Data collection
DiffractometerOxford Diffraction KM-4-CCD
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.367, 0.559
No. of measured, independent and
observed [I > 2σ(I)] reflections
21570, 10147, 8098
Rint0.023
(sin θ/λ)max1)0.844
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.053, 0.98
No. of reflections10147
No. of parameters313
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)2.07, 1.31

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Cl3i0.862.763.280 (3)120
N1—H1···Cl12ii0.862.563.208 (3)133
N2—H2N···Cl1iii0.93 (4)2.47 (4)3.313 (3)152 (3)
N3—H3A···Cl7iv0.862.713.431 (3)142
N3—H3A···Cl12iv0.862.653.326 (3)136
N2—H3N···Cl1i0.83 (5)2.50 (5)3.328 (3)174 (4)
N4—H6N···Cl20.93 (6)2.43 (5)3.291 (4)155 (4)
N4—H9N···Cl71.04 (6)2.70 (5)3.199 (3)110 (3)
N4—H9N···Cl81.04 (6)2.52 (6)3.541 (3)166 (4)
N4—H10N···Cl11iii0.87 (5)2.45 (4)3.240 (4)152 (4)
C4—H4···Cl110.932.833.621 (3)144
C7—H7B···Cl1v0.972.803.711 (3)156
C22—H22···Cl2vi0.932.693.602 (4)166
C26—H26B···Cl80.972.823.589 (3)137
C27—H27B···Cl50.972.813.610 (3)140
Symmetry codes: (i) x1, y+1, z1; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1; (iv) x1, y, z; (v) x, y+1, z1; (vi) x+1, y, z+1.
 

Acknowledgements

Financial support by the Polish Ministry of Science and Higher Education (grant No. N N204 016735, in years 2008–2010) is gratefully acknowledged. The author thanks Dr A. Pochaba (Faculty of Chemistry, University of Wrocław) for the magnetic measurements.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKepert, C. J., Kurmoo, M. & Day, P. (1997). J. Mater. Chem. 7, 221–228.  CSD CrossRef CAS Web of Science Google Scholar
First citationKochel, A. (2004). Acta Cryst. E60, m859–m860.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKoenig, E. (1966). In Magnetic Properties of Coordination and Organometallic Transition Metal Compounds. Berlin: Springer Verlag.  Google Scholar
First citationMrozinski, J., Kochel, A. & Lis, T. (2002). J. Mol. Struct. 641, 109–117.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis RED and CrysAlis CCD. Oxford Diffraction Poland, Wrocław, Poland.  Google Scholar
First citationSawusch, S. & Schilde, U. (1999). Z. Kristallogr. New Cryst. Struct. 214, 79–81.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds