organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

S-4-Chloro­phenyl 9,10-di­hydro­acridine-9-carbo­thio­ate

aSchool of Chemistry and Chemical Engineering, Southeast University, 210096 Nanjing, People's Republic of China, and bChangchun Institute of Applied Chemistry, ChineseAcademy of Sciences, 130022 Changchun, People's Republic of China
*Correspondence e-mail: dybwell@gmail.com

(Received 30 December 2008; accepted 28 January 2009; online 4 February 2009)

In tricyclic fragment of the title mol­ecule, C20H14ClNOS, the central 1,4-dihydro­pyridine ring adopts a boat conformation while the two benzene rings form a dihedral angle of 17.38 (5)°. In the crystal structure, weak inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains propagating along the b axis.

Related literature

For applications of acridine derivatives, see: Dodeigne et al. (2000[Dodeigne, C., Thunus, L. & Lejeune, R. (2000). Talanta, 51, 415-439.]); Ashmore et al. (2008[Ashmore, J., Bishop, R., Craig, D. C. & Scudder, M. L. (2008). Acta Cryst. E64, o1136.]); Zomer & Jacquemijns (2001[Zomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529-549. New York: Marcel Dekker.]).

[Scheme 1]

Experimental

Crystal data
  • C20H14ClNOS

  • Mr = 351.83

  • Monoclinic, P 21 /n

  • a = 6.3171 (13) Å

  • b = 14.535 (3) Å

  • c = 18.169 (4) Å

  • β = 96.85 (3)°

  • V = 1656.4 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 293 (2) K

  • 0.15 × 0.09 × 0.07 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.963, Tmax = 0.971

  • 16788 measured reflections

  • 3788 independent reflections

  • 2287 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.129

  • S = 1.04

  • 3788 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.86 2.54 3.283 (3) 145
Symmetry code: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2000[Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2003[Rigaku/MSC (2003). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), was synthesized from S-4-chlorophenyl acridine-9-carbothioate catalyzed by zinc powder and glacial acetic acid using dichlormethane as solvent under the protection of nitrogen at room temperature. (I) is an important intermediate for the synthesis of acridine derivatives which are precursors of practically important chemiluminescent indicators and the chemiluminogenic fragments of chemiluminescent labels (Dodeigne et al., 2000; Ashmore et al., 2008; Zomer & Jacquemijns, 2001).

In (I) (Fig. 1), the 1,4-dihydropyridine ring (C1/C6/C7/C12/C13/N1) adopts a boat conformation: atoms C1, C6, C7 and C12 are coplanar, with atoms C13 and N1 derivating from the plane by 0.072 (9) and 0.300 (9) Å, respectively. The dihedral angle between the C1-C6 ring and C1/C6/C7/C12 plane is 11.43 (5)°. The dihedral angle between the C7-C12 plane and C1/C6/C7/C12 plane is 13.68 (5)°. In the crystal, weak intermolecular N—H···O hydrogen bonds (Table 1). link the molecules into chains propagated along b axis.

Related literature top

For applications of acridine derivatives, see: Dodeigne et al. (2000); Ashmore et al. (2008); Zomer & Jacquemijns (2001).

Experimental top

All chemicals used(reagent grade) were commercially available. S-4-chlorophenyl acridine-9-carbothioate 5.58 g (0.016 mol) was dissolved by dichlormethane, zinc powder 6 g (0.09 mol) and glacial acetic acid 2 mL were added and stirred under the protection of nitrogen at room temperature for 45 min. The mixture was filtered, and evaporated the dissolvent. Colorless crystal of the title compound suitable for X-ray analysis was obtained by recrystallization using dichlormethane. 1HMNR(300 MHz, CDCl3): 5.22(1H, s), 6.80(1H, s), 6.81(2H, d), 6.94–6.98(2H, t), 7.18(2H, t), 7.23(2H, dd), 7.27(2H, dd), 7.30(2H,d).

Refinement top

All H atoms were placed in calculated positions (N–H 0.86 Å, C—H 0.93–0.98 Å), and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq of the parent atom.

Computing details top

Data collection: CrystalClear (Rigaku, 2000); cell refinement: CrystalClear (Rigaku, 2000); data reduction: CrystalStructure (Rigaku/MSC, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
S-4-Chlorophenyl 9,10-dihydroacridine-9-carbothioate top
Crystal data top
C20H14ClNOSF(000) = 728
Mr = 351.83Dx = 1.411 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 12319 reflections
a = 6.3171 (13) Åθ = 3.0–27.5°
b = 14.535 (3) ŵ = 0.36 mm1
c = 18.169 (4) ÅT = 293 K
β = 96.85 (3)°Block, colorless
V = 1656.4 (6) Å30.15 × 0.09 × 0.07 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
3788 independent reflections
Radiation source: fine-focus sealed tube2287 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.963, Tmax = 0.971k = 1818
16788 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0388P)2 + 0.6284P]
where P = (Fo2 + 2Fc2)/3
3788 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C20H14ClNOSV = 1656.4 (6) Å3
Mr = 351.83Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.3171 (13) ŵ = 0.36 mm1
b = 14.535 (3) ÅT = 293 K
c = 18.169 (4) Å0.15 × 0.09 × 0.07 mm
β = 96.85 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3788 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2287 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.971Rint = 0.069
16788 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.04Δρmax = 0.21 e Å3
3788 reflectionsΔρmin = 0.31 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.79621 (14)0.07317 (5)0.13309 (4)0.0622 (3)
Cl10.31742 (17)0.27324 (6)0.00643 (5)0.0881 (3)
O10.9837 (3)0.05520 (12)0.21991 (11)0.0601 (6)
N10.7547 (4)0.24449 (14)0.27564 (13)0.0506 (6)
H1A0.64580.28040.26930.061*
C11.0780 (4)0.19172 (17)0.23159 (14)0.0408 (6)
C21.2502 (5)0.21117 (19)0.19322 (16)0.0527 (7)
H2A1.35700.16740.19190.063*
C31.2669 (5)0.2938 (2)0.15705 (17)0.0630 (9)
H3A1.38370.30560.13180.076*
C41.1082 (5)0.3588 (2)0.15878 (17)0.0597 (8)
H4A1.11620.41410.13350.072*
C50.9387 (5)0.34239 (18)0.19761 (16)0.0530 (7)
H5A0.83370.38700.19900.064*
C60.9226 (4)0.25965 (17)0.23493 (15)0.0419 (6)
C70.7560 (4)0.17308 (17)0.32648 (14)0.0441 (6)
C80.6100 (5)0.1711 (2)0.37797 (16)0.0584 (8)
H8A0.50620.21660.37710.070*
C90.6178 (6)0.1023 (2)0.43034 (18)0.0703 (9)
H9A0.51900.10160.46440.084*
C100.7702 (6)0.0346 (2)0.43274 (17)0.0660 (9)
H10A0.77740.01090.46890.079*
C110.9126 (5)0.03501 (19)0.38071 (16)0.0534 (7)
H11A1.01460.01130.38180.064*
C120.9071 (4)0.10270 (16)0.32687 (14)0.0412 (6)
C131.0523 (4)0.09894 (16)0.26639 (14)0.0397 (6)
H13A1.19310.07780.28840.048*
C140.9580 (4)0.02581 (17)0.21057 (14)0.0392 (6)
C150.6677 (5)0.02802 (18)0.09621 (15)0.0472 (7)
C160.4798 (5)0.0559 (2)0.12017 (17)0.0616 (8)
H16A0.42460.02310.15750.074*
C170.3721 (5)0.1317 (2)0.08959 (19)0.0627 (8)
H17A0.24520.15050.10610.075*
C180.4549 (5)0.17925 (19)0.03436 (16)0.0525 (7)
C190.6430 (5)0.15349 (19)0.01005 (16)0.0590 (8)
H19A0.69840.18670.02700.071*
C200.7491 (5)0.07752 (19)0.04145 (16)0.0545 (7)
H20A0.87730.05950.02540.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0851 (6)0.0375 (4)0.0563 (5)0.0065 (4)0.0236 (4)0.0005 (3)
Cl10.1100 (8)0.0614 (5)0.0877 (7)0.0439 (5)0.0092 (6)0.0036 (4)
O10.0727 (14)0.0352 (10)0.0672 (13)0.0101 (9)0.0133 (11)0.0050 (9)
N10.0417 (13)0.0450 (13)0.0655 (16)0.0110 (11)0.0080 (12)0.0063 (11)
C10.0369 (14)0.0391 (14)0.0446 (15)0.0052 (11)0.0031 (12)0.0110 (12)
C20.0458 (17)0.0481 (16)0.0647 (19)0.0078 (13)0.0086 (14)0.0177 (14)
C30.065 (2)0.060 (2)0.067 (2)0.0258 (17)0.0160 (17)0.0148 (16)
C40.071 (2)0.0448 (16)0.063 (2)0.0156 (16)0.0051 (17)0.0029 (14)
C50.0556 (18)0.0400 (15)0.0613 (19)0.0007 (13)0.0022 (15)0.0024 (13)
C60.0426 (15)0.0381 (14)0.0433 (15)0.0049 (12)0.0021 (12)0.0067 (11)
C70.0476 (16)0.0404 (14)0.0436 (15)0.0016 (12)0.0026 (13)0.0078 (12)
C80.059 (2)0.0567 (18)0.062 (2)0.0092 (15)0.0154 (16)0.0090 (15)
C90.083 (2)0.072 (2)0.060 (2)0.002 (2)0.0257 (18)0.0017 (18)
C100.086 (2)0.0584 (19)0.054 (2)0.0017 (18)0.0119 (18)0.0041 (15)
C110.0609 (19)0.0470 (16)0.0505 (17)0.0069 (14)0.0002 (15)0.0012 (13)
C120.0428 (15)0.0378 (13)0.0415 (15)0.0010 (12)0.0014 (12)0.0070 (11)
C130.0329 (14)0.0406 (14)0.0443 (15)0.0044 (11)0.0012 (11)0.0061 (11)
C140.0372 (14)0.0370 (14)0.0434 (15)0.0003 (11)0.0050 (11)0.0028 (11)
C150.0544 (18)0.0388 (14)0.0444 (16)0.0044 (13)0.0102 (13)0.0012 (12)
C160.072 (2)0.0538 (19)0.060 (2)0.0016 (16)0.0084 (17)0.0086 (15)
C170.0531 (19)0.0609 (19)0.076 (2)0.0119 (16)0.0141 (17)0.0053 (17)
C180.0607 (19)0.0430 (15)0.0500 (17)0.0166 (14)0.0097 (14)0.0069 (13)
C190.078 (2)0.0481 (17)0.0500 (18)0.0111 (16)0.0060 (16)0.0104 (14)
C200.0545 (19)0.0500 (17)0.0586 (18)0.0112 (14)0.0055 (15)0.0007 (14)
Geometric parameters (Å, º) top
S1—C151.772 (3)C8—H8A0.9300
S1—C141.777 (3)C9—C101.373 (4)
Cl1—C181.737 (3)C9—H9A0.9300
O1—C141.198 (3)C10—C111.380 (4)
N1—C61.381 (3)C10—H10A0.9300
N1—C71.389 (3)C11—C121.385 (4)
N1—H1A0.8600C11—H11A0.9300
C1—C21.389 (4)C12—C131.514 (4)
C1—C61.399 (4)C13—C141.539 (3)
C1—C131.506 (3)C13—H13A0.9800
C2—C31.380 (4)C15—C161.373 (4)
C2—H2A0.9300C15—C201.376 (4)
C3—C41.380 (4)C16—C171.378 (4)
C3—H3A0.9300C16—H16A0.9300
C4—C51.371 (4)C17—C181.372 (4)
C4—H4A0.9300C17—H17A0.9300
C5—C61.390 (4)C18—C191.368 (4)
C5—H5A0.9300C19—C201.380 (4)
C7—C81.391 (4)C19—H19A0.9300
C7—C121.398 (3)C20—H20A0.9300
C8—C91.378 (4)
C15—S1—C1499.92 (12)C10—C11—C12121.6 (3)
C6—N1—C7122.1 (2)C10—C11—H11A119.2
C6—N1—H1A119.0C12—C11—H11A119.2
C7—N1—H1A119.0C11—C12—C7118.9 (3)
C2—C1—C6118.3 (2)C11—C12—C13121.4 (2)
C2—C1—C13121.5 (2)C7—C12—C13119.7 (2)
C6—C1—C13120.2 (2)C1—C13—C12112.2 (2)
C3—C2—C1121.7 (3)C1—C13—C14113.2 (2)
C3—C2—H2A119.2C12—C13—C14106.4 (2)
C1—C2—H2A119.2C1—C13—H13A108.3
C2—C3—C4119.2 (3)C12—C13—H13A108.3
C2—C3—H3A120.4C14—C13—H13A108.3
C4—C3—H3A120.4O1—C14—C13123.4 (2)
C5—C4—C3120.4 (3)O1—C14—S1123.3 (2)
C5—C4—H4A119.8C13—C14—S1113.29 (17)
C3—C4—H4A119.8C16—C15—C20119.1 (3)
C4—C5—C6120.6 (3)C16—C15—S1119.9 (2)
C4—C5—H5A119.7C20—C15—S1120.9 (2)
C6—C5—H5A119.7C15—C16—C17120.8 (3)
N1—C6—C5120.3 (2)C15—C16—H16A119.6
N1—C6—C1119.9 (2)C17—C16—H16A119.6
C5—C6—C1119.8 (3)C18—C17—C16119.0 (3)
N1—C7—C8120.7 (2)C18—C17—H17A120.5
N1—C7—C12120.0 (2)C16—C17—H17A120.5
C8—C7—C12119.3 (3)C19—C18—C17121.3 (3)
C9—C8—C7120.5 (3)C19—C18—Cl1119.1 (2)
C9—C8—H8A119.8C17—C18—Cl1119.6 (2)
C7—C8—H8A119.8C18—C19—C20118.9 (3)
C10—C9—C8120.6 (3)C18—C19—H19A120.5
C10—C9—H9A119.7C20—C19—H19A120.5
C8—C9—H9A119.7C15—C20—C19120.8 (3)
C9—C10—C11119.1 (3)C15—C20—H20A119.6
C9—C10—H10A120.4C19—C20—H20A119.6
C11—C10—H10A120.4
C6—C1—C2—C32.0 (4)C2—C1—C13—C12159.2 (2)
C13—C1—C2—C3175.6 (2)C6—C1—C13—C1223.3 (3)
C1—C2—C3—C40.2 (4)C2—C1—C13—C1480.3 (3)
C2—C3—C4—C51.7 (4)C6—C1—C13—C1497.2 (3)
C3—C4—C5—C60.9 (4)C11—C12—C13—C1159.6 (2)
C7—N1—C6—C5165.4 (2)C7—C12—C13—C123.8 (3)
C7—N1—C6—C114.2 (4)C11—C12—C13—C1476.1 (3)
C4—C5—C6—N1178.2 (3)C7—C12—C13—C14100.5 (3)
C4—C5—C6—C11.4 (4)C1—C13—C14—O1156.3 (3)
C2—C1—C6—N1176.8 (2)C12—C13—C14—O180.0 (3)
C13—C1—C6—N15.6 (4)C1—C13—C14—S126.6 (3)
C2—C1—C6—C52.8 (4)C12—C13—C14—S197.1 (2)
C13—C1—C6—C5174.8 (2)C15—S1—C14—O111.1 (3)
C6—N1—C7—C8165.7 (3)C15—S1—C14—C13166.00 (19)
C6—N1—C7—C1213.5 (4)C14—S1—C15—C1689.1 (2)
N1—C7—C8—C9177.2 (3)C14—S1—C15—C2093.6 (2)
C12—C7—C8—C92.0 (4)C20—C15—C16—C170.6 (4)
C7—C8—C9—C100.2 (5)S1—C15—C16—C17176.8 (2)
C8—C9—C10—C111.7 (5)C15—C16—C17—C180.3 (5)
C9—C10—C11—C120.9 (5)C16—C17—C18—C191.0 (5)
C10—C11—C12—C71.3 (4)C16—C17—C18—Cl1178.3 (2)
C10—C11—C12—C13175.3 (3)C17—C18—C19—C200.8 (4)
N1—C7—C12—C11176.5 (2)Cl1—C18—C19—C20178.5 (2)
C8—C7—C12—C112.7 (4)C16—C15—C20—C190.8 (4)
N1—C7—C12—C136.9 (4)S1—C15—C20—C19176.6 (2)
C8—C7—C12—C13173.9 (2)C18—C19—C20—C150.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.543.283 (3)145
Symmetry code: (i) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H14ClNOS
Mr351.83
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)6.3171 (13), 14.535 (3), 18.169 (4)
β (°) 96.85 (3)
V3)1656.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.15 × 0.09 × 0.07
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.963, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
16788, 3788, 2287
Rint0.069
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.129, 1.04
No. of reflections3788
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.31

Computer programs: CrystalClear (Rigaku, 2000), CrystalStructure (Rigaku/MSC, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.862.543.283 (3)145.1
Symmetry code: (i) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Dr Chunling Shi for the help with the crystal structure analysis

References

First citationAshmore, J., Bishop, R., Craig, D. C. & Scudder, M. L. (2008). Acta Cryst. E64, o1136.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDodeigne, C., Thunus, L. & Lejeune, R. (2000). Talanta, 51, 415–439.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2003). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZomer, G. & Jacquemijns, M. (2001). Chemiluminescence in Analytical Chemistry, edited by A. M. Garcia-Campana & W. R. G. Baeyens, pp. 529–549. New York: Marcel Dekker.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds