metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m347-m348

Di­chloridobis(2-meth­oxy­dibenzo[c,e][1,2]oxa­phospho­rine-κP)platinum(II) tri­chloro­methane solvate

aInstitute of Structural Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Pusztaszeri ut. 59-67, 1025 Budapest, Hungary, and bDepartment of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary
*Correspondence e-mail: mcz@chemres.hu

(Received 26 January 2009; accepted 23 February 2009; online 28 February 2009)

The title compound, [PtCl2(C13H11O2P)2]·CHCl3, has a rare PtCl2 bridging of two dibenzooxaphospho­rine ligands through the metal atom. The PtII ion is in a slightly distorted square-planar environment. The trichloro­methane solvent mol­ecule shows rotational disorder (major occupancy is 0.75) and is placed near to the inversion centre at (1/2, 1/2, 0) in channels parallel to the a axis. The solvent mol­ecule is linked to the complex mol­ecule via inter­molecular bifurcated C—H⋯Cl and C—H⋯O hydrogen bonds. The crystal structure is further stabilized by ππ inter­actions involving the benzene rings, with a centroid–centroid distance of 3.658 (8) Å.

Related literature

For the synthesis of the title compound and related compounds, see: Keglevich et al. (2008[Keglevich, Gy., Kerényi, A., Mayer, B., Körtvélyesi, T. & Ludányi, K. (2008). Transition Met. Chem. 33, 505-510.]) and references therein. For a related phospho­nite structure, see: Claver et al. (2000[Claver, C., Fernandez, E., Gillon, A. L., Heslop, K. M., Hyett, D. J., Martorell, A., Orpen, A. G. & Pringle, P. G. (2000). Chem. Commun. pp. 961-962.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • [PtCl2(C13H11O2P)2]·CHCl3

  • Mr = 845.73

  • Triclinic, [P \overline 1]

  • a = 10.186 (3) Å

  • b = 13.020 (5) Å

  • c = 13.510 (5) Å

  • α = 62.402 (11)°

  • β = 83.128 (12)°

  • γ = 67.456 (11)°

  • V = 1462.8 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.40 mm−1

  • T = 93 K

  • 0.40 × 0.30 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2008[Rigaku (2008). CrystalStructure. Rigaku Corporation, The Woodlands, Texas, USA.]) Tmin = 0.222, Tmax = 0.498 (expected range = 0.198–0.445)

  • 36911 measured reflections

  • 5339 independent reflections

  • 4822 reflections with I > 2σ(I)

  • Rint = 0.114

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.151

  • S = 1.06

  • 5339 reflections

  • 381 parameters

  • 66 restraints

  • H-atom parameters constrained

  • Δρmax = 3.66 e Å−3

  • Δρmin = −2.69 e Å−3

Table 1
Selected bond lengths (Å)

Pt1—P1 2.188 (3)
Pt1—P2 2.201 (3)
Pt1—Cl1 2.325 (3)
Pt1—Cl2 2.351 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C27—H27⋯Cl1i 0.97 2.59 3.491 (14) 154
C27—H27⋯O4i 0.97 2.57 3.226 (17) 125
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalStructure. Rigaku Corporation, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Syntheses, spectroscopic data and theoretical chemistry modeling of various dibenzooxaphosphorines including the parent compound of the title solvate have been reported by Keglevich et al. (2008).

The asymmetric unit of the title compound is shown in Fig. 1. The structure of the complex in the crystalline state is in agreement with that reported from theoretical modeling. A more stable cis form is prefered over the trans, with a syn-periplanar disposition of O—P—Pt—P torsion angles (O1—P1—Pt1—P2 ca 13.7 (3)° and O3—P2—Pt1—P1 ca 49.8 (3)°). However, Pt—P and Pt—-Cl distances appear to be 0.05–0.1 Å shorter in the crystal structure, compared to a theoretical model.

The shortest ring center···center distance of 3.658 (8) Å is observed between C14-C19 benzene rings of complex molecules at (x, y, z) and (1 -x, - y, 2 - z). The only other crystal structure in the CSD (Allen, 2002) having P—Pt—P bridging is MARJEU from the Orpen group (Claver et al., 2000). MARJEU entraps two kinds of solvents in differing stoichiometric ratios (1 for THF and 0.76 for dichloromethane) in its crystal. The title compound also shows disorder of the solvent placed near to inversion centres at (1/2, 1/2, 0) in channels parallel to the a axis. Partial fixation of the solvent occurs via bifurcated C—H ··· O and C—H ··· Cl close contacts from the trichloromethane H atom to an alkoxy O4 atom and to Cl1 (Table 2). Electronic influences of these interactions may also be reflected in the unequal bonding geometry around the metal center. Existence of this C—H···X interaction seems to be also corroborated by IR investigations that will be reported elsewhere together with the room-temperature X-ray study of this compound. It appears from these results that the trichloromethane guest disorder is partly of kinetical nature. The C and H atom positions are relatively well kept while chlorine atoms change their positions with respect to the C—H bond.

Related literature top

For the synthesis of the title compound and related compounds, see: Keglevich et al. (2008) and references therein. For a related phosphonite structure, see: Claver et al. (2000). For a description of the Cambridge Structural Database, see: Allen (2002). [Scheme should show solvent molecule]

Experimental top

Synthesis of the parent compound and related ones is reported by Keglevich et al. (2008). Recrystallization of the title dibenzo-oxaphosphorine complex from chloroform yielded X-ray quality crystals, solvent content of which became apparent only after the X-ray study.

Refinement top

H atoms were placed in idealized positions (C-H = 0.95-0.98 Å) and refined using a riding model with Uiso(H) = 1.2-1.5Ueq(C). The Cl atoms of the trichloromethane solvent molecule were disordered over two sites. The site occupancies and displacement parameters of the disordered atoms were alternately refined and during the final cycles of refinement the occupancies were fixed at 0.75 and 0.25. The C—Cl and Cl···Cl distances involving the disordered atoms were restrained to be equal, and also their Uij parameters were restrained to an approximate isotropic behaviour. The free and restrained refinement models for the solvent resulted in small differences in occupancies of chlorine sites. The restraints virtually improved C—Cl and C···C distances but the maximum positive residual peak appeared close to a minor occupancy Cl site in contrast to the free disorder model, where both maximum and minimum residual densities appeared close to the metal atom.

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, with the atomic numbering. Displacement ellipsoids are drawn at the 50% probability level. Suffixes A and B indicate major and minor components of the disordered solvent molecule.
[Figure 2] Fig. 2. A packing view of the title compound showing intermolecular close contacts as dashed lines.
Dichloridobis(2-methoxydibenzo[c,e][1,2]oxaphosphorine-κP)platinum(II) trichloromethane solvate top
Crystal data top
[PtCl2(C13H11O2P)2]·CHCl3Z = 2
Mr = 845.73F(000) = 820
Triclinic, P1Dx = 1.920 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 10.186 (3) ÅCell parameters from 40740 reflections
b = 13.020 (5) Åθ = 3.1–28.7°
c = 13.510 (5) ŵ = 5.40 mm1
α = 62.402 (11)°T = 93 K
β = 83.128 (12)°Prism, colourless
γ = 67.456 (11)°0.40 × 0.30 × 0.15 mm
V = 1462.8 (9) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5339 independent reflections
Radiation source: fine-focus sealed tube4822 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.114
Detector resolution: 10 pixels mm-1θmax = 25.4°, θmin = 3.1°
ω scansh = 1212
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
k = 1515
Tmin = 0.222, Tmax = 0.498l = 1616
36911 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0609P)2 + 24.9249P]
where P = (Fo2 + 2Fc2)/3
5339 reflections(Δ/σ)max = 0.001
381 parametersΔρmax = 3.66 e Å3
66 restraintsΔρmin = 2.69 e Å3
Crystal data top
[PtCl2(C13H11O2P)2]·CHCl3γ = 67.456 (11)°
Mr = 845.73V = 1462.8 (9) Å3
Triclinic, P1Z = 2
a = 10.186 (3) ÅMo Kα radiation
b = 13.020 (5) ŵ = 5.40 mm1
c = 13.510 (5) ÅT = 93 K
α = 62.402 (11)°0.40 × 0.30 × 0.15 mm
β = 83.128 (12)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5339 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2008)
4822 reflections with I > 2σ(I)
Tmin = 0.222, Tmax = 0.498Rint = 0.114
36911 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05966 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0609P)2 + 24.9249P]
where P = (Fo2 + 2Fc2)/3
5339 reflectionsΔρmax = 3.66 e Å3
381 parametersΔρmin = 2.69 e Å3
Special details top

Experimental. Multi-scan empirical absorption correction by T. Higashi in FS-Process

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Pt10.03953 (4)0.00011 (3)0.72977 (3)0.02055 (16)
Cl10.0887 (3)0.1812 (2)0.8105 (2)0.0269 (5)
Cl20.2425 (3)0.0975 (3)0.6061 (2)0.0301 (6)
P10.0015 (3)0.1747 (2)0.6439 (2)0.0217 (5)
P20.1547 (3)0.0974 (2)0.8424 (2)0.0206 (5)
O20.0202 (9)0.2390 (7)0.5122 (6)0.0282 (17)
O10.1586 (8)0.1516 (6)0.6736 (6)0.0244 (15)
O40.1766 (8)0.2306 (6)0.9426 (6)0.0244 (15)
O30.1682 (7)0.0208 (6)0.9011 (6)0.0205 (14)
C80.1302 (14)0.4864 (11)0.6809 (10)0.036 (3)
H80.09180.54470.67550.043*
C200.4336 (11)0.1284 (10)0.8228 (9)0.025 (2)
C50.1658 (13)0.4537 (10)0.6086 (10)0.031 (2)
H50.10620.53280.60390.037*
C60.1065 (12)0.3635 (10)0.6376 (9)0.026 (2)
C40.3042 (13)0.4330 (10)0.5870 (9)0.031 (3)
H40.33920.49730.56830.038*
C30.3947 (13)0.3213 (11)0.5916 (10)0.032 (3)
H30.49130.30850.57510.039*
C20.3439 (12)0.2267 (10)0.6208 (9)0.028 (2)
H20.40500.14770.62610.034*
C10.2005 (11)0.2512 (9)0.6421 (8)0.022 (2)
C120.1048 (12)0.3029 (10)0.6709 (9)0.027 (2)
C110.2464 (13)0.3206 (11)0.6967 (10)0.032 (3)
H110.28550.26230.70340.039*
C100.3290 (13)0.4235 (10)0.7126 (10)0.033 (3)
H100.42610.43790.72820.040*
C90.2690 (14)0.5046 (12)0.7054 (11)0.038 (3)
H90.32490.57470.71760.045*
C180.5477 (11)0.1675 (10)0.9975 (9)0.027 (2)
H180.63850.20560.97610.033*
C190.4259 (11)0.1218 (10)0.9284 (9)0.024 (2)
C170.5387 (13)0.1583 (11)1.0952 (10)0.031 (2)
H170.62280.19051.14090.037*
C160.4095 (13)0.1031 (11)1.1274 (10)0.031 (2)
H160.40440.09661.19510.038*
C150.2862 (12)0.0566 (10)1.0621 (9)0.027 (2)
H150.19610.01691.08340.032*
C140.2973 (11)0.0692 (9)0.9645 (9)0.023 (2)
C250.3171 (10)0.1268 (10)0.7759 (9)0.023 (2)
C240.3216 (11)0.1342 (10)0.6771 (9)0.027 (2)
H240.24020.13150.64680.032*
C230.4470 (13)0.1458 (12)0.6224 (10)0.036 (3)
H230.45300.15350.55520.044*
C220.5620 (12)0.1459 (12)0.6658 (10)0.035 (3)
H220.64660.15140.62700.042*
C70.0446 (12)0.3848 (10)0.6641 (9)0.027 (2)
C130.0389 (14)0.1694 (12)0.4507 (11)0.037 (3)
H13A0.13650.11170.48110.055*
H13B0.03990.22670.37180.055*
H13C0.01910.12180.45700.055*
C210.5574 (12)0.1384 (11)0.7646 (10)0.032 (3)
H210.63910.13990.79360.038*
C260.0861 (14)0.2423 (11)1.0352 (10)0.035 (3)
H26A0.01340.20951.00750.053*
H26B0.09650.19491.07080.053*
H26C0.11400.33051.09010.053*
C270.7983 (12)0.4650 (12)0.0943 (6)0.063 (5)
H270.87020.38830.09780.076*
Cl3A0.8930 (6)0.5478 (5)0.1096 (5)0.0597 (13)0.75
Cl4A0.7076 (9)0.5499 (5)0.0314 (5)0.096 (3)0.75
Cl5A0.7023 (7)0.4234 (6)0.2081 (6)0.092 (2)0.75
Cl3B0.6172 (15)0.478 (2)0.0820 (17)0.115 (8)0.25
Cl4B0.801 (2)0.519 (2)0.1872 (13)0.101 (7)0.25
Cl5B0.8268 (17)0.5635 (14)0.0399 (9)0.067 (4)0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.0207 (2)0.0197 (2)0.0229 (2)0.01008 (17)0.00217 (16)0.00909 (18)
Cl10.0273 (13)0.0263 (13)0.0306 (13)0.0164 (11)0.0015 (11)0.0105 (11)
Cl20.0258 (13)0.0334 (14)0.0328 (14)0.0082 (11)0.0027 (11)0.0174 (12)
P10.0233 (13)0.0177 (12)0.0222 (13)0.0071 (10)0.0002 (10)0.0077 (11)
P20.0224 (13)0.0187 (13)0.0246 (13)0.0110 (10)0.0037 (10)0.0107 (11)
O20.040 (4)0.028 (4)0.022 (4)0.016 (3)0.005 (3)0.013 (3)
O10.024 (4)0.017 (3)0.027 (4)0.008 (3)0.002 (3)0.005 (3)
O40.029 (4)0.019 (4)0.022 (4)0.011 (3)0.002 (3)0.005 (3)
O30.020 (3)0.026 (4)0.022 (4)0.010 (3)0.003 (3)0.014 (3)
C80.055 (8)0.023 (6)0.025 (6)0.011 (5)0.003 (5)0.009 (5)
C200.026 (5)0.020 (5)0.025 (5)0.009 (4)0.002 (4)0.008 (4)
C50.041 (7)0.021 (5)0.030 (6)0.014 (5)0.002 (5)0.009 (5)
C60.032 (6)0.024 (5)0.023 (5)0.013 (5)0.002 (4)0.009 (4)
C40.049 (7)0.011 (5)0.027 (6)0.014 (5)0.001 (5)0.000 (4)
C30.029 (6)0.041 (7)0.031 (6)0.023 (5)0.003 (5)0.011 (5)
C20.028 (6)0.027 (6)0.031 (6)0.013 (5)0.006 (5)0.014 (5)
C10.032 (6)0.019 (5)0.014 (5)0.015 (4)0.003 (4)0.000 (4)
C120.027 (6)0.024 (5)0.026 (5)0.007 (4)0.000 (4)0.009 (5)
C110.033 (6)0.035 (6)0.035 (6)0.016 (5)0.005 (5)0.020 (5)
C100.030 (6)0.024 (6)0.032 (6)0.001 (5)0.005 (5)0.012 (5)
C90.039 (7)0.032 (6)0.038 (7)0.008 (5)0.006 (5)0.015 (6)
C180.021 (5)0.028 (6)0.031 (6)0.009 (4)0.002 (4)0.012 (5)
C190.029 (6)0.022 (5)0.023 (5)0.016 (4)0.001 (4)0.007 (4)
C170.034 (6)0.027 (6)0.032 (6)0.011 (5)0.006 (5)0.012 (5)
C160.040 (7)0.033 (6)0.027 (6)0.020 (5)0.002 (5)0.013 (5)
C150.037 (6)0.026 (5)0.026 (5)0.019 (5)0.002 (5)0.013 (5)
C140.026 (5)0.010 (4)0.023 (5)0.008 (4)0.002 (4)0.002 (4)
C250.013 (5)0.024 (5)0.036 (6)0.008 (4)0.003 (4)0.016 (5)
C240.020 (5)0.029 (6)0.033 (6)0.008 (4)0.003 (4)0.016 (5)
C230.029 (6)0.052 (8)0.031 (6)0.011 (6)0.007 (5)0.026 (6)
C220.024 (6)0.051 (8)0.034 (6)0.014 (5)0.011 (5)0.024 (6)
C70.032 (6)0.021 (5)0.019 (5)0.005 (4)0.009 (4)0.004 (4)
C130.049 (7)0.039 (7)0.039 (7)0.025 (6)0.017 (6)0.027 (6)
C210.023 (5)0.033 (6)0.030 (6)0.010 (5)0.002 (5)0.006 (5)
C260.052 (8)0.032 (6)0.027 (6)0.027 (6)0.006 (5)0.010 (5)
C270.080 (12)0.027 (7)0.061 (10)0.004 (7)0.005 (9)0.016 (7)
Cl3A0.065 (3)0.056 (3)0.068 (3)0.030 (2)0.006 (3)0.030 (3)
Cl4A0.136 (6)0.050 (3)0.089 (4)0.004 (3)0.058 (4)0.038 (3)
Cl5A0.092 (4)0.077 (4)0.126 (6)0.049 (4)0.060 (4)0.059 (4)
Cl3B0.137 (13)0.104 (11)0.122 (12)0.043 (9)0.029 (9)0.072 (9)
Cl4B0.106 (11)0.095 (10)0.080 (10)0.006 (8)0.001 (8)0.047 (8)
Cl5B0.061 (8)0.054 (7)0.068 (8)0.015 (6)0.015 (7)0.023 (6)
Geometric parameters (Å, º) top
Pt1—P12.188 (3)C10—C91.374 (18)
Pt1—P22.201 (3)C10—H100.95
Pt1—Cl12.325 (3)C9—H90.95
Pt1—Cl22.351 (3)C18—C171.369 (16)
P1—O21.575 (8)C18—C191.401 (15)
P1—O11.607 (7)C18—H180.95
P1—C121.775 (11)C19—C141.376 (15)
P2—O41.579 (7)C17—C161.365 (17)
P2—O31.584 (7)C17—H170.95
P2—C251.780 (10)C16—C151.382 (16)
O2—C131.426 (13)C16—H160.95
O1—C11.383 (12)C15—C141.389 (15)
O4—C261.446 (14)C15—H150.95
O3—C141.411 (12)C25—C241.376 (15)
C8—C91.366 (18)C24—C231.390 (16)
C8—C71.382 (16)C24—H240.95
C8—H80.95C23—C221.370 (17)
C20—C211.398 (15)C23—H230.95
C20—C251.400 (15)C22—C211.378 (17)
C20—C191.459 (15)C22—H220.95
C5—C41.352 (17)C13—H13A0.98
C5—C61.399 (15)C13—H13B0.98
C5—H50.95C13—H13C0.98
C6—C11.385 (15)C21—H210.95
C6—C71.486 (16)C26—H26A0.98
C4—C31.368 (17)C26—H26B0.98
C4—H40.95C26—H26C0.98
C3—C21.389 (16)C27—Cl4A1.676 (8)
C3—H30.95C27—Cl5A1.700 (8)
C2—C11.394 (15)C27—Cl4B1.705 (9)
C2—H20.95C27—Cl5B1.738 (9)
C12—C71.386 (16)C27—Cl3A1.785 (8)
C12—C111.398 (16)C27—Cl3B1.807 (10)
C11—C101.380 (16)C27—H270.97
C11—H110.95
P1—Pt1—P293.21 (10)C17—C18—H18119.3
P1—Pt1—Cl1176.23 (9)C19—C18—H18119.3
P2—Pt1—Cl190.20 (9)C14—C19—C18116.7 (10)
P1—Pt1—Cl288.05 (10)C14—C19—C20121.1 (10)
P2—Pt1—Cl2177.30 (9)C18—C19—C20122.2 (10)
Cl1—Pt1—Cl288.47 (10)C16—C17—C18120.4 (11)
O2—P1—O1105.7 (4)C16—C17—H17119.8
O2—P1—C12100.9 (5)C18—C17—H17119.8
O1—P1—C12102.7 (5)C17—C16—C15120.4 (11)
O2—P1—Pt1115.3 (3)C17—C16—H16119.8
O1—P1—Pt1110.6 (3)C15—C16—H16119.8
C12—P1—Pt1120.0 (4)C16—C15—C14118.3 (11)
O4—P2—O3103.9 (4)C16—C15—H15120.8
O4—P2—C25102.2 (5)C14—C15—H15120.8
O3—P2—C25103.7 (4)C19—C14—C15122.8 (10)
O4—P2—Pt1117.8 (3)C19—C14—O3121.1 (9)
O3—P2—Pt1112.8 (3)C15—C14—O3116.1 (9)
C25—P2—Pt1114.8 (4)C24—C25—C20122.5 (9)
C13—O2—P1121.6 (8)C24—C25—P2120.7 (8)
C1—O1—P1120.7 (6)C20—C25—P2116.4 (8)
C26—O4—P2119.8 (7)C25—C24—C23119.0 (10)
C14—O3—P2116.7 (6)C25—C24—H24120.5
C9—C8—C7121.3 (12)C23—C24—H24120.5
C9—C8—H8119.4C22—C23—C24119.6 (11)
C7—C8—H8119.4C22—C23—H23120.2
C21—C20—C25116.9 (10)C24—C23—H23120.2
C21—C20—C19122.0 (10)C23—C22—C21121.4 (11)
C25—C20—C19121.2 (9)C23—C22—H22119.3
C4—C5—C6122.8 (11)C21—C22—H22119.3
C4—C5—H5118.6C8—C7—C12117.8 (11)
C6—C5—H5118.6C8—C7—C6121.9 (11)
C1—C6—C5114.8 (10)C12—C7—C6120.3 (10)
C1—C6—C7122.2 (10)O2—C13—H13A109.5
C5—C6—C7122.9 (10)O2—C13—H13B109.5
C5—C4—C3121.2 (10)H13A—C13—H13B109.5
C5—C4—H4119.4O2—C13—H13C109.5
C3—C4—H4119.4H13A—C13—H13C109.5
C4—C3—C2119.3 (11)H13B—C13—H13C109.5
C4—C3—H3120.3C22—C21—C20120.6 (11)
C2—C3—H3120.3C22—C21—H21119.7
C3—C2—C1118.0 (10)C20—C21—H21119.7
C3—C2—H2121.0O4—C26—H26A109.5
C1—C2—H2121.0O4—C26—H26B109.5
O1—C1—C6121.4 (9)H26A—C26—H26B109.5
O1—C1—C2114.8 (9)O4—C26—H26C109.5
C6—C1—C2123.8 (10)H26A—C26—H26C109.5
C7—C12—C11121.1 (10)H26B—C26—H26C109.5
C7—C12—P1119.5 (8)Cl4A—C27—Cl5A116.8 (7)
C11—C12—P1119.4 (9)Cl4B—C27—Cl5B111.4 (8)
C10—C11—C12119.5 (11)Cl4A—C27—Cl3A109.2 (6)
C10—C11—H11120.2Cl5A—C27—Cl3A108.1 (5)
C12—C11—H11120.2Cl4B—C27—Cl3B106.4 (7)
C9—C10—C11119.1 (11)Cl5B—C27—Cl3B103.9 (7)
C9—C10—H10120.4Cl4A—C27—H27109.4
C11—C10—H10120.4Cl5A—C27—H27106.7
C8—C9—C10121.2 (12)Cl4B—C27—H27122.5
C8—C9—H9119.4Cl5B—C27—H2796.6
C10—C9—H9119.4Cl3A—C27—H27105.9
C17—C18—C19121.4 (10)Cl3B—C27—H27114.2
Cl1—Pt1—P2—O410.8 (3)C25—C20—C19—C1424.2 (15)
Cl2—Pt1—P1—O244.1 (4)O1—P1—Pt1—P213.7 (3)
C12—C7—C6—C113.9 (16)O3—P2—Pt1—P149.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C27—H27···Cl1i0.972.593.491 (14)154
C27—H27···O4i0.972.573.226 (17)125
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[PtCl2(C13H11O2P)2]·CHCl3
Mr845.73
Crystal system, space groupTriclinic, P1
Temperature (K)93
a, b, c (Å)10.186 (3), 13.020 (5), 13.510 (5)
α, β, γ (°)62.402 (11), 83.128 (12), 67.456 (11)
V3)1462.8 (9)
Z2
Radiation typeMo Kα
µ (mm1)5.40
Crystal size (mm)0.40 × 0.30 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2008)
Tmin, Tmax0.222, 0.498
No. of measured, independent and
observed [I > 2σ(I)] reflections
36911, 5339, 4822
Rint0.114
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.151, 1.06
No. of reflections5339
No. of parameters381
No. of restraints66
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0609P)2 + 24.9249P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)3.66, 2.69

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Selected bond lengths (Å) top
Pt1—P12.188 (3)Pt1—Cl12.325 (3)
Pt1—P22.201 (3)Pt1—Cl22.351 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C27—H27···Cl1i0.972.593.491 (14)154
C27—H27···O4i0.972.573.226 (17)125
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

TH thanks the HAS CRC for financial support and also a computer purchase administered through OTKA grant No. T-049712 kindly provided by Professor A. Kálmán. The authors are also grateful for partial funding from OTKA grants T-067679 (AK and GyK) and T-75869 (MC and TH).

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationClaver, C., Fernandez, E., Gillon, A. L., Heslop, K. M., Hyett, D. J., Martorell, A., Orpen, A. G. & Pringle, P. G. (2000). Chem. Commun. pp. 961–962.  Google Scholar
First citationKeglevich, Gy., Kerényi, A., Mayer, B., Körtvélyesi, T. & Ludányi, K. (2008). Transition Met. Chem. 33, 505–510.  Web of Science CrossRef CAS Google Scholar
First citationRigaku (2008). CrystalStructure. Rigaku Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m347-m348
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds