metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[N,N-Bis(di­phenyl­phosphino)iso­propyl­amine]di­bromidonickel(II)

aLeibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany, and bLinde AG, Linde Engineering Division, Dr.-Carl-von-Linde-Strasse 6-14, 82049 Pullach, Germany
*Correspondence e-mail: marko.hapke@catalysis.de

(Received 26 January 2009; accepted 2 February 2009; online 6 February 2009)

The title compound, [NiBr2(C27H27NP2)], was synthesized by the reaction of NiBr2(dme) (dme is 1,2-dimethoxy­ethane) with N,N-bis­(diphenyl­phosphino)isopropyl­amine in methanol/tetra­hydro­furan. The nickel(II) center is coordinated by two P atoms of the chelating PNP ligand, Ph2PN(iPr)PPh2, and two bromide ions in a distorted square-planar geometry.

Related literature

For derivatives of the title compound and their structural details, see: Cooley et al. (2001[Cooley, N. A., Green, S. M. & Wass, D. F. (2001). Organometallics, 20, 4769-4771.]); Sushev et al. (2005[Sushev, V. V., Kornev, A. N., Kurskii, Y. A., Kuznetsova, O. V., Fukin, G. K., Budnikova, Y. H. & Abakumov, G. A. (2005). J. Organomet. Chem. 690, 1814-1821.]); Sun et al. (2006[Sun, Z., Zhu, F., Wu, Q. & Lin, S. (2006). Appl. Organomet. Chem. 20, 175-180.]). For structural features of a nickel complex with an arene-briged bis-PNP ligand, see: Majoumo-Mbe et al. (2005[Majoumo-Mbe, F., Lönnecke, P., Novikova, E. V., Belov, G. P. & Hey-Hawkins, E. (2005). Dalton Trans. pp. 3326-3330.]). For catalytic features of the PNP ligand, see: Wöhl et al. (2009[Wöhl, A., Müller, W., Peulecke, N., Müller, B. H., Peitz, S., Heller, D. & Rosenthal, U. (2009). J. Mol. Catal. A Chem. 297, 1-8.]).

[Scheme 1]

Experimental

Crystal data
  • [NiBr2(C27H27NP2)]

  • Mr = 645.97

  • Orthorhombic, P b c a

  • a = 16.6720 (3) Å

  • b = 15.1689 (4) Å

  • c = 20.3777 (4) Å

  • V = 5153.44 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 4.00 mm−1

  • T = 200 (2) K

  • 0.17 × 0.14 × 0.04 mm

Data collection
  • Stoe IPDS-II diffractometer

  • Absorption correction: numerical (X-SHAPE; Stoe & Cie, 2005[Stoe & Cie (2005). X-SHAPE, X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.484, Tmax = 0.884

  • 73587 measured reflections

  • 6956 independent reflections

  • 4725 reflections with I > 2σ(I)

  • Rint = 0.080

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.064

  • S = 0.89

  • 6956 reflections

  • 300 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-SHAPE, X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2005[Stoe & Cie (2005). X-SHAPE, X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ligands containing the "PNP" moiety as the structural motif of the coordination unit have been used for different purposes in coordination chemistry. During the recent period, they were used with different metals including nickel for investigations into oligomerizations, polymerizations (Cooley et al., 2001) or copolymerizations (Majoumo-Mbe et al., 2005) with ethene or other alkenes (Sun et al., 2006). The Ni(PNP) core was also used for investigations into the reactivity behaviour of the nickel-coordinated HN(PPH2)2 ligand (Sushev et al., 2005). During these studies allylation of the N—H yielded a comparable nickel complex to the one that is described here. Dinuclear Ni(PNP)-complexes with arene-bridged PNP units have been prepared that have two independent and structurally identical Ni(PNP) moities (Majoumo-Mbe et al., 2005).

We became interested in nickel complexes during our studies on the selective oligomerization of ethene via transition metal-catalyzed tri- or tetramerization, yielding 1-hexene or 1-octene (Wöhl et al., 2009). Our initial experimental work was focusing on a chromium-based catalyst system (CrCl3(THF)3/Ph2PN(iPr)PPh2/MAO) and we recently became interested in the kinetic behaviour of this catalyst system, to gain a better understanding of the underlying catalytic mechanism in dependence from different metal/ligand ratios. However, for reasons of comparison we wanted to examine the corresponding nickel complex containing the same simple isopropyl-substituted PNP ligand. We deployed a simple preparation procedure, that is described here, to obtain the complex in high yields for our screening experiments.

The molecular structure of the title compound shows that the NiII center is coordinated by two P atoms of the chelating Ph2PN(iPr)PPh2 ligand and two bromide ions (Fig. 1). Its coordination geometry can be best described as distorted square-planar (P2—Ni1—P1 73.22 (3)°, P1—Ni1—Br1 94.39 (2)°, P2—Ni1—Br2 94.74 (2)°, Br1—Ni1—Br2 98.213 (16)°). Furthermore, the chelating ligand and the metal form a four-membered Ni(PNP) ring which is nearly planar (mean deviation from the best plane defined by Ni1, P1, N1 and P2 atoms is 0.0481 Å).

Related literature top

For derivatives of the title compound and their structural details, see: Cooley et al. (2001); Sushev et al. (2005); Sun et al. (2006). For structural features of a nickel complex with an arene-briged bis-PNP ligand, see: Majoumo-Mbe et al. (2005). For catalytic features of the PNP ligand, see: Wöhl et al. (2009).

Experimental top

NiBr2(1,2-dimethoxyethane) (334 mg, 1.08 mmol) was dissolved in dry methanol and heated to 333 K. N,N-bis(diphenylphosphino)isopropylamine (462 mg, 1.08 mmol) was dissolved in dry THF and the solution was cannulated into the nickel complex solution under argon. The red solution obtained was stirred for an hour at 333 K and after cooling, the red solid obtained was collected on a glas frit and washed twice with methanol and three times with water and finally with ether. The red solid was dried in high vacuo to yield 645 mg of pure red complex. The identity of the product was proven by 1H, 13C and 31P NMR (solvent: CD2Cl2). Single crystals suitable for X-ray analysis were grown from a chloroform-diethyl ether solution (2:1).

Refinement top

All H atoms were placed in idealized positions with d(C—H) = 0.98 (CH3) and 0.95–1.00 Å (CH) and refined using a riding model with Uiso(H) fixed at 1.5 Ueq(C) for CH3 and 1.2 Ueq(C) for CH.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-RED (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[N,N-Bis(diphenylphosphino)isopropylamine]dibromidonickel(II) top
Crystal data top
[NiBr2(C27H27NP2)]F(000) = 2592
Mr = 645.97Dx = 1.665 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 33195 reflections
a = 16.6720 (3) Åθ = 2.1–29.5°
b = 15.1689 (4) ŵ = 4.00 mm1
c = 20.3777 (4) ÅT = 200 K
V = 5153.44 (19) Å3Prism, red–brown
Z = 80.17 × 0.14 × 0.04 mm
Data collection top
Stoe IPDS-II
diffractometer
6956 independent reflections
Radiation source: fine-focus sealed tube4725 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.080
rotation method scansθmax = 29.3°, θmin = 2.0°
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 2005)
h = 2222
Tmin = 0.484, Tmax = 0.884k = 2020
73587 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2) + (0.0281P)2]
where P = (Fo2 + 2Fc2)/3
6956 reflections(Δ/σ)max = 0.001
300 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[NiBr2(C27H27NP2)]V = 5153.44 (19) Å3
Mr = 645.97Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 16.6720 (3) ŵ = 4.00 mm1
b = 15.1689 (4) ÅT = 200 K
c = 20.3777 (4) Å0.17 × 0.14 × 0.04 mm
Data collection top
Stoe IPDS-II
diffractometer
6956 independent reflections
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 2005)
4725 reflections with I > 2σ(I)
Tmin = 0.484, Tmax = 0.884Rint = 0.080
73587 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.064H-atom parameters constrained
S = 0.89Δρmax = 0.57 e Å3
6956 reflectionsΔρmin = 0.43 e Å3
300 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.90625 (17)0.87979 (17)0.23217 (13)0.0230 (5)
C20.88616 (18)0.96307 (18)0.20951 (14)0.0274 (6)
H20.86940.97070.16530.033*
C30.89045 (19)1.03524 (19)0.25112 (16)0.0337 (7)
H30.87601.09210.23570.040*
C40.91578 (19)1.0242 (2)0.31503 (15)0.0354 (7)
H40.91751.07330.34390.043*
C50.9386 (2)0.9421 (2)0.33713 (15)0.0334 (7)
H50.95750.93530.38080.040*
C60.93436 (18)0.86966 (19)0.29619 (14)0.0292 (6)
H60.95050.81330.31160.035*
C70.87114 (17)0.69391 (17)0.22892 (13)0.0227 (5)
C80.81317 (17)0.70629 (18)0.27757 (13)0.0266 (6)
H80.79570.76400.28860.032*
C90.78135 (19)0.6339 (2)0.30950 (14)0.0322 (7)
H90.74160.64180.34240.039*
C100.8074 (2)0.5497 (2)0.29349 (15)0.0366 (7)
H100.78500.50010.31530.044*
C110.8656 (2)0.53756 (19)0.24623 (16)0.0342 (7)
H110.88380.47980.23590.041*
C120.89720 (18)0.60961 (17)0.21390 (14)0.0264 (6)
H120.93710.60130.18120.032*
C130.92171 (17)0.85623 (17)0.00596 (13)0.0231 (5)
C140.96284 (19)0.8386 (2)0.06458 (13)0.0301 (6)
H140.98260.78110.07340.036*
C150.9743 (2)0.9060 (2)0.10958 (14)0.0377 (7)
H151.00140.89450.14970.045*
C160.9466 (2)0.9895 (2)0.09623 (15)0.0383 (8)
H160.95541.03540.12720.046*
C170.90638 (19)1.00777 (19)0.03885 (15)0.0347 (7)
H170.88761.06570.03020.042*
C180.89349 (18)0.94077 (18)0.00636 (15)0.0274 (6)
H180.86530.95280.04590.033*
C190.88235 (17)0.67305 (17)0.01232 (13)0.0239 (6)
C200.82043 (18)0.67961 (19)0.03337 (14)0.0297 (6)
H200.80250.73590.04770.036*
C210.7852 (2)0.6040 (2)0.05781 (16)0.0362 (7)
H210.74270.60810.08870.043*
C220.8119 (2)0.5222 (2)0.03737 (16)0.0409 (8)
H220.78670.47050.05350.049*
C230.8747 (2)0.51497 (19)0.00613 (15)0.0368 (8)
H230.89350.45840.01890.044*
C240.9107 (2)0.59054 (17)0.03148 (14)0.0295 (6)
H240.95420.58590.06150.035*
C250.75815 (16)0.79720 (19)0.10263 (13)0.0269 (6)
H250.74810.80930.05510.032*
C260.71793 (19)0.8703 (2)0.14099 (16)0.0382 (7)
H26A0.73080.86400.18770.057*
H26B0.65970.86680.13490.057*
H26C0.73730.92750.12520.057*
C270.72121 (18)0.7077 (2)0.11777 (15)0.0355 (7)
H27A0.75260.66130.09630.053*
H27B0.66590.70610.10150.053*
H27C0.72130.69800.16530.053*
N10.84753 (13)0.79808 (13)0.11239 (10)0.0206 (4)
P10.90770 (4)0.78459 (4)0.17912 (3)0.01915 (13)
P20.91702 (4)0.77028 (5)0.05515 (3)0.01925 (12)
Ni11.013681 (19)0.761785 (18)0.122690 (17)0.01868 (7)
Br11.100033 (18)0.77856 (2)0.211279 (14)0.03435 (8)
Br21.108991 (17)0.72404 (2)0.043377 (14)0.03133 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0219 (14)0.0241 (12)0.0231 (12)0.0011 (11)0.0044 (11)0.0029 (10)
C20.0303 (16)0.0250 (13)0.0270 (14)0.0001 (11)0.0045 (12)0.0021 (11)
C30.0303 (16)0.0259 (13)0.0449 (17)0.0008 (12)0.0109 (14)0.0037 (12)
C40.0292 (17)0.0357 (16)0.0414 (17)0.0099 (13)0.0115 (14)0.0182 (13)
C50.0347 (18)0.0394 (17)0.0262 (14)0.0058 (13)0.0022 (12)0.0094 (12)
C60.0306 (16)0.0311 (15)0.0258 (14)0.0013 (12)0.0012 (12)0.0011 (11)
C70.0241 (14)0.0227 (12)0.0213 (12)0.0011 (10)0.0034 (10)0.0042 (10)
C80.0259 (14)0.0289 (14)0.0250 (13)0.0011 (11)0.0007 (11)0.0023 (10)
C90.0250 (16)0.0439 (17)0.0277 (15)0.0039 (13)0.0029 (12)0.0095 (12)
C100.0344 (18)0.0400 (17)0.0354 (16)0.0123 (14)0.0077 (14)0.0151 (13)
C110.0381 (18)0.0251 (13)0.0394 (17)0.0028 (13)0.0101 (15)0.0030 (13)
C120.0302 (16)0.0229 (12)0.0262 (13)0.0005 (11)0.0015 (13)0.0016 (10)
C130.0204 (14)0.0257 (13)0.0231 (12)0.0043 (10)0.0036 (11)0.0051 (10)
C140.0333 (17)0.0350 (15)0.0219 (13)0.0046 (12)0.0019 (12)0.0024 (11)
C150.0383 (19)0.0511 (18)0.0238 (15)0.0095 (14)0.0015 (13)0.0090 (12)
C160.0344 (18)0.0447 (18)0.0357 (16)0.0137 (14)0.0132 (14)0.0201 (14)
C170.0291 (16)0.0302 (14)0.0450 (18)0.0040 (12)0.0141 (15)0.0112 (13)
C180.0218 (15)0.0293 (14)0.0313 (15)0.0000 (11)0.0055 (12)0.0017 (11)
C190.0256 (15)0.0248 (13)0.0214 (12)0.0031 (10)0.0052 (11)0.0032 (10)
C200.0270 (15)0.0336 (14)0.0285 (14)0.0015 (12)0.0010 (12)0.0080 (11)
C210.0280 (17)0.0457 (18)0.0349 (16)0.0097 (13)0.0010 (13)0.0152 (14)
C220.042 (2)0.0386 (17)0.0425 (18)0.0196 (15)0.0107 (16)0.0170 (14)
C230.051 (2)0.0252 (15)0.0342 (16)0.0063 (13)0.0137 (15)0.0042 (12)
C240.0395 (18)0.0235 (13)0.0256 (13)0.0011 (12)0.0028 (13)0.0013 (11)
C250.0169 (13)0.0370 (15)0.0269 (13)0.0022 (11)0.0018 (10)0.0029 (11)
C260.0249 (16)0.0482 (18)0.0414 (18)0.0097 (13)0.0035 (13)0.0029 (14)
C270.0255 (15)0.0466 (17)0.0345 (15)0.0115 (12)0.0005 (13)0.0015 (14)
N10.0174 (11)0.0243 (10)0.0200 (11)0.0023 (8)0.0007 (8)0.0002 (8)
P10.0200 (3)0.0191 (3)0.0183 (3)0.0005 (3)0.0009 (2)0.0003 (2)
P20.0198 (3)0.0197 (3)0.0183 (3)0.0001 (3)0.0003 (2)0.0003 (2)
Ni10.01720 (14)0.01814 (14)0.02069 (13)0.00026 (11)0.00008 (15)0.00020 (13)
Br10.03006 (16)0.03626 (16)0.03674 (15)0.00651 (14)0.01348 (13)0.00788 (13)
Br20.02687 (15)0.03284 (14)0.03429 (14)0.00272 (13)0.00987 (12)0.00076 (12)
Geometric parameters (Å, º) top
C1—C21.386 (4)C17—C181.389 (4)
C1—C61.395 (4)C17—H170.95
C1—P11.804 (3)C18—H180.95
C2—C31.387 (4)C19—C201.394 (4)
C2—H20.95C19—C241.394 (4)
C3—C41.379 (5)C19—P21.809 (3)
C3—H30.95C20—C211.382 (4)
C4—C51.378 (5)C20—H200.95
C4—H40.95C21—C221.381 (5)
C5—C61.381 (4)C21—H210.95
C5—H50.95C22—C231.376 (5)
C6—H60.95C22—H220.95
C7—C121.385 (4)C23—C241.393 (4)
C7—C81.397 (4)C23—H230.95
C7—P11.815 (3)C24—H240.95
C8—C91.382 (4)C25—N11.504 (3)
C8—H80.95C25—C261.514 (4)
C9—C101.388 (5)C25—C271.522 (4)
C9—H90.95C25—H251.00
C10—C111.379 (5)C26—H26A0.98
C10—H100.95C26—H26B0.98
C11—C121.381 (4)C26—H26C0.98
C11—H110.95C27—H27A0.98
C12—H120.95C27—H27B0.98
C13—C181.389 (4)C27—H27C0.98
C13—C141.403 (4)N1—P21.697 (2)
C13—P21.805 (3)N1—P11.702 (2)
C14—C151.387 (4)P1—Ni12.1364 (7)
C14—H140.95P1—P22.5402 (9)
C15—C161.376 (5)P2—Ni12.1231 (7)
C15—H150.95Ni1—Br12.3230 (4)
C16—C171.376 (5)Ni1—Br22.3377 (4)
C16—H160.95
C2—C1—C6119.6 (3)C19—C20—H20120.1
C2—C1—P1122.2 (2)C22—C21—C20120.0 (3)
C6—C1—P1117.9 (2)C22—C21—H21120.0
C1—C2—C3120.2 (3)C20—C21—H21120.0
C1—C2—H2119.9C23—C22—C21120.7 (3)
C3—C2—H2119.9C23—C22—H22119.6
C4—C3—C2119.8 (3)C21—C22—H22119.6
C4—C3—H3120.1C22—C23—C24120.1 (3)
C2—C3—H3120.1C22—C23—H23120.0
C5—C4—C3120.2 (3)C24—C23—H23120.0
C5—C4—H4119.9C23—C24—C19119.2 (3)
C3—C4—H4119.9C23—C24—H24120.4
C4—C5—C6120.5 (3)C19—C24—H24120.4
C4—C5—H5119.8N1—C25—C26111.4 (2)
C6—C5—H5119.8N1—C25—C27112.5 (2)
C5—C6—C1119.6 (3)C26—C25—C27111.7 (3)
C5—C6—H6120.2N1—C25—H25107.0
C1—C6—H6120.2C26—C25—H25107.0
C12—C7—C8119.9 (2)C27—C25—H25107.0
C12—C7—P1118.1 (2)C25—C26—H26A109.5
C8—C7—P1121.8 (2)C25—C26—H26B109.5
C9—C8—C7119.5 (3)H26A—C26—H26B109.5
C9—C8—H8120.2C25—C26—H26C109.5
C7—C8—H8120.2H26A—C26—H26C109.5
C8—C9—C10120.0 (3)H26B—C26—H26C109.5
C8—C9—H9120.0C25—C27—H27A109.5
C10—C9—H9120.0C25—C27—H27B109.5
C11—C10—C9120.5 (3)H27A—C27—H27B109.5
C11—C10—H10119.7C25—C27—H27C109.5
C9—C10—H10119.7H27A—C27—H27C109.5
C10—C11—C12119.7 (3)H27B—C27—H27C109.5
C10—C11—H11120.1C25—N1—P2125.69 (17)
C12—C11—H11120.1C25—N1—P1133.53 (17)
C11—C12—C7120.4 (3)P2—N1—P196.71 (11)
C11—C12—H12119.8N1—P1—C1112.00 (12)
C7—C12—H12119.8N1—P1—C7109.87 (12)
C18—C13—C14119.7 (3)C1—P1—C7105.49 (12)
C18—C13—P2121.8 (2)N1—P1—Ni194.41 (8)
C14—C13—P2118.1 (2)C1—P1—Ni1117.60 (9)
C15—C14—C13119.3 (3)C7—P1—Ni1117.13 (9)
C15—C14—H14120.3C1—P1—P2131.69 (9)
C13—C14—H14120.3C7—P1—P2120.79 (9)
C16—C15—C14120.1 (3)Ni1—P1—P253.15 (2)
C16—C15—H15119.9N1—P2—C13108.92 (12)
C14—C15—H15119.9N1—P2—C19108.43 (12)
C15—C16—C17121.1 (3)C13—P2—C19105.66 (13)
C15—C16—H16119.4N1—P2—Ni195.03 (8)
C17—C16—H16119.4C13—P2—Ni1117.27 (9)
C16—C17—C18119.5 (3)C19—P2—Ni1120.40 (10)
C16—C17—H17120.3C13—P2—P1128.84 (9)
C18—C17—H17120.3C19—P2—P1122.01 (9)
C17—C18—C13120.2 (3)Ni1—P2—P153.63 (2)
C17—C18—H18119.9P2—Ni1—P173.22 (3)
C13—C18—H18119.9P2—Ni1—Br1165.35 (2)
C20—C19—C24120.2 (3)P1—Ni1—Br194.39 (2)
C20—C19—P2120.1 (2)P2—Ni1—Br294.74 (2)
C24—C19—P2119.2 (2)P1—Ni1—Br2166.90 (3)
C21—C20—C19119.7 (3)Br1—Ni1—Br298.213 (16)
C21—C20—H20120.1
C6—C1—C2—C33.0 (4)C25—N1—P2—C1372.5 (2)
P1—C1—C2—C3176.2 (2)P1—N1—P2—C13127.71 (12)
C1—C2—C3—C40.8 (4)C25—N1—P2—C1942.0 (2)
C2—C3—C4—C51.6 (5)P1—N1—P2—C19117.77 (12)
C3—C4—C5—C61.8 (5)C25—N1—P2—Ni1166.4 (2)
C4—C5—C6—C10.4 (5)P1—N1—P2—Ni16.62 (9)
C2—C1—C6—C52.7 (4)C25—N1—P2—P1159.8 (3)
P1—C1—C6—C5176.2 (2)C18—C13—P2—N119.8 (3)
C12—C7—C8—C91.1 (4)C14—C13—P2—N1167.1 (2)
P1—C7—C8—C9173.4 (2)C18—C13—P2—C19136.1 (2)
C7—C8—C9—C100.4 (4)C14—C13—P2—C1950.8 (3)
C8—C9—C10—C110.6 (5)C18—C13—P2—Ni186.5 (2)
C9—C10—C11—C121.0 (5)C14—C13—P2—Ni186.6 (2)
C10—C11—C12—C70.3 (5)C18—C13—P2—P122.7 (3)
C8—C7—C12—C110.7 (4)C14—C13—P2—P1150.41 (18)
P1—C7—C12—C11174.0 (2)C20—C19—P2—N174.3 (2)
C18—C13—C14—C150.3 (4)C24—C19—P2—N197.5 (2)
P2—C13—C14—C15173.6 (2)C20—C19—P2—C1342.4 (3)
C13—C14—C15—C160.9 (5)C24—C19—P2—C13145.9 (2)
C14—C15—C16—C170.8 (5)C20—C19—P2—Ni1178.12 (19)
C15—C16—C17—C180.0 (5)C24—C19—P2—Ni110.1 (3)
C16—C17—C18—C130.7 (4)C20—C19—P2—P1118.2 (2)
C14—C13—C18—C170.5 (4)C24—C19—P2—P153.5 (3)
P2—C13—C18—C17172.5 (2)C1—P1—P2—N175.63 (17)
C24—C19—C20—C212.4 (4)C7—P1—P2—N185.67 (15)
P2—C19—C20—C21169.3 (2)Ni1—P1—P2—N1171.81 (11)
C19—C20—C21—C220.6 (5)N1—P1—P2—C1373.89 (16)
C20—C21—C22—C231.5 (5)C1—P1—P2—C131.73 (18)
C21—C22—C23—C241.8 (5)C7—P1—P2—C13159.56 (16)
C22—C23—C24—C190.1 (5)Ni1—P1—P2—C1397.92 (12)
C20—C19—C24—C232.2 (4)N1—P1—P2—C1981.89 (16)
P2—C19—C24—C23169.6 (2)C1—P1—P2—C19157.52 (17)
C26—C25—N1—P2146.0 (2)C7—P1—P2—C193.78 (16)
C27—C25—N1—P287.8 (3)Ni1—P1—P2—C19106.30 (12)
C26—C25—N1—P162.3 (3)N1—P1—P2—Ni1171.81 (11)
C27—C25—N1—P164.0 (3)C1—P1—P2—Ni196.18 (13)
C25—N1—P1—C174.0 (3)C7—P1—P2—Ni1102.52 (11)
P2—N1—P1—C1128.73 (12)N1—P2—Ni1—P15.46 (7)
C25—N1—P1—C742.9 (3)C13—P2—Ni1—P1119.77 (11)
P2—N1—P1—C7114.38 (12)C19—P2—Ni1—P1109.35 (10)
C25—N1—P1—Ni1163.8 (2)N1—P2—Ni1—Br127.65 (13)
P2—N1—P1—Ni16.57 (9)C13—P2—Ni1—Br186.66 (14)
C25—N1—P1—P2157.2 (3)C19—P2—Ni1—Br1142.46 (12)
C2—C1—P1—N123.8 (3)P1—P2—Ni1—Br133.12 (10)
C6—C1—P1—N1162.9 (2)N1—P2—Ni1—Br2179.80 (7)
C2—C1—P1—C7143.3 (2)C13—P2—Ni1—Br265.49 (11)
C6—C1—P1—C743.4 (3)C19—P2—Ni1—Br265.39 (10)
C2—C1—P1—Ni184.0 (3)P1—P2—Ni1—Br2174.74 (2)
C6—C1—P1—Ni189.3 (2)N1—P1—Ni1—P25.44 (7)
C2—C1—P1—P220.1 (3)C1—P1—Ni1—P2123.10 (10)
C6—C1—P1—P2153.19 (18)C7—P1—Ni1—P2109.55 (10)
C12—C7—P1—N187.2 (2)N1—P1—Ni1—Br1166.59 (7)
C8—C7—P1—N187.4 (2)C1—P1—Ni1—Br148.93 (10)
C12—C7—P1—C1151.9 (2)C7—P1—Ni1—Br178.41 (10)
C8—C7—P1—C133.5 (3)P2—P1—Ni1—Br1172.04 (2)
C12—C7—P1—Ni118.9 (3)N1—P1—Ni1—Br229.24 (14)
C8—C7—P1—Ni1166.51 (19)C1—P1—Ni1—Br2146.90 (13)
C12—C7—P1—P242.5 (3)C7—P1—Ni1—Br285.76 (14)
C8—C7—P1—P2132.1 (2)P2—P1—Ni1—Br223.79 (11)

Experimental details

Crystal data
Chemical formula[NiBr2(C27H27NP2)]
Mr645.97
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)200
a, b, c (Å)16.6720 (3), 15.1689 (4), 20.3777 (4)
V3)5153.44 (19)
Z8
Radiation typeMo Kα
µ (mm1)4.00
Crystal size (mm)0.17 × 0.14 × 0.04
Data collection
DiffractometerStoe IPDS-II
diffractometer
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie, 2005)
Tmin, Tmax0.484, 0.884
No. of measured, independent and
observed [I > 2σ(I)] reflections
73587, 6956, 4725
Rint0.080
(sin θ/λ)max1)0.688
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.064, 0.89
No. of reflections6956
No. of parameters300
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.43

Computer programs: X-AREA (Stoe & Cie, 2005), X-RED (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Leibniz-Institut für Katalyse e. V. an der Universität Rostock.

References

First citationCooley, N. A., Green, S. M. & Wass, D. F. (2001). Organometallics, 20, 4769–4771.  Web of Science CSD CrossRef CAS Google Scholar
First citationMajoumo-Mbe, F., Lönnecke, P., Novikova, E. V., Belov, G. P. & Hey-Hawkins, E. (2005). Dalton Trans. pp. 3326–3330.  Web of Science CSD CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-SHAPE, X-RED and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSun, Z., Zhu, F., Wu, Q. & Lin, S. (2006). Appl. Organomet. Chem. 20, 175–180.  Web of Science CSD CrossRef CAS Google Scholar
First citationSushev, V. V., Kornev, A. N., Kurskii, Y. A., Kuznetsova, O. V., Fukin, G. K., Budnikova, Y. H. & Abakumov, G. A. (2005). J. Organomet. Chem. 690, 1814–1821.  Web of Science CSD CrossRef CAS Google Scholar
First citationWöhl, A., Müller, W., Peulecke, N., Müller, B. H., Peitz, S., Heller, D. & Rosenthal, U. (2009). J. Mol. Catal. A Chem. 297, 1–8.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds