organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-4-Bromo-N′-(2-nitro­benzyl­­idene)benzohydrazide

aCollege of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, People's Republic of China, and bLaboratory of Nutrition and Functional Foods, Jilin University, Changchun 130062, People's Republic of China
*Correspondence e-mail: jingboliu08@163.com

(Received 14 January 2009; accepted 16 January 2009; online 11 February 2009)

The title compound, C14H10BrN3O3, was obtained by a condensation reaction between 2-nitro­benzaldehyde and 4-bromo­benzohydrazide. The dihedral angle between the two benzene rings is 4.1 (2)°. The mol­ecule displays an E configuration about the C=N bond. In the crystal, mol­ecules are linked into a chain along [100] by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For the biological properties of Schiff base and hydrazone compounds, see: Kucukguzel et al. (2006[Kucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353-359.]); Khattab et al. (2005[Khattab, S. N. (2005). Molecules, 10, 1218-1228.]); Karthikeyan et al. (2006[Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.]); Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Shan et al. (2008[Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1363.]); Fun et al. (2008[Fun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961-o1962.]); Ma et al. (2008[Ma, H.-B., Huang, S.-S. & Diao, Y.-P. (2008). Acta Cryst. E64, o210.]); Diao et al. (2008a[Diao, Y.-P., Huang, S.-S., Zhang, J.-K. & Kang, T.-G. (2008a). Acta Cryst. E64, o470.],b[Diao, Y.-P., Zhen, Y.-H., Han, X. & Deng, S. (2008b). Acta Cryst. E64, o101.]); Ejsmont et al. (2008[Ejsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10BrN3O3

  • Mr = 348.16

  • Triclinic, P 1

  • a = 4.8718 (17) Å

  • b = 6.842 (2) Å

  • c = 10.709 (4) Å

  • α = 98.014 (5)°

  • β = 93.258 (6)°

  • γ = 97.413 (5)°

  • V = 349.5 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.95 mm−1

  • T = 298 (2) K

  • 0.20 × 0.18 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.590, Tmax = 0.634

  • 2347 measured reflections

  • 1998 independent reflections

  • 1584 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.064

  • S = 0.95

  • 1998 reflections

  • 193 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 235 Friedel pairs

  • Flack parameter: 0.021 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.900 (11) 1.909 (19) 2.791 (3) 166 (6)
Symmetry code: (i) x-1, y, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazones and Schiff bases have attracted much attention for their excellent biological properties, especially for their potential pharmacological and antitumor properties (Kucukguzel et al., 2006; Khattab et al., 2005; Karthikeyan et al., 2006; Okabe et al., 1993). Recently, a large number of hydrazone derivatives have been prepared and structurally characterized (Shan et al., 2008; Fun et al., 2008; Ma et al., 2008; Diao et al., 2008a,b; Ejsmont et al., 2008). As part of the ongoing study, we report herein the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The dihedral angle between the two benzene rings is 4.1 (2)°. The molecule of the compound displays an E configuration about the CN bond. The bond values are typical (Allen et al., 1987). The molecules are linked into a chain along the [100] by intermolecular N—H···O hydrogen bonds.

Related literature top

For the biological properties of Schiff base and hydrazone compounds, see: Kucukguzel et al. (2006); Khattab et al. (2005); Karthikeyan et al. (2006); Okabe et al. (1993). For bond-length data, see: Allen et al. (1987). For related structures, see: Shan et al. (2008); Fun et al. (2008); Ma et al. (2008); Diao et al. (2008a,b); Ejsmont et al. (2008).

Experimental top

2-Nitrobenzaldehyde (1.0 mmol, 151.1 mg) was dissolved in methanol (50 ml) and then 4-bromobenzohydrazide (1.0 mmol, 215.0 mg) was added slowly into the solution, and the mixture was kept at reflux with continuous stirring for 1 h. After the solution had cooled to room temperature colourless crystals appeared. The crystals were filtered and washed with methanol for three times. Recrystallization from an absolute methanol yielded block-shaped single crystals of the title compound.

Refinement top

The amide H atom was located in a difference map and its positional parameters were refined. All other H atoms were placed in calculated positions (C-H = 0.93 Å) and refined using a riding model. The Uiso(H) values were set at 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids for non-H atoms.
(E)-4-Bromo-N'-(2-nitrobenzylidene)benzohydrazide top
Crystal data top
C14H10BrN3O3Z = 1
Mr = 348.16F(000) = 174
Triclinic, P1Dx = 1.654 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 4.8718 (17) ÅCell parameters from 1163 reflections
b = 6.842 (2) Åθ = 2.8–26.3°
c = 10.709 (4) ŵ = 2.95 mm1
α = 98.014 (5)°T = 298 K
β = 93.258 (6)°Block, colourless
γ = 97.413 (5)°0.20 × 0.18 × 0.17 mm
V = 349.5 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1998 independent reflections
Radiation source: fine-focus sealed tube1584 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
ω scansθmax = 30.7°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 66
Tmin = 0.590, Tmax = 0.634k = 88
2347 measured reflectionsl = 1115
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0058P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max = 0.001
1998 reflectionsΔρmax = 0.22 e Å3
193 parametersΔρmin = 0.23 e Å3
3 restraintsAbsolute structure: Flack (1983), 235 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.021 (8)
Crystal data top
C14H10BrN3O3γ = 97.413 (5)°
Mr = 348.16V = 349.5 (2) Å3
Triclinic, P1Z = 1
a = 4.8718 (17) ÅMo Kα radiation
b = 6.842 (2) ŵ = 2.95 mm1
c = 10.709 (4) ÅT = 298 K
α = 98.014 (5)°0.20 × 0.18 × 0.17 mm
β = 93.258 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1998 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1584 reflections with I > 2σ(I)
Tmin = 0.590, Tmax = 0.634Rint = 0.013
2347 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.064Δρmax = 0.22 e Å3
S = 0.95Δρmin = 0.23 e Å3
1998 reflectionsAbsolute structure: Flack (1983), 235 Friedel pairs
193 parametersAbsolute structure parameter: 0.021 (8)
3 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.28524 (6)0.18204 (5)0.03061 (4)0.08281 (18)
O10.9938 (4)0.7003 (4)0.2644 (2)0.0599 (6)
O20.1064 (8)1.2188 (6)0.7780 (3)0.0860 (11)
O30.2286 (10)0.9674 (5)0.6631 (3)0.1064 (15)
N10.5685 (5)0.7559 (4)0.3185 (2)0.0399 (5)
H10.394 (9)0.725 (7)0.293 (4)0.048*
N20.6709 (5)0.9301 (4)0.3980 (2)0.0405 (5)
N30.2485 (7)1.1447 (5)0.6997 (3)0.0584 (8)
C10.6174 (7)0.4513 (5)0.1848 (3)0.0385 (7)
C20.7401 (7)0.3754 (5)0.0775 (3)0.0506 (8)
H20.89100.45050.04950.061*
C30.6386 (8)0.1890 (6)0.0126 (3)0.0564 (9)
H30.71800.14000.06020.068*
C40.4217 (8)0.0767 (5)0.0555 (3)0.0504 (8)
C50.2932 (7)0.1486 (5)0.1614 (3)0.0447 (7)
H50.14290.07220.18890.054*
C60.3932 (6)0.3357 (5)0.2250 (3)0.0420 (7)
H60.30900.38550.29620.050*
C70.7440 (6)0.6473 (4)0.2577 (3)0.0404 (6)
C80.4917 (6)1.0171 (4)0.4562 (3)0.0384 (6)
H80.30610.96090.44790.046*
C90.5831 (6)1.2100 (4)0.5376 (3)0.0393 (6)
C100.4633 (7)1.2766 (5)0.6481 (3)0.0433 (7)
C110.5462 (8)1.4635 (6)0.7158 (3)0.0607 (9)
H110.46341.50290.78960.073*
C120.7486 (9)1.5906 (6)0.6752 (4)0.0660 (10)
H120.80151.71780.71990.079*
C130.8755 (8)1.5290 (5)0.5668 (3)0.0550 (9)
H131.01721.61390.53970.066*
C140.7919 (8)1.3419 (6)0.4990 (3)0.0489 (9)
H140.87721.30310.42580.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1255 (4)0.04369 (19)0.0679 (2)0.00267 (18)0.00284 (18)0.01585 (13)
O10.0231 (11)0.0608 (15)0.0872 (15)0.0003 (10)0.0026 (10)0.0128 (12)
O20.082 (2)0.113 (3)0.074 (2)0.030 (2)0.0420 (17)0.0233 (19)
O30.149 (4)0.068 (3)0.087 (2)0.047 (2)0.049 (2)0.0006 (17)
N10.0237 (12)0.0358 (13)0.0545 (13)0.0004 (10)0.0015 (10)0.0072 (11)
N20.0343 (13)0.0331 (12)0.0494 (12)0.0022 (10)0.0040 (10)0.0015 (10)
N30.057 (2)0.068 (2)0.0476 (14)0.0014 (16)0.0036 (14)0.0092 (14)
C10.0303 (16)0.0361 (15)0.0469 (15)0.0039 (13)0.0061 (13)0.0027 (12)
C20.0450 (19)0.050 (2)0.0551 (17)0.0058 (15)0.0104 (14)0.0015 (15)
C30.067 (2)0.057 (2)0.0417 (15)0.0094 (18)0.0084 (15)0.0075 (14)
C40.062 (2)0.0360 (16)0.0488 (16)0.0072 (15)0.0087 (15)0.0032 (13)
C50.0430 (18)0.0365 (16)0.0515 (16)0.0015 (13)0.0030 (14)0.0024 (13)
C60.0379 (17)0.0418 (17)0.0438 (15)0.0048 (13)0.0031 (13)0.0008 (13)
C70.0318 (16)0.0389 (16)0.0484 (14)0.0018 (12)0.0009 (12)0.0038 (12)
C80.0322 (15)0.0356 (15)0.0435 (14)0.0016 (13)0.0004 (12)0.0006 (12)
C90.0385 (16)0.0325 (15)0.0444 (14)0.0001 (12)0.0029 (12)0.0039 (12)
C100.0401 (17)0.0418 (16)0.0464 (14)0.0022 (13)0.0033 (13)0.0042 (12)
C110.070 (2)0.053 (2)0.0542 (17)0.0114 (19)0.0013 (17)0.0095 (15)
C120.079 (3)0.0351 (17)0.075 (2)0.0046 (18)0.004 (2)0.0064 (16)
C130.058 (2)0.0404 (19)0.0614 (19)0.0124 (15)0.0002 (17)0.0091 (15)
C140.0495 (18)0.041 (2)0.051 (2)0.0091 (15)0.0001 (17)0.0075 (18)
Geometric parameters (Å, º) top
Br1—C41.897 (3)C4—C51.387 (5)
O1—C71.219 (4)C5—C61.377 (4)
O2—N31.216 (5)C5—H50.93
O3—N31.211 (5)C6—H60.93
N1—C71.341 (4)C8—C91.478 (4)
N1—N21.382 (3)C8—H80.93
N1—H10.87 (4)C9—C141.391 (5)
N2—C81.264 (4)C9—C101.395 (4)
N3—C101.474 (5)C10—C111.378 (4)
C1—C61.389 (5)C11—C121.360 (6)
C1—C21.393 (5)C11—H110.93
C1—C71.493 (4)C12—C131.386 (6)
C2—C31.380 (5)C12—H120.93
C2—H20.93C13—C141.380 (5)
C3—C41.364 (5)C13—H130.93
C3—H30.93C14—H140.93
C7—N1—N2119.9 (2)O1—C7—N1122.7 (3)
C7—N1—H1116 (3)O1—C7—C1121.2 (3)
N2—N1—H1123 (3)N1—C7—C1116.0 (2)
C8—N2—N1115.5 (2)N2—C8—C9118.6 (3)
O3—N3—O2123.8 (4)N2—C8—H8120.7
O3—N3—C10117.7 (3)C9—C8—H8120.7
O2—N3—C10118.5 (4)C14—C9—C10116.6 (3)
C6—C1—C2118.7 (3)C14—C9—C8118.6 (3)
C6—C1—C7122.3 (3)C10—C9—C8124.7 (3)
C2—C1—C7118.8 (3)C11—C10—C9121.9 (3)
C3—C2—C1120.2 (3)C11—C10—N3117.4 (3)
C3—C2—H2119.9C9—C10—N3120.7 (3)
C1—C2—H2119.9C12—C11—C10120.3 (3)
C4—C3—C2119.9 (3)C12—C11—H11119.8
C4—C3—H3120.1C10—C11—H11119.8
C2—C3—H3120.1C11—C12—C13119.5 (3)
C3—C4—C5121.3 (3)C11—C12—H12120.3
C3—C4—Br1120.4 (3)C13—C12—H12120.3
C5—C4—Br1118.3 (3)C14—C13—C12120.1 (3)
C6—C5—C4118.6 (3)C14—C13—H13119.9
C6—C5—H5120.7C12—C13—H13119.9
C4—C5—H5120.7C13—C14—C9121.5 (3)
C5—C6—C1121.3 (3)C13—C14—H14119.2
C5—C6—H6119.4C9—C14—H14119.2
C1—C6—H6119.4
C7—N1—N2—C8176.5 (3)N2—C8—C9—C1436.5 (4)
C6—C1—C2—C30.3 (5)N2—C8—C9—C10147.7 (3)
C7—C1—C2—C3175.9 (3)C14—C9—C10—C110.1 (4)
C1—C2—C3—C41.6 (5)C8—C9—C10—C11175.8 (3)
C2—C3—C4—C52.2 (5)C14—C9—C10—N3177.4 (3)
C2—C3—C4—Br1178.6 (3)C8—C9—C10—N36.6 (4)
C3—C4—C5—C61.4 (5)O3—N3—C10—C11160.0 (4)
Br1—C4—C5—C6179.4 (2)O2—N3—C10—C1118.4 (5)
C4—C5—C6—C10.1 (4)O3—N3—C10—C917.7 (5)
C2—C1—C6—C50.4 (4)O2—N3—C10—C9163.9 (3)
C7—C1—C6—C5175.0 (3)C9—C10—C11—C120.6 (5)
N2—N1—C7—O13.6 (4)N3—C10—C11—C12178.3 (4)
N2—N1—C7—C1173.8 (2)C10—C11—C12—C131.5 (6)
C6—C1—C7—O1143.2 (3)C11—C12—C13—C141.6 (6)
C2—C1—C7—O132.3 (4)C12—C13—C14—C90.8 (6)
C6—C1—C7—N134.3 (4)C10—C9—C14—C130.0 (5)
C2—C1—C7—N1150.3 (3)C8—C9—C14—C13176.1 (3)
N1—N2—C8—C9176.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.900 (11)1.909 (19)2.791 (3)166 (6)
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC14H10BrN3O3
Mr348.16
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)4.8718 (17), 6.842 (2), 10.709 (4)
α, β, γ (°)98.014 (5), 93.258 (6), 97.413 (5)
V3)349.5 (2)
Z1
Radiation typeMo Kα
µ (mm1)2.95
Crystal size (mm)0.20 × 0.18 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.590, 0.634
No. of measured, independent and
observed [I > 2σ(I)] reflections
2347, 1998, 1584
Rint0.013
(sin θ/λ)max1)0.717
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.064, 0.95
No. of reflections1998
No. of parameters193
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.23
Absolute structureFlack (1983), 235 Friedel pairs
Absolute structure parameter0.021 (8)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.900 (11)1.909 (19)2.791 (3)166 (6)
Symmetry code: (i) x1, y, z.
 

Acknowledgements

This project was supported by Jilin University.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDiao, Y.-P., Huang, S.-S., Zhang, J.-K. & Kang, T.-G. (2008a). Acta Cryst. E64, o470.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDiao, Y.-P., Zhen, Y.-H., Han, X. & Deng, S. (2008b). Acta Cryst. E64, o101.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEjsmont, K., Zareef, M., Arfan, M., Bashir, S. A. & Zaleski, J. (2008). Acta Cryst. E64, o1128.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961–o1962.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKarthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482–7489.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhattab, S. N. (2005). Molecules, 10, 1218–1228.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353–359.  Web of Science CrossRef PubMed Google Scholar
First citationMa, H.-B., Huang, S.-S. & Diao, Y.-P. (2008). Acta Cryst. E64, o210.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationShan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1363.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds