organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Bromo-5,7-dimeth­­oxy-4-phenyl­quinoline

aSchool of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia, and bX-Ray Crystallography Laboratory, UNSW Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
*Correspondence e-mail: n.kumar@unsw.edu.au

(Received 3 February 2009; accepted 18 February 2009; online 28 February 2009)

The title compound, C17H14BrNO2, was synthesized by the treatment of 5,7-dimeth­oxy-4-phenyl­quinolin-2-one with phosphoryl bromide in a Vilsmeier-type reaction. There are two independent mol­ecules (A and B) in the asymmetric unit which differ by 11.2° in the orientation of the 4-phenyl ring with respect to the planar quinoline ring system [dihedral angles = 55.15 (8) and 66.34 (8)° in mol­ecules A and B, respectively]. In the crystal structure, the independent mol­ecules are linked via C—H⋯N and C—H⋯O hydrogen bonds, forming centrosymmetric tetra­meric units which are cross-linked through C—H⋯π and C—Br⋯π inter­actions with Br⋯centroid distances of 3.4289 (8) and 3.5967 (8) Å.

Related literature

For a study of the anti­tumor activity of some 5,7-dimethoxy­quinolinlone analogues, see: Joseph et al. (2002[Joseph, B., Darro, F., Béhard, A., Lesur, B., Collingnon, F., Decaestecker, C., Frydman, A., Guillaumet, G. & Kiss, R. (2002). J. Med. Chem. 45, 2543-2555.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14BrNO2

  • Mr = 344.20

  • Triclinic, [P \overline 1]

  • a = 9.7698 (2) Å

  • b = 9.9799 (3) Å

  • c = 14.8076 (4) Å

  • α = 93.499 (1)°

  • β = 95.154 (1)°

  • γ = 91.838 (1)°

  • V = 1434.22 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.87 mm−1

  • T = 150 K

  • 0.39 × 0.19 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.401, Tmax = 0.626

  • 27207 measured reflections

  • 5008 independent reflections

  • 4648 reflections with I > 2σ(I)

  • Rint = 0.060

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.100

  • S = 0.87

  • 5008 reflections

  • 491 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C16A—H16A⋯N1Bi 0.93 (2) 2.59 (2) 3.497 (3) 167 (2)
C16B—H16B⋯O2Ai 0.92 (2) 2.54 (2) 3.437 (2) 163 (2)
C17B—H272⋯O2Bii 1.04 (3) 2.57 (3) 3.580 (3) 164 (2)
C12A—H12ACg1iii 0.95 (3) 2.87 (3) 3.762 (2) 158 (2)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y, -z+1; (iii) -x, -y+1, -z+1. Cg1 is the centroid of the N1B/C2B–C4B/C9B/C10B ring.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound is a precursor to 2-arylquinolines, which are analogues of flavones such as chrysin. The consumption of flavones has been linked to lower incidences of hormone-dependent cancers, diabetes, obesity and cardiovascular diseases. The title compound was synthesized by the treatment of 5,7-dimethoxy-4-phenylquinolin-2-one with phosphoryl bromide.

The crystals contain two crystallographically independent molecules in the asymmetric unit (Fig. 1) which differ by 11.19 ° in the orientation of the 4-phenyl ring with respect to the planar quinoline moeity. The dihedral angle between the quinoline ring system and phenyl ring is 55.15 (8)° in molecule A and 66.34 (8)° in molecule B.

In the crystal structure, the two independent molecules are linked via C—H···N and C—H···O hydrogen bonds (Table 1) to form centrosymmetric tetrameric units (Fig. 2). The tetramers are cross-linked via C—H···π interactions (Table 1) involving the C12A—H12A group and the N1B/C2B—C4B/C9B/C10B ring. In addition, intermolecular C—Br···π interactions involving each independent molecule are observed between tetramers. The Br1A···Cg2 distance (Cg2 is the centroid of the C11A—C16A ring at -x, 1 - y, 1 - z) and C2A—Br1A···Cg2 angle are 3.5967 (8) Å and 135.59 (6)°, respectively, whereas, the Br1B···Cg3 distance (Cg3 is the centroid of the C11B—C16B ring at 1 - x, 1 - y, 2 - z) and C2B—Br1B···Cg3 angle are 3.4289 (8) Å and 149.71 (6) °, respectively.

Related literature top

For a study of the antitumor activity of some 5,7-dimethoxyquinolinlone analogues, see: Joseph et al. (2002). Cg1 is the centroid of the N1B/C2B–C4B/C9B/C10B ring.

Experimental top

To a solution of 5,7-dimethoxy-4-phenylquinolin-2-one (2.01 g, 7.1 mmol) in 1,2-dichloroethane (20 ml) was added dropwise a solution of phosphoryl bromide (6.32 g, 22.2 mmol) in 1,2-dichloroethane (20 ml) and the mixture was refluxed for 4 h. The crude product was purified by chromatography on silica gel (50% dichloromethane/hexane). Recrystallization from dichloromethane-hexane (2:3 v/v) afforded the title compound as light yellow needles (1.09 g, 44%).

Refinement top

All H atoms were located in a difference Fourier map and their positions and isotropic displacement parameters were refined freely [C—H = 0.87 (3) Å - 1.05 (3) Å].

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of two molecules in the asymmetric unit along with labelling of atoms. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view of the tetrameric unit formed by C—H···N and C—H···O hydrogen bonds (dashed lines).
2-Bromo-5,7-dimethoxy-4-phenylquinoline top
Crystal data top
C17H14BrNO2Z = 4
Mr = 344.20F(000) = 696
Triclinic, P1Dx = 1.594 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.7698 (2) ÅCell parameters from 9202 reflections
b = 9.9799 (3) Åθ = 2.4–28.0°
c = 14.8076 (4) ŵ = 2.87 mm1
α = 93.499 (1)°T = 150 K
β = 95.154 (1)°Needle, light yellow
γ = 91.838 (1)°0.39 × 0.19 × 0.18 mm
V = 1434.22 (7) Å3
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
5008 independent reflections
Radiation source: fine-focus sealed tube4648 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ϕ scans, and ω scans with κ offsetsθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1111
Tmin = 0.401, Tmax = 0.626k = 1111
27207 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 0.87 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
5008 reflections(Δ/σ)max = 0.002
491 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
C17H14BrNO2γ = 91.838 (1)°
Mr = 344.20V = 1434.22 (7) Å3
Triclinic, P1Z = 4
a = 9.7698 (2) ÅMo Kα radiation
b = 9.9799 (3) ŵ = 2.87 mm1
c = 14.8076 (4) ÅT = 150 K
α = 93.499 (1)°0.39 × 0.19 × 0.18 mm
β = 95.154 (1)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
5008 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4648 reflections with I > 2σ(I)
Tmin = 0.401, Tmax = 0.626Rint = 0.060
27207 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 0.87Δρmax = 0.38 e Å3
5008 reflectionsΔρmin = 0.55 e Å3
491 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br1A0.09830 (2)0.72553 (2)0.551387 (13)0.02782 (11)
N1A0.06082 (17)0.81444 (17)0.42221 (11)0.0205 (4)
C2A0.0207 (2)0.7146 (2)0.43692 (13)0.0202 (4)
C3A0.0501 (2)0.5984 (2)0.38082 (14)0.0223 (4)
C4A0.01131 (19)0.5845 (2)0.29994 (13)0.0185 (4)
C5A0.15706 (19)0.70379 (19)0.19273 (13)0.0176 (4)
C6A0.24532 (19)0.8091 (2)0.18021 (13)0.0182 (4)
C7A0.27300 (19)0.91362 (19)0.24867 (13)0.0197 (4)
C8A0.2096 (2)0.9153 (2)0.32701 (13)0.0204 (4)
C9A0.11985 (19)0.80637 (19)0.34132 (13)0.0186 (4)
C10A0.09499 (19)0.69426 (19)0.27681 (13)0.0178 (4)
C11A0.0078 (2)0.4498 (2)0.25100 (13)0.0190 (4)
C12A0.1389 (2)0.3890 (2)0.23443 (13)0.0220 (4)
C13A0.1566 (2)0.2565 (2)0.20000 (15)0.0265 (5)
C14A0.0440 (2)0.1825 (2)0.18294 (14)0.0265 (5)
C15A0.0871 (2)0.2423 (2)0.19786 (13)0.0236 (4)
C16A0.1057 (2)0.3744 (2)0.23107 (13)0.0196 (4)
C17A0.1870 (2)0.6020 (3)0.04572 (15)0.0267 (5)
C18A0.4127 (2)1.1078 (2)0.29986 (15)0.0262 (5)
O1A0.11992 (14)0.60380 (14)0.12739 (9)0.0216 (3)
O2A0.36495 (15)1.01016 (14)0.22783 (10)0.0231 (3)
Br1B0.55112 (2)0.694767 (19)0.898615 (13)0.02541 (11)
N1B0.54825 (17)0.51735 (17)0.74864 (11)0.0187 (4)
C2B0.50047 (19)0.53079 (19)0.82786 (13)0.0183 (4)
C3B0.4198 (2)0.4360 (2)0.86636 (14)0.0191 (4)
C4B0.38014 (19)0.3180 (2)0.81667 (13)0.0169 (4)
C5B0.37631 (19)0.19046 (19)0.66232 (13)0.0183 (4)
C6B0.4281 (2)0.1790 (2)0.57944 (14)0.0205 (4)
C7B0.5251 (2)0.2767 (2)0.55562 (13)0.0200 (4)
C8B0.5642 (2)0.3868 (2)0.61213 (14)0.0193 (4)
C9B0.51012 (19)0.40097 (19)0.69749 (13)0.0175 (4)
C10B0.42110 (19)0.30043 (19)0.72675 (13)0.0173 (4)
C11B0.30626 (19)0.2160 (2)0.86651 (12)0.0161 (4)
C12B0.1834 (2)0.2501 (2)0.90227 (13)0.0185 (4)
C13B0.1267 (2)0.1686 (2)0.96236 (14)0.0223 (4)
C14B0.1912 (2)0.0542 (2)0.98908 (14)0.0228 (4)
C15B0.3122 (2)0.0188 (2)0.95183 (14)0.0218 (4)
C16B0.36828 (19)0.0984 (2)0.89061 (13)0.0192 (4)
C17B0.2224 (2)0.0005 (2)0.62431 (15)0.0236 (4)
C18B0.6704 (2)0.3438 (2)0.44447 (16)0.0266 (5)
O1B0.28035 (15)0.10469 (14)0.68888 (9)0.0238 (3)
O2B0.57054 (16)0.25043 (15)0.47225 (9)0.0276 (3)
H3A0.102 (3)0.527 (3)0.3972 (17)0.030 (7)*
H6A0.290 (2)0.816 (2)0.1237 (16)0.020 (5)*
H8A0.220 (2)0.987 (3)0.3705 (16)0.026 (6)*
H16A0.193 (2)0.414 (2)0.2432 (15)0.021 (6)*
H14A0.053 (2)0.098 (3)0.1641 (16)0.027 (6)*
H13A0.241 (3)0.218 (3)0.1921 (19)0.038 (7)*
H15A0.163 (3)0.187 (3)0.1838 (16)0.033 (6)*
H3B0.394 (2)0.452 (2)0.9274 (17)0.027 (6)*
H8B0.622 (2)0.455 (2)0.5995 (15)0.021 (6)*
H12B0.140 (2)0.327 (2)0.8887 (13)0.010 (5)*
H13B0.051 (3)0.194 (3)0.9858 (18)0.038 (7)*
H16B0.451 (2)0.079 (2)0.8690 (15)0.020 (5)*
H15B0.363 (2)0.057 (3)0.9700 (16)0.026 (6)*
H6B0.406 (2)0.113 (2)0.5367 (17)0.024 (6)*
H12A0.217 (3)0.436 (2)0.2490 (15)0.029 (6)*
H1810.480 (3)1.150 (3)0.2743 (19)0.038 (7)*
H1820.340 (3)1.171 (3)0.3149 (17)0.033 (7)*
H1830.444 (2)1.058 (2)0.3530 (17)0.027 (6)*
H1710.163 (2)0.683 (2)0.0128 (16)0.022 (5)*
H1720.152 (3)0.531 (3)0.012 (2)0.042 (7)*
H1730.283 (3)0.593 (3)0.0583 (17)0.028 (6)*
H2820.748 (3)0.348 (3)0.4829 (18)0.032 (7)*
H2810.634 (2)0.429 (3)0.4422 (15)0.023 (6)*
H2830.688 (3)0.308 (3)0.3863 (19)0.032 (7)*
H2730.156 (3)0.042 (3)0.6514 (19)0.043 (8)*
H2720.298 (3)0.065 (3)0.6064 (16)0.034 (6)*
H2710.177 (2)0.035 (2)0.5686 (17)0.027 (6)*
H14B0.151 (2)0.000 (2)1.0286 (16)0.022 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1A0.03787 (17)0.02967 (17)0.01893 (16)0.00803 (11)0.01470 (11)0.00473 (11)
N1A0.0251 (9)0.0211 (9)0.0169 (8)0.0059 (7)0.0071 (7)0.0031 (7)
C2A0.0236 (10)0.0240 (11)0.0147 (9)0.0077 (8)0.0072 (8)0.0052 (8)
C3A0.0243 (10)0.0216 (11)0.0231 (11)0.0050 (8)0.0082 (8)0.0065 (9)
C4A0.0174 (9)0.0207 (10)0.0183 (10)0.0042 (7)0.0030 (7)0.0039 (8)
C5A0.0183 (9)0.0176 (10)0.0175 (9)0.0043 (7)0.0037 (7)0.0011 (8)
C6A0.0209 (9)0.0200 (10)0.0150 (10)0.0042 (8)0.0056 (8)0.0034 (8)
C7A0.0202 (9)0.0173 (9)0.0223 (10)0.0031 (7)0.0022 (8)0.0047 (8)
C8A0.0244 (10)0.0185 (10)0.0183 (10)0.0025 (8)0.0038 (8)0.0015 (8)
C9A0.0211 (9)0.0199 (10)0.0157 (10)0.0074 (8)0.0035 (7)0.0037 (8)
C10A0.0184 (9)0.0188 (10)0.0171 (10)0.0055 (7)0.0021 (7)0.0034 (8)
C11A0.0224 (10)0.0219 (11)0.0137 (10)0.0018 (8)0.0039 (8)0.0047 (8)
C12A0.0190 (10)0.0286 (11)0.0192 (10)0.0026 (9)0.0026 (8)0.0062 (9)
C13A0.0233 (11)0.0311 (12)0.0242 (11)0.0072 (9)0.0001 (9)0.0030 (9)
C14A0.0390 (12)0.0202 (12)0.0192 (11)0.0047 (9)0.0023 (9)0.0030 (9)
C15A0.0283 (11)0.0273 (11)0.0156 (10)0.0055 (9)0.0042 (8)0.0002 (8)
C16A0.0187 (10)0.0246 (11)0.0159 (10)0.0008 (8)0.0035 (8)0.0028 (8)
C17A0.0328 (13)0.0314 (13)0.0165 (10)0.0019 (10)0.0095 (9)0.0040 (9)
C18A0.0297 (11)0.0227 (11)0.0252 (12)0.0050 (9)0.0003 (9)0.0021 (9)
O1A0.0274 (7)0.0233 (7)0.0146 (7)0.0021 (6)0.0081 (5)0.0027 (6)
O2A0.0268 (7)0.0205 (7)0.0226 (8)0.0052 (6)0.0074 (6)0.0002 (6)
Br1B0.03604 (17)0.01914 (16)0.01965 (16)0.00615 (10)0.00020 (10)0.00227 (10)
N1B0.0190 (8)0.0197 (9)0.0170 (8)0.0013 (6)0.0007 (6)0.0009 (7)
C2B0.0220 (9)0.0152 (9)0.0165 (10)0.0003 (7)0.0026 (8)0.0009 (7)
C3B0.0219 (10)0.0200 (10)0.0157 (10)0.0011 (8)0.0026 (8)0.0021 (8)
C4B0.0147 (9)0.0182 (10)0.0176 (10)0.0021 (7)0.0004 (7)0.0012 (8)
C5B0.0190 (9)0.0167 (10)0.0191 (10)0.0010 (7)0.0000 (7)0.0032 (8)
C6B0.0237 (10)0.0191 (10)0.0183 (10)0.0003 (8)0.0031 (8)0.0027 (8)
C7B0.0236 (10)0.0236 (11)0.0140 (10)0.0046 (8)0.0053 (8)0.0031 (8)
C8B0.0202 (10)0.0204 (10)0.0185 (10)0.0003 (8)0.0048 (8)0.0059 (8)
C9B0.0169 (9)0.0179 (10)0.0176 (9)0.0012 (7)0.0011 (7)0.0028 (8)
C10B0.0170 (9)0.0196 (10)0.0157 (9)0.0028 (7)0.0011 (7)0.0033 (8)
C11B0.0183 (9)0.0190 (10)0.0105 (9)0.0033 (7)0.0009 (7)0.0017 (7)
C12B0.0188 (9)0.0184 (11)0.0179 (10)0.0019 (8)0.0013 (8)0.0023 (8)
C13B0.0180 (10)0.0284 (11)0.0208 (10)0.0014 (8)0.0071 (8)0.0035 (8)
C14B0.0274 (10)0.0226 (11)0.0182 (10)0.0087 (8)0.0057 (8)0.0003 (8)
C15B0.0255 (10)0.0180 (10)0.0216 (10)0.0010 (8)0.0012 (8)0.0007 (8)
C16B0.0180 (10)0.0205 (10)0.0189 (10)0.0003 (8)0.0046 (8)0.0032 (8)
C17B0.0263 (11)0.0195 (11)0.0238 (11)0.0040 (9)0.0018 (9)0.0044 (9)
C18B0.0319 (12)0.0260 (12)0.0246 (12)0.0037 (10)0.0134 (10)0.0073 (9)
O1B0.0283 (7)0.0234 (7)0.0192 (7)0.0094 (6)0.0055 (6)0.0020 (6)
O2B0.0366 (8)0.0284 (8)0.0195 (8)0.0021 (6)0.0152 (6)0.0023 (6)
Geometric parameters (Å, º) top
Br1A—C2A1.9168 (19)Br1B—C2B1.9147 (19)
N1A—C2A1.296 (3)N1B—C2B1.302 (3)
N1A—C9A1.374 (3)N1B—C9B1.370 (3)
C2A—C3A1.392 (3)C2B—C3B1.393 (3)
C3A—C4A1.388 (3)C3B—C4B1.376 (3)
C3A—H3A0.92 (3)C3B—H3B0.97 (3)
C4A—C10A1.422 (3)C4B—C10B1.427 (3)
C4A—C11A1.487 (3)C4B—C11B1.497 (3)
C5A—O1A1.364 (2)C5B—O1B1.350 (2)
C5A—C6A1.370 (3)C5B—C6B1.369 (3)
C5A—C10A1.440 (3)C5B—C10B1.440 (3)
C6A—C7A1.412 (3)C6B—C7B1.419 (3)
C6A—H6A0.98 (2)C6B—H6B0.89 (3)
C7A—C8A1.363 (3)C7B—O2B1.362 (2)
C7A—O2A1.364 (2)C7B—C8B1.363 (3)
C8A—C9A1.413 (3)C8B—C9B1.414 (3)
C8A—H8A0.93 (3)C8B—H8B0.91 (2)
C9A—C10A1.426 (3)C9B—C10B1.420 (3)
C11A—C12A1.395 (3)C11B—C16B1.389 (3)
C11A—C16A1.402 (3)C11B—C12B1.399 (3)
C12A—C13A1.387 (3)C12B—C13B1.382 (3)
C12A—H12A0.95 (3)C12B—H12B0.92 (2)
C13A—C14A1.379 (3)C13B—C14B1.383 (3)
C13A—H13A0.89 (3)C13B—H13B0.89 (3)
C14A—C15A1.389 (3)C14B—C15B1.395 (3)
C14A—H14A0.87 (3)C14B—H14B0.92 (2)
C15A—C16A1.379 (3)C15B—C16B1.380 (3)
C15A—H15A0.97 (3)C15B—H15B0.96 (3)
C16A—H16A0.93 (2)C16B—H16B0.92 (2)
C17A—O1A1.426 (2)C17B—O1B1.435 (2)
C17A—H1710.99 (2)C17B—H2730.90 (3)
C17A—H1720.88 (3)C17B—H2721.05 (3)
C17A—H1730.95 (3)C17B—H2710.99 (2)
C18A—O2A1.435 (3)C18B—O2B1.432 (3)
C18A—H1810.90 (3)C18B—H2820.91 (3)
C18A—H1821.00 (3)C18B—H2810.94 (3)
C18A—H1830.99 (3)C18B—H2830.95 (3)
C2A—N1A—C9A116.40 (17)C2B—N1B—C9B116.28 (17)
N1A—C2A—C3A126.61 (18)N1B—C2B—C3B126.12 (18)
N1A—C2A—Br1A115.79 (15)N1B—C2B—Br1B116.34 (14)
C3A—C2A—Br1A117.47 (15)C3B—C2B—Br1B117.52 (14)
C4A—C3A—C2A118.63 (19)C4B—C3B—C2B118.86 (18)
C4A—C3A—H3A118.2 (16)C4B—C3B—H3B120.4 (15)
C2A—C3A—H3A123.0 (16)C2B—C3B—H3B120.7 (15)
C3A—C4A—C10A117.62 (18)C3B—C4B—C10B117.97 (18)
C3A—C4A—C11A115.29 (18)C3B—C4B—C11B115.31 (17)
C10A—C4A—C11A126.82 (17)C10B—C4B—C11B126.54 (17)
O1A—C5A—C6A123.19 (17)O1B—C5B—C6B123.94 (18)
O1A—C5A—C10A115.72 (16)O1B—C5B—C10B115.64 (16)
C6A—C5A—C10A121.07 (18)C6B—C5B—C10B120.40 (18)
C5A—C6A—C7A120.33 (17)C5B—C6B—C7B120.30 (19)
C5A—C6A—H6A122.2 (13)C5B—C6B—H6B125.0 (15)
C7A—C6A—H6A117.5 (13)C7B—C6B—H6B114.7 (15)
C8A—C7A—O2A124.71 (18)O2B—C7B—C8B124.74 (19)
C8A—C7A—C6A121.31 (18)O2B—C7B—C6B113.86 (18)
O2A—C7A—C6A113.98 (16)C8B—C7B—C6B121.38 (19)
C7A—C8A—C9A118.89 (18)C7B—C8B—C9B118.94 (19)
C7A—C8A—H8A122.6 (14)C7B—C8B—H8B125.6 (15)
C9A—C8A—H8A118.5 (14)C9B—C8B—H8B115.4 (15)
N1A—C9A—C8A115.57 (17)N1B—C9B—C8B115.72 (17)
N1A—C9A—C10A122.43 (17)N1B—C9B—C10B122.91 (17)
C8A—C9A—C10A121.98 (17)C8B—C9B—C10B121.37 (17)
C4A—C10A—C9A118.10 (17)C9B—C10B—C4B117.57 (17)
C4A—C10A—C5A125.79 (18)C9B—C10B—C5B117.28 (17)
C9A—C10A—C5A116.11 (17)C4B—C10B—C5B125.13 (18)
C12A—C11A—C16A118.49 (19)C16B—C11B—C12B119.27 (18)
C12A—C11A—C4A120.08 (18)C16B—C11B—C4B120.99 (17)
C16A—C11A—C4A120.93 (17)C12B—C11B—C4B118.87 (17)
C13A—C12A—C11A120.8 (2)C13B—C12B—C11B119.92 (19)
C13A—C12A—H12A118.8 (14)C13B—C12B—H12B118.0 (13)
C11A—C12A—H12A120.3 (14)C11B—C12B—H12B122.0 (13)
C14A—C13A—C12A120.2 (2)C12B—C13B—C14B120.80 (19)
C14A—C13A—H13A120.2 (18)C12B—C13B—H13B118.1 (18)
C12A—C13A—H13A119.6 (18)C14B—C13B—H13B121.0 (18)
C13A—C14A—C15A119.7 (2)C13B—C14B—C15B119.15 (19)
C13A—C14A—H14A121.3 (15)C13B—C14B—H14B119.4 (14)
C15A—C14A—H14A119.1 (15)C15B—C14B—H14B121.4 (14)
C16A—C15A—C14A120.6 (2)C16B—C15B—C14B120.41 (19)
C16A—C15A—H15A122.8 (15)C16B—C15B—H15B117.0 (14)
C14A—C15A—H15A116.6 (15)C14B—C15B—H15B122.5 (14)
C15A—C16A—C11A120.26 (19)C15B—C16B—C11B120.38 (18)
C15A—C16A—H16A121.2 (14)C15B—C16B—H16B120.7 (14)
C11A—C16A—H16A118.4 (14)C11B—C16B—H16B118.7 (14)
O1A—C17A—H171109.2 (13)O1B—C17B—H273106.0 (19)
O1A—C17A—H172106.1 (18)O1B—C17B—H272110.5 (13)
H171—C17A—H172108 (2)H273—C17B—H272111 (2)
O1A—C17A—H173110.7 (15)O1B—C17B—H271113.2 (14)
H171—C17A—H173114 (2)H273—C17B—H271107 (2)
H172—C17A—H173109 (2)H272—C17B—H271108.9 (19)
O2A—C18A—H181100.4 (18)O2B—C18B—H282111.3 (16)
O2A—C18A—H182112.2 (15)O2B—C18B—H281110.0 (14)
H181—C18A—H182111 (2)H282—C18B—H281109 (2)
O2A—C18A—H183107.3 (14)O2B—C18B—H283103.4 (16)
H181—C18A—H183114 (2)H282—C18B—H283110 (2)
H182—C18A—H183111 (2)H281—C18B—H283112 (2)
C5A—O1A—C17A118.03 (16)C5B—O1B—C17B118.11 (16)
C7A—O2A—C18A116.35 (16)C7B—O2B—C18B116.83 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16A—H16A···N1Bi0.93 (2)2.59 (2)3.497 (3)167 (2)
C16B—H16B···O2Ai0.92 (2)2.54 (2)3.437 (2)163 (2)
C17B—H272···O2Bii1.04 (3)2.57 (3)3.580 (3)164 (2)
C12A—H12A···Cg1iii0.95 (3)2.87 (3)3.762 (2)158 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC17H14BrNO2
Mr344.20
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)9.7698 (2), 9.9799 (3), 14.8076 (4)
α, β, γ (°)93.499 (1), 95.154 (1), 91.838 (1)
V3)1434.22 (7)
Z4
Radiation typeMo Kα
µ (mm1)2.87
Crystal size (mm)0.39 × 0.19 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.401, 0.626
No. of measured, independent and
observed [I > 2σ(I)] reflections
27207, 5008, 4648
Rint0.060
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.100, 0.87
No. of reflections5008
No. of parameters491
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.55

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C16A—H16A···N1Bi0.93 (2)2.59 (2)3.497 (3)167 (2)
C16B—H16B···O2Ai0.92 (2)2.54 (2)3.437 (2)163 (2)
C17B—H272···O2Bii1.04 (3)2.57 (3)3.580 (3)164 (2)
C12A—H12A···Cg1iii0.95 (3)2.87 (3)3.762 (2)158 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x, y+1, z+1.
 

References

First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJoseph, B., Darro, F., Béhard, A., Lesur, B., Collingnon, F., Decaestecker, C., Frydman, A., Guillaumet, G. & Kiss, R. (2002). J. Med. Chem. 45, 2543–2555.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds