organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[1-(4-Iso­butyl­phen­yl)eth­yl]-1H-1,2,4-triazole-5(4H)-thione

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 17 January 2009; accepted 21 February 2009; online 28 February 2009)

In the title compound, C14H19N3S, the dihedral angle between the mean planes of the five- and six-membered rings is 74.69 (4)°. Pairs of inter­molecular N—H⋯S inter­actions link neighbouring mol­ecules into dimers with R22(8) ring motifs. These dimers are then linked together by the same type of inter­actions into an infinite one-dimensional chain along the b axis.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the biomedical applications compounds containing 1,2,4-triazole rings, see, for example: Shujuan et al. (2004[Shujuan, S., Hongxiang, L., Gao, Y., Fan, P., Ma, B., Ge, W. & Wang, X. (2004). J. Pharm. Biomed. Anal. 34, 1117-1124.]); Clemons et al. (2004[Clemons, M., Coleman, R. E. & Verma, S. (2004). Cancer Treat. Rev. 30, 325-332.]); Johnston et al. (2002[Johnston, G. A. R. (2002). Curr. Top. Med. Chem. 2, 903-913.]); Wei et al. (2007[Wei, T.-B., Tang, J., Liu, H. & Zhang, Y.-M. (2007). Phosphorus Sulfur Silicon, 182, 1581-1587.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C14H19N3S

  • Mr = 261.38

  • Monoclinic, P 21 /c

  • a = 12.0905 (2) Å

  • b = 8.4408 (1) Å

  • c = 14.3189 (2) Å

  • β = 98.365 (1)°

  • V = 1445.75 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.51 × 0.36 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.900, Tmax = 0.959

  • 27376 measured reflections

  • 6797 independent reflections

  • 5688 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.108

  • S = 1.03

  • 6797 reflections

  • 174 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯S1i 0.843 (14) 2.476 (14) 3.3150 (7) 173.9 (12)
N1—H1N1⋯S1ii 0.856 (15) 2.400 (15) 3.2549 (6) 176.4 (13)
Symmetry codes: (i) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The 1,2,4-triazole nucleus has been incorporated into a wide variety of therapeutically interesting compounds. Several compounds containing 1,2,4-triazole rings are well known as drugs. For example, fluconazole is used as an antimicrobial drug (Shujuan et al., 2004), while vorozole, letrozole and anastrozole are non-steroidal drugs used for the threatment of cancer (Clemons et al., 2004) and loreclezole is used as an anticonvulsant (Johnston et al., 2002). Similarly substituted derivatives of triazole possess comprehensive bioactivities such as antimicrobial, anti-inflammatory, analgesic, antihypertensive, anticonvulsant and antiviral activities (Wei et al., 2007). Due to the progress that occurs in dealing with the chemistry of 1,2,4-triazoles as well as their biological activity, we synthesized and reported the crystal structure of the title compound.

The title compound, Fig. 1, comprises a single molcule in the asymmetric unit. The dihedral angle between the mean planes of the five- and six-membered rings is 74.69 (4)°. Pairs of intermolecular N—H···S interactions link neighbouring molecules into dimers with R22(8) ring motifs (Bernstein et al., 1995). These dimers are linked together into an infinite 1-D chains along the b axis.

Related literature top

For hydrogen-bond motifs, see: Bernstein et al. (1995). For the biomedical applications compounds containing 1,2,4-triazole rings, see, for example: Shujuan et al. (2004); Clemons et al. (2004); Johnston et al. (2002); Wei et al. (2007). For related literature, see: Cosier & Glazer (1986).

Experimental top

A mixture of 2-[2-(4-isobutylphenyl)propanoyl]hydrazinecarbothioamide (0.01 mole) and 10% KOH (10 ml) was refluxed for 3 h. After the mixture was cooled to room temperature, it was then neutralized by the gradual addition of glacial acetic acid. The solid product obtained was collected by filtration, washed with ethanol and dried. It was then recrystallized using ethanol. Crystals suitable for X-ray analysis were obtained from ethanol solution by slow evaporation (Yield 71%; m.p. 473–474 K).

Refinement top

Hydrogen atoms bound to N1 and N2 were located from the difference Fourier map and refined freely; see Table. 1. The rest of the H atoms were positioned geometrically and refined with a riding model approximation with C—H = 0.95–1.00 Å and Uiso(H) = 1.2 & 1.5 Ueq(C). A rotating group model were used for the methyl groups. The highest peak (0.71 e. Å-3) is located 0.71 Å from C4 and the deepest hole (-0.29 e. Å-3) is located 1.07 Å from N2.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom labels and 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A crystal packing detail of (I), viewed down the (001) direction, showing 1-D infinite chains along (0 1 0) direction connected through intermolecular N—H···S contacts with R22(8) motifs, indicated in dashed lines.
3-[1-(4-Isobutylphenyl)ethyl]-1H-1,2,4-triazole-5(4H)-thione top
Crystal data top
C14H19N3SF(000) = 560
Mr = 261.38Dx = 1.201 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9932 reflections
a = 12.0905 (2) Åθ = 2.8–38.1°
b = 8.4408 (1) ŵ = 0.21 mm1
c = 14.3189 (2) ÅT = 100 K
β = 98.365 (1)°Block, colourless
V = 1445.75 (4) Å30.51 × 0.36 × 0.20 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6797 independent reflections
Radiation source: fine-focus sealed tube5688 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 36.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1919
Tmin = 0.900, Tmax = 0.959k = 1313
27376 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.059P)2 + 0.2413P]
where P = (Fo2 + 2Fc2)/3
6797 reflections(Δ/σ)max = 0.001
174 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C14H19N3SV = 1445.75 (4) Å3
Mr = 261.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.0905 (2) ŵ = 0.21 mm1
b = 8.4408 (1) ÅT = 100 K
c = 14.3189 (2) Å0.51 × 0.36 × 0.20 mm
β = 98.365 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6797 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5688 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.959Rint = 0.027
27376 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.68 e Å3
6797 reflectionsΔρmin = 0.29 e Å3
174 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.028285 (17)0.45561 (2)0.304961 (13)0.02021 (6)
N10.93584 (6)0.32637 (7)0.13580 (4)0.01752 (11)
N20.93093 (6)0.57817 (8)0.13587 (5)0.01827 (11)
N30.88205 (6)0.53370 (7)0.04670 (5)0.01893 (12)
C10.96400 (6)0.45407 (8)0.19170 (5)0.01660 (12)
C20.88639 (6)0.37897 (8)0.04886 (5)0.01656 (12)
C30.84388 (6)0.26915 (9)0.03029 (5)0.01834 (13)
H3A0.91010.21900.05290.022*
C40.77413 (6)0.13752 (9)0.00436 (5)0.01678 (12)
C50.69207 (7)0.17148 (9)0.06075 (5)0.02042 (13)
H5A0.68180.27750.08000.025*
C60.62523 (7)0.05153 (9)0.08897 (6)0.02088 (14)
H6A0.57010.07690.12760.025*
C70.63774 (6)0.10552 (9)0.06156 (5)0.01780 (12)
C80.72006 (7)0.13874 (9)0.00540 (5)0.01903 (13)
H8A0.73020.24470.01410.023*
C90.78770 (7)0.01891 (9)0.02255 (5)0.01853 (13)
H9A0.84360.04440.06030.022*
C100.56594 (7)0.23645 (10)0.09233 (6)0.02152 (14)
H10A0.52760.29100.03550.026*
H10B0.50770.18870.12550.026*
C110.63088 (7)0.35955 (10)0.15737 (6)0.02271 (14)
H11A0.68860.40800.12280.027*
C120.55200 (9)0.49136 (12)0.18006 (8)0.0324 (2)
H12A0.51650.54050.12120.049*
H12B0.49440.44650.21380.049*
H12C0.59460.57150.21970.049*
C130.69077 (9)0.28392 (15)0.24717 (6)0.0358 (2)
H13A0.73960.19880.23070.054*
H13B0.73580.36410.28480.054*
H13C0.63550.24010.28380.054*
C140.77858 (8)0.35945 (11)0.11351 (6)0.02686 (16)
H14A0.82600.44290.13410.040*
H14B0.71180.40720.09380.040*
H14C0.75620.28600.16580.040*
H1N20.9359 (11)0.6745 (17)0.1514 (9)0.032 (3)*
H1N10.9456 (11)0.2302 (18)0.1541 (10)0.037 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.02875 (10)0.00993 (8)0.02066 (9)0.00165 (6)0.00069 (7)0.00020 (5)
N10.0229 (3)0.0097 (2)0.0194 (2)0.0000 (2)0.0011 (2)0.00087 (18)
N20.0215 (3)0.0097 (2)0.0230 (3)0.0005 (2)0.0011 (2)0.00087 (19)
N30.0215 (3)0.0128 (2)0.0220 (3)0.0011 (2)0.0017 (2)0.0013 (2)
C10.0185 (3)0.0102 (3)0.0212 (3)0.0005 (2)0.0032 (2)0.0005 (2)
C20.0177 (3)0.0129 (3)0.0192 (3)0.0001 (2)0.0031 (2)0.0015 (2)
C30.0216 (3)0.0159 (3)0.0177 (3)0.0010 (2)0.0034 (2)0.0005 (2)
C40.0192 (3)0.0152 (3)0.0156 (3)0.0007 (2)0.0014 (2)0.0001 (2)
C50.0224 (3)0.0163 (3)0.0232 (3)0.0012 (3)0.0054 (2)0.0010 (2)
C60.0207 (3)0.0191 (3)0.0235 (3)0.0010 (3)0.0053 (3)0.0000 (2)
C70.0183 (3)0.0168 (3)0.0174 (3)0.0009 (2)0.0006 (2)0.0018 (2)
C80.0240 (3)0.0149 (3)0.0179 (3)0.0009 (3)0.0020 (2)0.0008 (2)
C90.0230 (3)0.0161 (3)0.0168 (3)0.0004 (3)0.0038 (2)0.0016 (2)
C100.0206 (3)0.0206 (3)0.0228 (3)0.0024 (3)0.0012 (2)0.0031 (3)
C110.0250 (3)0.0214 (3)0.0232 (3)0.0027 (3)0.0083 (3)0.0058 (3)
C120.0369 (5)0.0247 (4)0.0393 (5)0.0001 (4)0.0183 (4)0.0085 (4)
C130.0374 (5)0.0468 (6)0.0216 (4)0.0011 (4)0.0006 (3)0.0079 (4)
C140.0317 (4)0.0269 (4)0.0208 (3)0.0036 (3)0.0005 (3)0.0062 (3)
Geometric parameters (Å, º) top
S1—C11.6934 (8)C7—C101.5101 (11)
N1—C11.3561 (9)C8—C91.3954 (11)
N1—C21.3741 (9)C8—H8A0.9500
N1—H1N10.856 (15)C9—H9A0.9500
N2—C11.3429 (10)C10—C111.5332 (11)
N2—N31.3786 (9)C10—H10A0.9900
N2—H1N20.843 (15)C10—H10B0.9900
N3—C21.3073 (10)C11—C131.5212 (14)
C2—C31.4961 (10)C11—C121.5307 (13)
C3—C41.5210 (10)C11—H11A1.0000
C3—C141.5332 (11)C12—H12A0.9800
C3—H3A1.0000C12—H12B0.9800
C4—C91.3918 (10)C12—H12C0.9800
C4—C51.3970 (10)C13—H13A0.9800
C5—C61.3915 (11)C13—H13B0.9800
C5—H5A0.9500C13—H13C0.9800
C6—C71.3969 (11)C14—H14A0.9800
C6—H6A0.9500C14—H14B0.9800
C7—C81.3960 (10)C14—H14C0.9800
C1—N1—C2108.46 (6)C4—C9—C8120.71 (7)
C1—N1—H1N1124.2 (10)C4—C9—H9A119.6
C2—N1—H1N1127.3 (10)C8—C9—H9A119.6
C1—N2—N3112.91 (6)C7—C10—C11114.07 (6)
C1—N2—H1N2126.2 (9)C7—C10—H10A108.7
N3—N2—H1N2120.8 (9)C11—C10—H10A108.7
C2—N3—N2103.88 (6)C7—C10—H10B108.7
N2—C1—N1103.96 (6)C11—C10—H10B108.7
N2—C1—S1128.29 (6)H10A—C10—H10B107.6
N1—C1—S1127.75 (5)C13—C11—C12111.11 (7)
N3—C2—N1110.79 (6)C13—C11—C10111.58 (8)
N3—C2—C3126.37 (7)C12—C11—C10109.98 (7)
N1—C2—C3122.85 (6)C13—C11—H11A108.0
C2—C3—C4110.56 (6)C12—C11—H11A108.0
C2—C3—C14111.23 (6)C10—C11—H11A108.0
C4—C3—C14111.68 (6)C11—C12—H12A109.5
C2—C3—H3A107.7C11—C12—H12B109.5
C4—C3—H3A107.7H12A—C12—H12B109.5
C14—C3—H3A107.7C11—C12—H12C109.5
C9—C4—C5118.48 (7)H12A—C12—H12C109.5
C9—C4—C3120.63 (6)H12B—C12—H12C109.5
C5—C4—C3120.84 (7)C11—C13—H13A109.5
C6—C5—C4120.65 (7)C11—C13—H13B109.5
C6—C5—H5A119.7H13A—C13—H13B109.5
C4—C5—H5A119.7C11—C13—H13C109.5
C5—C6—C7121.18 (7)H13A—C13—H13C109.5
C5—C6—H6A119.4H13B—C13—H13C109.5
C7—C6—H6A119.4C3—C14—H14A109.5
C8—C7—C6117.90 (7)C3—C14—H14B109.5
C8—C7—C10120.62 (7)H14A—C14—H14B109.5
C6—C7—C10121.48 (7)C3—C14—H14C109.5
C9—C8—C7121.08 (7)H14A—C14—H14C109.5
C9—C8—H8A119.5H14B—C14—H14C109.5
C7—C8—H8A119.5
C1—N2—N3—C20.33 (8)C14—C3—C4—C577.63 (9)
N3—N2—C1—N10.44 (8)C9—C4—C5—C60.25 (11)
N3—N2—C1—S1179.36 (5)C3—C4—C5—C6177.25 (7)
C2—N1—C1—N20.36 (8)C4—C5—C6—C70.29 (12)
C2—N1—C1—S1179.29 (6)C5—C6—C7—C80.43 (11)
N2—N3—C2—N10.08 (8)C5—C6—C7—C10179.67 (7)
N2—N3—C2—C3179.70 (7)C6—C7—C8—C90.03 (11)
C1—N1—C2—N30.18 (9)C10—C7—C8—C9179.28 (7)
C1—N1—C2—C3179.45 (6)C5—C4—C9—C80.64 (11)
N3—C2—C3—C4132.25 (8)C3—C4—C9—C8176.86 (7)
N1—C2—C3—C447.32 (9)C7—C8—C9—C40.51 (11)
N3—C2—C3—C147.57 (10)C8—C7—C10—C1164.45 (9)
N1—C2—C3—C14172.00 (7)C6—C7—C10—C11114.77 (8)
C2—C3—C4—C9135.76 (7)C7—C10—C11—C1359.28 (9)
C14—C3—C4—C999.82 (8)C7—C10—C11—C12176.94 (7)
C2—C3—C4—C546.79 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···S1i0.843 (14)2.476 (14)3.3150 (7)173.9 (12)
N1—H1N1···S1ii0.856 (15)2.400 (15)3.2549 (6)176.4 (13)
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H19N3S
Mr261.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)12.0905 (2), 8.4408 (1), 14.3189 (2)
β (°) 98.365 (1)
V3)1445.75 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.51 × 0.36 × 0.20
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.900, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
27376, 6797, 5688
Rint0.027
(sin θ/λ)max1)0.827
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.108, 1.03
No. of reflections6797
No. of parameters174
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.68, 0.29

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···S1i0.843 (14)2.476 (14)3.3150 (7)173.9 (12)
N1—H1N1···S1ii0.856 (15)2.400 (15)3.2549 (6)176.4 (13)
Symmetry codes: (i) x+2, y+1/2, z+1/2; (ii) x+2, y1/2, z+1/2.
 

Acknowledgements

HKF, RK and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK and SRJ thank Universiti Sains Malaysia for post-doctoral research fellowships. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationClemons, M., Coleman, R. E. & Verma, S. (2004). Cancer Treat. Rev. 30, 325–332.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJohnston, G. A. R. (2002). Curr. Top. Med. Chem. 2, 903–913.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShujuan, S., Hongxiang, L., Gao, Y., Fan, P., Ma, B., Ge, W. & Wang, X. (2004). J. Pharm. Biomed. Anal. 34, 1117–1124.  Web of Science PubMed Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, T.-B., Tang, J., Liu, H. & Zhang, Y.-M. (2007). Phosphorus Sulfur Silicon, 182, 1581–1587.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds