organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-[N-(2-formyl­phen­yl)benzene­sulfonamido]acetate

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 1 December 2008; accepted 23 January 2009; online 6 February 2009)

In the mol­ecule of the title compound, C17H17NO5S, the two aromatic rings are oriented at an angle of 30.13 (10)°. The ethyl acetate group assumes an extended conformation. Mol­ecules are linked into C(7) chains running along the a axis by inter­molecular C—H⋯O hydrogen bonds, and the chains are crosslinked via C—H⋯π inter­actions, with the sulfonyl-bound phenyl ring acting as an acceptor.

Related literature

For the activities of sulfonamides, see: Krishnaiah et al. (1995[Krishnaiah, M., Narayana Raju, K. V., Lu, I.-L., Chen, Y.-S. & Narasinga Rao, S. (1995). Acta Cryst. C51, 2429-2430.]); Dupont et al. (1978[Dupont, L., Lamotte, J., Campsteyn, H. & Vermeire, M. (1978). Acta Cryst. B34, 1304-1310.]); Sethu Sankar et al. (2002[Sethu Sankar, K., Kannadasan, S., Velmurugan, D., Srinivasan, P. C., Shanmuga Sundara Raj, S. & Fun, H.-K. (2002). Acta Cryst. C58, o277-o279.]). For related literature, see: Bassindale (1984[Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.]).

[Scheme 1]

Experimental

Crystal data
  • C17H17NO5S

  • Mr = 347.38

  • Orthorhombic, P 21 21 21

  • a = 11.3512 (6) Å

  • b = 11.7820 (6) Å

  • c = 12.8045 (6) Å

  • V = 1712.47 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 (2) K

  • 0.25 × 0.22 × 0.19 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.948, Tmax = 0.960

  • 13978 measured reflections

  • 5831 independent reflections

  • 3738 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.109

  • S = 1.02

  • 5831 reflections

  • 218 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 2533 Friedel pairs

  • Flack parameter: 0.04 (6)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O4i 0.93 2.57 3.220 (2) 127
C16—H16BCg1ii 0.97 2.75 3.615 (2) 150
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x+{\script{3\over 2}}, -y-{\script{1\over 2}}, -z].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The title compound is a potential intermediate for the synthesis of 2-alkylbenzoic acid and exhibits insecticidal, germicidal and antimicrobial activities (Krishnaiah et al., 1995; Dupont et al., 1978). The sulfonamides inhibit the growth of bacterial organism and are also useful for treating urinary and gastrointestinal infections (Sethu Sankar et al., 2002).

Atom S1 has a distorted tetrahedral configuration. The widening of angle O2—S1—O3 [120.46 (10)°] and narrowing of angle C8—S1—N1 [105.97 (8)°] from the ideal tetrahedral value are attributed to the Thorpe-Ingold effect (Bassindale, 1984). The two phenyl rings are oriented at an angle of 30.13 (10)°. The ethylacetate moiety assumes an extended conformation as can be seen from torsion angles C14—C15—O5—C16 of 178.12 (15)° and C15—O5—C16—C17 of 173.12 (19)°.

The molecules are linked into C(7) chains running along the a axis by C—H···O hydrogen bonding (Table 1). In addition C—H···π interactions (Table 1) with C8–C13 ring (centroid Cg1) as an acceptor is observed.

Related literature top

For the activities of sulfonamides, see: Krishnaiah et al. (1995); Dupont et al. (1978); Sethu Sankar et al. (2002). For related literature, see: Bassindale (1984).

Experimental top

2-(Benzenesulfonylamino)benzaldehyde (2 mmol) was added with ethyl bromoacetate (2.2 mmol) in the presence of potassium carbonate (4.7 mmol) and dimethyl acetamide (15 ml). The mixture was stirred at room temperature for 6 h. The reaction mass was poured into crushed ice (50 g) containing 4 to 5 drops of concentrated HCl and extracted with ethyl acetate. The product was obtained by column chromatography (hexane-ethyl acetate 9:1). The removal of the solvent followed by column chromatography of the residue (ethyl acetate) afforded white crystalline solid (yield 25%, m.p. 381-383 K). Single crystals suitable for the X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution of the title compound at room temperature.

Refinement top

H atoms were positioned geometrically (C-H = 0.93-0.97 Å) and were treated as riding on their parent C atoms with Uiso(H) = 1.2-1.5Ueq(C). The Uij components of atoms C1, C2 and C6 in the direction of the bond between them were restrained to be equal within an effective standard deviation of 0.001.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Molecular packing in the title compound, viewed down the b axis. Dashed lines represent hydrogen bonds.
Ethyl 2-[N-(2-formylphenyl)benzenesulfonamido]acetate top
Crystal data top
C17H17NO5SF(000) = 728
Mr = 347.38Dx = 1.347 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5831 reflections
a = 11.3512 (6) Åθ = 2.4–31.9°
b = 11.7820 (6) ŵ = 0.22 mm1
c = 12.8045 (6) ÅT = 293 K
V = 1712.47 (15) Å3Block, white
Z = 40.25 × 0.22 × 0.19 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5831 independent reflections
Radiation source: fine-focus sealed tube3738 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ω and ϕ scansθmax = 31.9°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1616
Tmin = 0.948, Tmax = 0.960k = 1714
13978 measured reflectionsl = 1917
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0543P)2 + 0.0353P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
5831 reflectionsΔρmax = 0.29 e Å3
218 parametersΔρmin = 0.25 e Å3
2 restraintsAbsolute structure: Flack (1983), 2533 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (6)
Crystal data top
C17H17NO5SV = 1712.47 (15) Å3
Mr = 347.38Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.3512 (6) ŵ = 0.22 mm1
b = 11.7820 (6) ÅT = 293 K
c = 12.8045 (6) Å0.25 × 0.22 × 0.19 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
5831 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3738 reflections with I > 2σ(I)
Tmin = 0.948, Tmax = 0.960Rint = 0.024
13978 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.109Δρmax = 0.29 e Å3
S = 1.02Δρmin = 0.25 e Å3
5831 reflectionsAbsolute structure: Flack (1983), 2533 Friedel pairs
218 parametersAbsolute structure parameter: 0.04 (6)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6483 (2)0.49883 (17)0.57621 (17)0.0725 (5)
H10.66430.55350.62660.087*
C20.7343 (2)0.46784 (15)0.50573 (16)0.0599 (4)
H20.80760.50300.50790.072*
C30.71222 (15)0.38413 (13)0.43117 (13)0.0455 (4)
C40.60095 (14)0.33360 (13)0.42953 (13)0.0439 (4)
C50.51443 (18)0.36705 (17)0.49915 (16)0.0601 (5)
H50.44010.33410.49650.072*
C60.5388 (2)0.44896 (19)0.57199 (17)0.0749 (5)
H60.48070.47110.61900.090*
C70.80521 (16)0.35124 (16)0.35744 (16)0.0541 (4)
H70.79220.28850.31490.065*
C80.38129 (14)0.27847 (14)0.23805 (13)0.0441 (3)
C90.31891 (18)0.18498 (16)0.20531 (16)0.0567 (5)
H90.35820.12110.18070.068*
C100.1974 (2)0.18686 (19)0.20932 (19)0.0706 (6)
H100.15440.12430.18670.085*
C110.14047 (18)0.2805 (2)0.24649 (18)0.0712 (6)
H110.05860.28110.24990.085*
C120.20264 (19)0.37386 (19)0.27891 (17)0.0684 (6)
H120.16270.43710.30410.082*
C130.32368 (18)0.37453 (15)0.27450 (15)0.0554 (4)
H130.36610.43810.29550.066*
C140.54399 (17)0.13373 (14)0.39808 (16)0.0540 (4)
H14A0.50150.09110.34530.065*
H14B0.49190.14440.45730.065*
C150.65056 (17)0.06720 (14)0.43210 (14)0.0493 (4)
C160.7056 (2)0.10263 (15)0.51699 (17)0.0665 (6)
H16A0.76300.06240.55920.080*
H16B0.74590.13670.45800.080*
C170.6456 (3)0.1912 (2)0.5801 (3)0.1116 (11)
H17A0.60750.15650.63890.167*
H17B0.70260.24530.60440.167*
H17C0.58790.22920.53780.167*
N10.57707 (12)0.24388 (11)0.35598 (11)0.0472 (3)
O10.89698 (13)0.40067 (14)0.34903 (16)0.0853 (5)
O20.58147 (12)0.38549 (11)0.21580 (11)0.0643 (4)
O30.57026 (13)0.18131 (14)0.17302 (12)0.0758 (4)
O40.75012 (13)0.09354 (12)0.41701 (15)0.0768 (5)
O50.61509 (11)0.02585 (10)0.48124 (11)0.0592 (3)
S10.53632 (4)0.27483 (4)0.23629 (3)0.04953 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.1104 (14)0.0522 (10)0.0549 (11)0.0040 (10)0.0043 (10)0.0089 (9)
C20.0728 (13)0.0477 (9)0.0593 (10)0.0020 (9)0.0145 (8)0.0032 (8)
C30.0469 (9)0.0410 (8)0.0484 (8)0.0041 (7)0.0058 (7)0.0073 (7)
C40.0445 (9)0.0421 (8)0.0451 (8)0.0043 (7)0.0039 (7)0.0069 (7)
C50.0544 (11)0.0629 (11)0.0629 (11)0.0072 (9)0.0080 (9)0.0063 (9)
C60.0906 (13)0.0731 (12)0.0611 (11)0.0163 (12)0.0180 (13)0.0021 (10)
C70.0456 (10)0.0544 (10)0.0624 (11)0.0023 (9)0.0015 (8)0.0070 (8)
C80.0436 (8)0.0493 (8)0.0395 (7)0.0012 (7)0.0038 (6)0.0011 (8)
C90.0585 (12)0.0463 (9)0.0653 (12)0.0026 (9)0.0056 (9)0.0044 (8)
C100.0562 (12)0.0676 (12)0.0879 (15)0.0114 (11)0.0087 (11)0.0002 (11)
C110.0472 (10)0.0903 (16)0.0763 (14)0.0025 (11)0.0026 (10)0.0014 (13)
C120.0615 (12)0.0784 (14)0.0653 (12)0.0238 (11)0.0038 (10)0.0146 (11)
C130.0579 (11)0.0552 (10)0.0532 (9)0.0078 (8)0.0074 (8)0.0093 (8)
C140.0459 (10)0.0443 (8)0.0719 (10)0.0015 (8)0.0038 (9)0.0079 (8)
C150.0518 (10)0.0414 (8)0.0546 (9)0.0014 (8)0.0071 (8)0.0024 (8)
C160.0828 (15)0.0493 (9)0.0674 (12)0.0114 (10)0.0237 (11)0.0029 (9)
C170.133 (3)0.0727 (16)0.129 (3)0.0176 (16)0.048 (2)0.0442 (17)
N10.0434 (7)0.0416 (7)0.0567 (8)0.0004 (6)0.0075 (6)0.0048 (6)
O10.0493 (8)0.0925 (11)0.1142 (13)0.0147 (8)0.0139 (8)0.0077 (10)
O20.0613 (8)0.0729 (9)0.0587 (7)0.0149 (7)0.0028 (6)0.0174 (7)
O30.0589 (9)0.0942 (11)0.0743 (9)0.0085 (8)0.0091 (7)0.0305 (8)
O40.0472 (8)0.0625 (8)0.1207 (13)0.0017 (7)0.0119 (8)0.0208 (9)
O50.0664 (8)0.0460 (6)0.0652 (8)0.0016 (6)0.0078 (6)0.0095 (6)
S10.0434 (2)0.0569 (2)0.0483 (2)0.0004 (2)0.00160 (19)0.00257 (19)
Geometric parameters (Å, º) top
C1—C61.376 (3)C11—C121.371 (3)
C1—C21.378 (3)C11—H110.93
C1—H10.93C12—C131.375 (3)
C2—C31.395 (3)C12—H120.93
C2—H20.93C13—H130.93
C3—C41.396 (2)C14—N11.455 (2)
C3—C71.468 (2)C14—C151.506 (3)
C4—C51.384 (2)C14—H14A0.97
C4—N11.442 (2)C14—H14B0.97
C5—C61.370 (3)C15—O41.188 (2)
C5—H50.93C15—O51.327 (2)
C6—H60.93C16—O51.443 (2)
C7—O11.198 (2)C16—C171.486 (3)
C7—H70.93C16—H16A0.97
C8—C91.375 (2)C16—H16B0.97
C8—C131.388 (2)C17—H17A0.96
C8—S11.7605 (16)C17—H17B0.96
C9—C101.380 (3)C17—H17C0.96
C9—H90.93N1—S11.6419 (14)
C10—C111.365 (3)O2—S11.4253 (13)
C10—H100.93O3—S11.4209 (15)
C6—C1—C2120.05 (19)C13—C12—H12119.8
C6—C1—H1120.0C12—C13—C8118.67 (18)
C2—C1—H1120.0C12—C13—H13120.7
C1—C2—C3120.5 (2)C8—C13—H13120.7
C1—C2—H2119.7N1—C14—C15111.36 (15)
C3—C2—H2119.7N1—C14—H14A109.4
C2—C3—C4118.28 (17)C15—C14—H14A109.4
C2—C3—C7119.84 (17)N1—C14—H14B109.4
C4—C3—C7121.88 (16)C15—C14—H14B109.4
C5—C4—C3120.73 (16)H14A—C14—H14B108.0
C5—C4—N1119.76 (16)O4—C15—O5125.58 (17)
C3—C4—N1119.50 (15)O4—C15—C14125.54 (16)
C6—C5—C4119.74 (19)O5—C15—C14108.88 (15)
C6—C5—H5120.1O5—C16—C17106.6 (2)
C4—C5—H5120.1O5—C16—H16A110.4
C5—C6—C1120.6 (2)C17—C16—H16A110.4
C5—C6—H6119.7O5—C16—H16B110.4
C1—C6—H6119.7C17—C16—H16B110.4
O1—C7—C3123.7 (2)H16A—C16—H16B108.6
O1—C7—H7118.2C16—C17—H17A109.5
C3—C7—H7118.2C16—C17—H17B109.5
C9—C8—C13120.88 (16)H17A—C17—H17B109.5
C9—C8—S1119.43 (13)C16—C17—H17C109.5
C13—C8—S1119.68 (14)H17A—C17—H17C109.5
C8—C9—C10119.37 (18)H17B—C17—H17C109.5
C8—C9—H9120.3C4—N1—C14117.44 (14)
C10—C9—H9120.3C4—N1—S1119.99 (10)
C11—C10—C9119.9 (2)C14—N1—S1118.12 (12)
C11—C10—H10120.0C15—O5—C16116.89 (15)
C9—C10—H10120.0O3—S1—O2120.46 (10)
C10—C11—C12120.7 (2)O3—S1—N1106.47 (9)
C10—C11—H11119.7O2—S1—N1105.88 (8)
C12—C11—H11119.7O3—S1—C8107.29 (9)
C11—C12—C13120.43 (19)O2—S1—C8109.85 (9)
C11—C12—H12119.8N1—S1—C8105.97 (8)
C6—C1—C2—C31.4 (3)N1—C14—C15—O5172.45 (14)
C1—C2—C3—C40.5 (3)C5—C4—N1—C1459.0 (2)
C1—C2—C3—C7179.31 (18)C3—C4—N1—C14119.59 (16)
C2—C3—C4—C50.9 (2)C5—C4—N1—S196.88 (17)
C7—C3—C4—C5179.28 (16)C3—C4—N1—S184.51 (17)
C2—C3—C4—N1177.66 (14)C15—C14—N1—C481.22 (19)
C7—C3—C4—N12.1 (2)C15—C14—N1—S1122.42 (14)
C3—C4—C5—C61.4 (3)O4—C15—O5—C161.6 (3)
N1—C4—C5—C6177.22 (17)C14—C15—O5—C16178.12 (15)
C4—C5—C6—C10.4 (3)C17—C16—O5—C15173.12 (19)
C2—C1—C6—C51.0 (3)C4—N1—S1—O3154.32 (14)
C2—C3—C7—O18.5 (3)C14—N1—S1—O349.95 (15)
C4—C3—C7—O1171.70 (19)C4—N1—S1—O224.99 (16)
C13—C8—C9—C100.3 (3)C14—N1—S1—O2179.28 (13)
S1—C8—C9—C10178.31 (17)C4—N1—S1—C891.66 (14)
C8—C9—C10—C110.6 (3)C14—N1—S1—C864.07 (15)
C9—C10—C11—C120.8 (3)C9—C8—S1—O315.45 (17)
C10—C11—C12—C130.0 (3)C13—C8—S1—O3165.94 (15)
C11—C12—C13—C80.9 (3)C9—C8—S1—O2148.05 (15)
C9—C8—C13—C121.0 (3)C13—C8—S1—O233.34 (17)
S1—C8—C13—C12177.55 (16)C9—C8—S1—N198.00 (15)
N1—C14—C15—O47.8 (3)C13—C8—S1—N180.61 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O4i0.932.573.220 (2)127
C16—H16B···Cg1ii0.972.753.615 (2)150
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC17H17NO5S
Mr347.38
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)11.3512 (6), 11.7820 (6), 12.8045 (6)
V3)1712.47 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.25 × 0.22 × 0.19
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.948, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
13978, 5831, 3738
Rint0.024
(sin θ/λ)max1)0.744
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.109, 1.02
No. of reflections5831
No. of parameters218
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.25
Absolute structureFlack (1983), 2533 Friedel pairs
Absolute structure parameter0.04 (6)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SAINT (Bruker, 2004, SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O4i0.932.573.220 (2)127
C16—H16B···Cg1ii0.972.753.615 (2)150
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+3/2, y1/2, z.
 

Acknowledgements

SR and MNP thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationBassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDupont, L., Lamotte, J., Campsteyn, H. & Vermeire, M. (1978). Acta Cryst. B34, 1304–1310.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKrishnaiah, M., Narayana Raju, K. V., Lu, I.-L., Chen, Y.-S. & Narasinga Rao, S. (1995). Acta Cryst. C51, 2429–2430.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSethu Sankar, K., Kannadasan, S., Velmurugan, D., Srinivasan, P. C., Shanmuga Sundara Raj, S. & Fun, H.-K. (2002). Acta Cryst. C58, o277–o279.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds