metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Chlorido{2,2′-[propane-1,3-diylbis(nitrilo­methyl­­idyne)]diphenolato-κ4O,N,N′,O′}manganese(III)

aSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: gmli@hlju.edu.cn

(Received 13 December 2008; accepted 15 February 2009; online 21 February 2009)

In the title complex, [Mn(C17H16N2O2)Cl], the MnIII ion is coordinated by two O [Mn—O = 1.719 (2) and 1.813 (2) Å] and two N [Mn—N = 1.824 (2) and 1.931 (2) Å] atoms from the tetra­dentate Schiff base ligand and a chloride anion [Mn—Cl = 2.9634 (16) Å] in a square-pyramidal geometry. In the ligand, the two benzene rings form a dihedral angle of 68.06 (5)°.

Related literature

For a similar manganese complex of the same Schiff base, see: Watkinson et al. (1999[Watkinson, M., Fondo, M., Bermejo, M. R., Sousa, A., McAuliffe, C. A., Pritchard, R. G., Jaiboon, N., Aurangzeb, N. & Naeem, M. (1999). J. Chem. Soc. Dalton Trans. pp. 31-41.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C17H16N2O2)Cl]

  • Mr = 370.71

  • Orthorhombic, P c a 21

  • a = 10.428 (3) Å

  • b = 12.067 (4) Å

  • c = 12.530 (5) Å

  • V = 1576.6 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 291 K

  • 0.19 × 0.17 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.830, Tmax = 0.889

  • 11321 measured reflections

  • 2689 independent reflections

  • 2526 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.094

  • S = 1.05

  • 2689 reflections

  • 208 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.31 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1227 Friedel pairs

  • Flack parameter: −0.01 (2)

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In the title compound (Fig. 1), the tetradentate Schiff base ligand links Mn atom into a mononuclear complex through two phenolate O atoms and two N atoms with the bond lengths similar to those reported for another manganese complex of the same ligand (Watkinson et al., 1999). The MnIII center is five-coordinate by two nitrogen atoms and two oxygen atoms from the ligand and one chlorine anion in a square-pyramidal geometry.

Related literature top

For a similar manganese complex of the same Schiff base, see: Watkinson et al. (1999).

Experimental top

The title complex was obtained by the treatment of manganese(III) chloride tetrahydrate with the Schiff base in methanol. The first two reactants were refluxed for 1 h. The reaction mixture was cooled and filtered; Diethyl ether was allowed to diffuse slowly into the solution of the filtrate. Single crystals were obtained after several days. Analysis: calculated for C17H16MnN2O2Cl: C, 55.08; H, 4.35; Mn, 14.82; N, 7.56; found: C, 54.98; H, 4.39; N, 7.45; Mn, 14.28%.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C), C—H = 0.97 Å (methylene C),and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids.
Chlorido{2,2'-[propane-1,3-diylbis(nitrilomethylidyne)]diphenolato- κ4O,N,N',O'}manganese(III) top
Crystal data top
[Mn(C17H16N2O2)Cl]F(000) = 760
Mr = 370.71Dx = 1.562 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 12324 reflections
a = 10.428 (3) Åθ = 3.1–27.5°
b = 12.067 (4) ŵ = 1.02 mm1
c = 12.530 (5) ÅT = 291 K
V = 1576.6 (10) Å3Block, black
Z = 40.19 × 0.17 × 0.12 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2689 independent reflections
Radiation source: fine-focus sealed tube2526 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1212
Tmin = 0.830, Tmax = 0.889k = 1414
11321 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0666P)2 + 0.1785P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2689 reflectionsΔρmax = 0.44 e Å3
208 parametersΔρmin = 0.31 e Å3
1 restraintAbsolute structure: Flack (1983), 1227 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (2)
Crystal data top
[Mn(C17H16N2O2)Cl]V = 1576.6 (10) Å3
Mr = 370.71Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 10.428 (3) ŵ = 1.02 mm1
b = 12.067 (4) ÅT = 291 K
c = 12.530 (5) Å0.19 × 0.17 × 0.12 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2689 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2526 reflections with I > 2σ(I)
Tmin = 0.830, Tmax = 0.889Rint = 0.032
11321 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.094Δρmax = 0.44 e Å3
S = 1.05Δρmin = 0.31 e Å3
2689 reflectionsAbsolute structure: Flack (1983), 1227 Friedel pairs
208 parametersAbsolute structure parameter: 0.01 (2)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8363 (3)0.4885 (3)0.7136 (3)0.0330 (8)
C20.9063 (3)0.4297 (3)0.6323 (3)0.0383 (8)
H10.99180.45080.62570.046*
C30.8679 (3)0.3466 (3)0.5617 (3)0.0434 (9)
H20.92380.31670.51150.052*
C40.7560 (5)0.3148 (3)0.5694 (5)0.0550 (12)
H30.72040.26070.52560.066*
C50.6881 (3)0.3678 (3)0.6502 (4)0.0506 (11)
H40.60450.34260.65890.061*
C60.7247 (3)0.4555 (3)0.7232 (3)0.0365 (9)
C70.6476 (3)0.5107 (3)0.8041 (3)0.0365 (8)
H50.57380.47170.82240.044*
C80.5664 (3)0.6436 (3)0.9321 (3)0.0378 (8)
H70.60390.65381.00220.045*
H60.49340.59410.93760.045*
C90.5303 (3)0.7500 (3)0.8835 (3)0.0393 (8)
H80.53420.74250.80650.047*
H90.44210.76650.90240.047*
C100.6086 (3)0.8410 (3)0.9145 (3)0.0397 (9)
H100.56320.91060.90560.048*
H110.63520.83400.98840.048*
C110.7546 (3)0.9233 (3)0.8068 (3)0.0341 (8)
H120.70550.98530.82310.041*
C120.8596 (3)0.9429 (3)0.7439 (3)0.0342 (8)
C130.8794 (3)1.0423 (3)0.6866 (4)0.0468 (10)
H130.81801.09760.69470.056*
C140.9749 (4)1.0638 (3)0.6237 (4)0.0499 (10)
H140.98151.12860.58390.060*
C151.0592 (3)0.9870 (3)0.6221 (3)0.0455 (10)
H151.13230.99600.58050.055*
C161.0440 (3)0.8901 (3)0.6812 (3)0.0422 (9)
H161.11070.83900.67870.051*
C170.9428 (3)0.8637 (3)0.7408 (3)0.0320 (8)
Cl10.82072 (8)0.70229 (8)1.06882 (7)0.0435 (2)
Mn10.79832 (4)0.69247 (3)0.83324 (5)0.03055 (16)
N10.6603 (2)0.6027 (2)0.8558 (2)0.0319 (7)
N20.7160 (2)0.8353 (2)0.8449 (3)0.0303 (6)
O10.87583 (19)0.56992 (19)0.7799 (2)0.0435 (6)
O20.92804 (19)0.76783 (19)0.7896 (2)0.0457 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0170 (15)0.0230 (17)0.059 (2)0.0016 (12)0.0073 (14)0.0037 (14)
C20.0165 (15)0.0260 (17)0.072 (3)0.0026 (13)0.0026 (16)0.0053 (15)
C30.0275 (17)0.0269 (17)0.076 (3)0.0054 (14)0.0028 (18)0.0031 (17)
C40.0323 (18)0.0296 (17)0.103 (4)0.0024 (16)0.012 (2)0.015 (2)
C50.0223 (17)0.0280 (18)0.101 (3)0.0069 (14)0.0072 (19)0.004 (2)
C60.0206 (17)0.0237 (16)0.065 (3)0.0017 (13)0.0096 (15)0.0087 (15)
C70.0142 (13)0.0296 (17)0.066 (2)0.0035 (12)0.0056 (14)0.0123 (16)
C80.0157 (14)0.044 (2)0.053 (2)0.0016 (13)0.0046 (14)0.0005 (16)
C90.0135 (14)0.044 (2)0.060 (2)0.0056 (13)0.0084 (15)0.0050 (16)
C100.0215 (15)0.0381 (19)0.060 (2)0.0082 (14)0.0048 (15)0.0085 (16)
C110.0183 (13)0.0324 (17)0.052 (2)0.0076 (13)0.0021 (14)0.0019 (14)
C120.0198 (15)0.0224 (15)0.060 (2)0.0009 (12)0.0024 (15)0.0026 (15)
C130.0268 (18)0.0245 (18)0.089 (3)0.0020 (13)0.005 (2)0.0033 (18)
C140.035 (2)0.0296 (18)0.085 (3)0.0068 (16)0.013 (2)0.0107 (18)
C150.0271 (17)0.040 (2)0.069 (3)0.0159 (16)0.0009 (17)0.0012 (18)
C160.0193 (16)0.0310 (18)0.076 (3)0.0047 (13)0.0011 (17)0.0065 (18)
C170.0171 (15)0.0253 (17)0.054 (2)0.0036 (12)0.0080 (14)0.0018 (15)
Cl10.0340 (4)0.0450 (5)0.0516 (6)0.0052 (4)0.0144 (4)0.0071 (4)
Mn10.0114 (2)0.0231 (2)0.0571 (3)0.00044 (15)0.0008 (2)0.0015 (3)
N10.0106 (10)0.0306 (14)0.0544 (19)0.0022 (9)0.0040 (11)0.0068 (13)
N20.0120 (10)0.0291 (13)0.0499 (17)0.0028 (9)0.0012 (12)0.0002 (15)
O10.0079 (9)0.0278 (12)0.0949 (18)0.0026 (8)0.0058 (11)0.0085 (12)
O20.0087 (9)0.0268 (12)0.101 (2)0.0014 (8)0.0015 (11)0.0066 (13)
Geometric parameters (Å, º) top
C1—C61.236 (5)C10—H100.9700
C1—O11.351 (4)C10—H110.9700
C1—C21.439 (5)C11—N21.232 (4)
C2—C31.397 (5)C11—C121.370 (5)
C2—H10.9300C11—H120.9300
C3—C41.232 (6)C12—C171.292 (5)
C3—H20.9300C12—C131.413 (5)
C4—C51.391 (7)C13—C141.296 (6)
C4—H30.9300C13—H130.9300
C5—C61.449 (6)C14—C151.277 (5)
C5—H40.9300C14—H140.9300
C6—C71.456 (5)C15—C161.394 (5)
C7—N11.291 (4)C15—H150.9300
C7—H50.9300C16—C171.331 (5)
C8—N11.455 (4)C16—H160.9300
C8—C91.470 (5)C17—O21.317 (4)
C8—H70.9700Cl1—Mn12.9634 (16)
C8—H60.9700Mn1—O21.719 (2)
C9—C101.423 (5)Mn1—O11.813 (2)
C9—H80.9700Mn1—N11.824 (2)
C9—H90.9700Mn1—N21.931 (2)
C10—N21.421 (4)
C6—C1—O1117.5 (3)N2—C11—C12129.3 (3)
C6—C1—C2112.9 (3)N2—C11—H12115.4
O1—C1—C2129.6 (3)C12—C11—H12115.4
C3—C2—C1131.0 (3)C17—C12—C11115.2 (3)
C3—C2—H1114.5C17—C12—C13121.0 (3)
C1—C2—H1114.5C11—C12—C13123.8 (3)
C4—C3—C2116.5 (4)C14—C13—C12126.3 (4)
C4—C3—H2121.8C14—C13—H13116.9
C2—C3—H2121.8C12—C13—H13116.9
C3—C4—C5113.3 (4)C15—C14—C13113.1 (4)
C3—C4—H3123.3C15—C14—H14123.4
C5—C4—H3123.3C13—C14—H14123.4
C4—C5—C6131.4 (3)C14—C15—C16121.5 (4)
C4—C5—H4114.3C14—C15—H15119.3
C6—C5—H4114.3C16—C15—H15119.3
C1—C6—C5114.9 (4)C17—C16—C15126.1 (3)
C1—C6—C7116.1 (3)C17—C16—H16116.9
C5—C6—C7128.9 (3)C15—C16—H16116.9
N1—C7—C6133.3 (3)C12—C17—O2123.9 (3)
N1—C7—H5113.4C12—C17—C16111.8 (3)
C6—C7—H5113.4O2—C17—C16124.3 (3)
N1—C8—C9101.3 (3)O2—Mn1—O187.90 (11)
N1—C8—H7111.5O2—Mn1—N1169.92 (14)
C9—C8—H7111.5O1—Mn1—N185.65 (11)
N1—C8—H6111.5O2—Mn1—N284.35 (11)
C9—C8—H6111.5O1—Mn1—N2162.58 (14)
H7—C8—H6109.3N1—Mn1—N299.68 (11)
C10—C9—C8114.5 (3)O2—Mn1—Cl1103.51 (11)
C10—C9—H8108.6O1—Mn1—Cl1111.39 (10)
C8—C9—H8108.6N1—Mn1—Cl186.08 (9)
C10—C9—H9108.6N2—Mn1—Cl185.64 (10)
C8—C9—H9108.6C7—N1—C8123.5 (3)
H8—C9—H9107.6C7—N1—Mn1120.9 (2)
N2—C10—C9104.3 (3)C8—N1—Mn1115.6 (2)
N2—C10—H10110.9C11—N2—C10117.0 (3)
C9—C10—H10110.9C11—N2—Mn1126.5 (2)
N2—C10—H11110.9C10—N2—Mn1116.1 (2)
C9—C10—H11110.9C1—O1—Mn1133.14 (19)
H10—C10—H11108.9C17—O2—Mn1134.8 (2)

Experimental details

Crystal data
Chemical formula[Mn(C17H16N2O2)Cl]
Mr370.71
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)291
a, b, c (Å)10.428 (3), 12.067 (4), 12.530 (5)
V3)1576.6 (10)
Z4
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.19 × 0.17 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.830, 0.889
No. of measured, independent and
observed [I > 2σ(I)] reflections
11321, 2689, 2526
Rint0.032
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.094, 1.05
No. of reflections2689
No. of parameters208
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.44, 0.31
Absolute structureFlack (1983), 1227 Friedel pairs
Absolute structure parameter0.01 (2)

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (grant Nos. 20572018 and 20672032), Heilongjiang Province (grant Nos. 1055HZ001, ZJG0504 and JC200605) and Heilongjiang University.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkinson, M., Fondo, M., Bermejo, M. R., Sousa, A., McAuliffe, C. A., Pritchard, R. G., Jaiboon, N., Aurangzeb, N. & Naeem, M. (1999). J. Chem. Soc. Dalton Trans. pp. 31–41.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds