metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[4-chloro-2-(imino­methyl)phenolato]nickel(II)

aCollege of Chemical Engineering and Materials Science, Liaodong University, Dandong 118003, People's Republic of China
*Correspondence e-mail: hongzhe57@126.com

(Received 4 February 2009; accepted 5 February 2009; online 13 February 2009)

In the title centrosymmetric mononuclear nickel(II) complex, [Ni(C7H5ClNO)2], the NiII ion, lying on an inversion center, is four-coordinated by two O and two imine N atoms from two 4-chloro-2-imino­methyl­phenolate ligands, forming a distorted square-planar geometry. In the crystal structure, mol­ecules are linked into a two-dimensional network parallel to the bc plane by C—H⋯O hydrogen bonds.

Related literature

For related structures, see: Hong (2007[Hong, Z. (2007). Acta Cryst. E63, m2026.]); Kamenar et al. (1990[Kamenar, B., Kaitner, B., Ferguson, G. & Waters, T. N. (1990). Acta Cryst. C46, 1920-1923.]); Li et al. (2005[Li, J.-M., Jiang, Y.-M., Wang, Y.-F. & Liang, D.-W. (2005). Acta Cryst. E61, m2160-m2162.], 2007[Li, J.-M., Jiang, Y.-M., Li, C.-Z. & Zhang, S.-H. (2007). Acta Cryst. E63, m447-m449.]); Zhou et al. (2004[Zhou, J., Chen, Z.-F., Wang, X.-W., Tan, Y.-S., Liang, H. & Zhang, Y. (2004). Acta Cryst. E60, m568-m570.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C7H5ClNO)2]

  • Mr = 367.85

  • Monoclinic, P 21 /c

  • a = 15.775 (6) Å

  • b = 5.685 (2) Å

  • c = 7.894 (3) Å

  • β = 93.864 (18)°

  • V = 706.3 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.76 mm−1

  • T = 298 (2) K

  • 0.18 × 0.17 × 0.17 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.743, Tmax = 0.755

  • 4102 measured reflections

  • 1532 independent reflections

  • 1296 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.084

  • S = 1.04

  • 1532 reflections

  • 100 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O1i 0.93 2.54 3.318 (3) 142
Symmetry code: (i) [x, -y+{1\over 2}, z+{1\over 2}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, the author has reported the crystal structure of a Schiff base nickel(II) complex (Hong, 2007). As an extension of the work on the structural investigation of nickel(II) complexes, the title complex is reported here.

The title compound is a centrosymmetric mononuclear nickel(II) complex (Fig. 1), which is similar to those reported previously (Kamenar et al., 1990). The Ni atom, lying on the inversion center, is four-coordinated by two O and two imine N atoms from two 4-chloro-2-iminomethylphenol ligands, forming a square-planar geometry. The bond lengths (Table 1) related to the metal centre are comparable to the values in similar nickel(II) complexes (Zhou et al., 2004; Li et al., 2005; Li et al., 2007).

In the crystal structure, the molecules are linked into a two-dimensional network parallel to the bc plane by C—H···O hydrogen bonds (Table 1).

Related literature top

For related structures, see: Hong (2007); Kamenar et al. (1990); Li et al. (2005, 2007); Zhou et al. (2004).

Experimental top

5-Chlorosalicylaldehyde (1.0 mmol, 156.6 mg) and Ni(CH3COO)2.4H2O (0.5 mmol, 125.0 mg) were dissolved in methanol solution containing a small quantity of ammonia (30 ml). The mixture was stirred at room temperature for 30 min to give a clear brown solution. After keeping the solution in air for a few days, brown block-shaped crystals were formed.

Refinement top

Atom H1 was located from a difference Fourier map and refined isotropically, with the N1–H1 distance restrained to 0.90 (1) Å. Other H atoms were placed in idealized positions and constrained to ride on their parent atoms with C–H distances of 0.93 Å, and with Uiso(H) set to 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Unlabelled atoms are related to labelled atoms by the symmetry operation (1 - x, 1 - y, - z).
Bis[4-chloro-2-(iminomethyl)phenolato]nickel(II) top
Crystal data top
[Ni(C7H5ClNO)2]F(000) = 372
Mr = 367.85Dx = 1.730 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1954 reflections
a = 15.775 (6) Åθ = 2.8–27.6°
b = 5.685 (2) ŵ = 1.76 mm1
c = 7.894 (3) ÅT = 298 K
β = 93.864 (18)°Block, brown
V = 706.3 (5) Å30.18 × 0.17 × 0.17 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
1532 independent reflections
Radiation source: fine-focus sealed tube1296 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 27.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2018
Tmin = 0.743, Tmax = 0.755k = 77
4102 measured reflectionsl = 109
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0495P)2 + 0.0905P]
where P = (Fo2 + 2Fc2)/3
1532 reflections(Δ/σ)max = 0.001
100 parametersΔρmax = 0.45 e Å3
1 restraintΔρmin = 0.30 e Å3
Crystal data top
[Ni(C7H5ClNO)2]V = 706.3 (5) Å3
Mr = 367.85Z = 2
Monoclinic, P21/cMo Kα radiation
a = 15.775 (6) ŵ = 1.76 mm1
b = 5.685 (2) ÅT = 298 K
c = 7.894 (3) Å0.18 × 0.17 × 0.17 mm
β = 93.864 (18)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1532 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1296 reflections with I > 2σ(I)
Tmin = 0.743, Tmax = 0.755Rint = 0.029
4102 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0301 restraint
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.45 e Å3
1532 reflectionsΔρmin = 0.30 e Å3
100 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50000.00000.03469 (15)
Cl10.06466 (4)0.34882 (15)0.19374 (11)0.0778 (3)
N10.45858 (11)0.2416 (3)0.1094 (2)0.0421 (4)
O10.39683 (9)0.6527 (2)0.01584 (18)0.0411 (3)
C10.31247 (13)0.3565 (3)0.1140 (3)0.0374 (4)
C20.32363 (13)0.5745 (4)0.0315 (3)0.0369 (4)
C30.25045 (14)0.7137 (4)0.0045 (3)0.0445 (5)
H30.25540.85540.06190.053*
C40.17234 (15)0.6450 (4)0.0433 (3)0.0501 (6)
H40.12520.74030.01890.060*
C50.16322 (14)0.4331 (5)0.1283 (3)0.0493 (6)
C60.23191 (14)0.2906 (4)0.1628 (3)0.0439 (5)
H60.22520.14870.21900.053*
C70.38261 (14)0.1990 (4)0.1480 (3)0.0412 (5)
H70.37220.05710.20150.049*
H10.4993 (14)0.133 (4)0.131 (4)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0430 (2)0.0274 (2)0.0335 (2)0.00107 (14)0.00128 (15)0.00308 (13)
Cl10.0488 (4)0.0872 (6)0.0994 (6)0.0016 (3)0.0197 (3)0.0169 (4)
N10.0470 (10)0.0325 (9)0.0465 (10)0.0054 (7)0.0023 (8)0.0076 (7)
O10.0437 (8)0.0314 (7)0.0483 (9)0.0025 (6)0.0049 (6)0.0063 (6)
C10.0467 (11)0.0305 (10)0.0348 (10)0.0012 (8)0.0020 (8)0.0010 (8)
C20.0447 (11)0.0312 (9)0.0345 (10)0.0018 (8)0.0017 (8)0.0021 (8)
C30.0510 (12)0.0351 (11)0.0469 (13)0.0042 (9)0.0004 (10)0.0025 (9)
C40.0470 (12)0.0463 (14)0.0565 (14)0.0086 (10)0.0006 (10)0.0021 (10)
C50.0454 (13)0.0497 (13)0.0530 (14)0.0026 (10)0.0052 (10)0.0009 (11)
C60.0517 (12)0.0379 (11)0.0424 (12)0.0045 (10)0.0060 (9)0.0008 (9)
C70.0513 (12)0.0316 (10)0.0406 (11)0.0007 (9)0.0037 (9)0.0066 (8)
Geometric parameters (Å, º) top
Ni1—O1i1.8414 (15)C1—C71.434 (3)
Ni1—O11.8414 (15)C2—C31.412 (3)
Ni1—N1i1.8455 (18)C3—C41.370 (3)
Ni1—N11.8455 (18)C3—H30.93
Cl1—C51.738 (2)C4—C51.391 (4)
N1—C71.280 (3)C4—H40.93
N1—H10.897 (10)C5—C61.365 (3)
O1—C21.315 (2)C6—H60.93
C1—C61.403 (3)C7—H70.93
C1—C21.417 (3)
O1i—Ni1—O1180.00 (4)C4—C3—C2121.5 (2)
O1i—Ni1—N1i93.89 (7)C4—C3—H3119.2
O1—Ni1—N1i86.11 (7)C2—C3—H3119.2
O1i—Ni1—N186.11 (7)C3—C4—C5120.3 (2)
O1—Ni1—N193.89 (7)C3—C4—H4119.9
N1i—Ni1—N1180.00 (10)C5—C4—H4119.9
C7—N1—Ni1128.97 (15)C6—C5—C4120.2 (2)
C7—N1—H1120 (2)C6—C5—Cl1119.4 (2)
Ni1—N1—H1111 (2)C4—C5—Cl1120.37 (19)
C2—O1—Ni1127.63 (13)C5—C6—C1120.6 (2)
C6—C1—C2120.15 (18)C5—C6—H6119.7
C6—C1—C7118.94 (19)C1—C6—H6119.7
C2—C1—C7120.91 (19)N1—C7—C1124.10 (19)
O1—C2—C3118.37 (19)N1—C7—H7118.0
O1—C2—C1124.41 (18)C1—C7—H7118.0
C3—C2—C1117.21 (19)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1ii0.932.543.318 (3)142
Symmetry code: (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C7H5ClNO)2]
Mr367.85
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)15.775 (6), 5.685 (2), 7.894 (3)
β (°) 93.864 (18)
V3)706.3 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.76
Crystal size (mm)0.18 × 0.17 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.743, 0.755
No. of measured, independent and
observed [I > 2σ(I)] reflections
4102, 1532, 1296
Rint0.029
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.084, 1.04
No. of reflections1532
No. of parameters100
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.45, 0.30

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SAINT, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O1i0.932.543.318 (3)142
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The author acknowledges Liaodong University for funding this study.

References

First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHong, Z. (2007). Acta Cryst. E63, m2026.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKamenar, B., Kaitner, B., Ferguson, G. & Waters, T. N. (1990). Acta Cryst. C46, 1920–1923.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, J.-M., Jiang, Y.-M., Li, C.-Z. & Zhang, S.-H. (2007). Acta Cryst. E63, m447–m449.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J.-M., Jiang, Y.-M., Wang, Y.-F. & Liang, D.-W. (2005). Acta Cryst. E61, m2160–m2162.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, J., Chen, Z.-F., Wang, X.-W., Tan, Y.-S., Liang, H. & Zhang, Y. (2004). Acta Cryst. E60, m568–m570.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds