organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(1H-Benzotriazol-1-yl)-1-(3-meth­oxy­phen­yl)propan-1-one

aCollege of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, 210009 Nanjing, Jiangsu, People's Republic of China
*Correspondence e-mail: hukongcheng@126.com

(Received 14 January 2009; accepted 4 February 2009; online 11 February 2009)

In the title mol­ecule, C16H15N3O2, the benzotriazole fragment and the benzene ring form a dihedral angle of 75.02 (1)°. In the crystal structure, mol­ecules related by translation along the a axis are linked into chains via weak C—H⋯π inter­actions.

Related literature

For the pharmacological activity of 1H-benzotriazole derivatives, see: Chen & Wu (2005[Chen, Z.-Y. & Wu, M.-T. (2005). Org. Lett. 7, 475-477.]). Some details of the synthesis have been described by Zhu et al. (2007[Zhu, Y.-J., Wang, M., Bi, J.-L. & Li, F. (2007). Acta Cryst. E63, o4548.]). For reference values of geometric parameters in organic mol­ecules, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15N3O2

  • Mr = 281.31

  • Monoclinic, P 21 /c

  • a = 5.3583 (14) Å

  • b = 12.976 (4) Å

  • c = 19.688 (5) Å

  • β = 91.146 (4)°

  • V = 1368.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.21 × 0.15 × 0.07 mm

Data collection
  • Siemens SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.981, Tmax = 0.994

  • 7461 measured reflections

  • 2693 independent reflections

  • 2279 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.112

  • S = 1.04

  • 2693 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9ACg1i 0.97 2.74 3.504 136
Symmetry code: (i) x-1, y, z. Cg1 is the centroid of atoms C10–C15.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

1H-Benzotriazole and its derivatives exhibit a broad spectrum of pharmacological activities, such as antifungal, antitumor and antineoplastic (Chen & Wu, 2005). In order to search for new benzotriazole derivatives with higher bioactivity, the title compound, (I), was synthesized and its structure is shown here.

In the title molecule (Fig. 1), all bond lengths and angles are within normal ranges (Allen et al., 1987). The benzotriazole system is almost planar with a dihedral angle of 1.45 (1)° between the triazole (N1–N3/C10/C11) and benzene (C10—C15) rings. The whole molecular is non-planar with a dihedral angle of 75.02 (1)° between the benzotriazole fragment and benzene C1–C6 ring. In the crystal, the molecules related by translation along axis a are linked into chains via the weak C—H···π interactions (Table 1).

Related literature top

For the pharmacological activity of 1H-benzotriazole derivatives, see: Chen & Wu (2005). Some details of the synthesis have been described by Zhu et al. (2007). For normal values of geometric parameters in organic molecules, see: Allen et al. (1987). Cg1 is the centroid of atoms C10–C15.

Experimental top

The title compound was prepared according to the literature method of Zhu et al.(2007). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution at room temperature over a period of one week.

Refinement top

All H atoms were located in difference Fourier maps and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, and with Uiso(H) = 1.2 Ueq(C) and 1.5 Ueq(methyl C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids and the atom numbering scheme.
3-(1H-Benzotriazol-1-yl)-1-(3-methoxyphenyl)propan-1-one top
Crystal data top
C16H15N3O2F(000) = 592
Mr = 281.31Dx = 1.365 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.3583 (14) ÅCell parameters from 3062 reflections
b = 12.976 (4) Åθ = 2.6–25.9°
c = 19.688 (5) ŵ = 0.09 mm1
β = 91.146 (4)°T = 293 K
V = 1368.6 (6) Å3Block, colourless
Z = 40.21 × 0.15 × 0.07 mm
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
2693 independent reflections
Radiation source: fine-focus sealed tube2279 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 8.33 pixels mm-1θmax = 26.0°, θmin = 1.9°
ω scansh = 66
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1616
Tmin = 0.981, Tmax = 0.994l = 2417
7461 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.249P]
where P = (Fo2 + 2Fc2)/3
2693 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C16H15N3O2V = 1368.6 (6) Å3
Mr = 281.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.3583 (14) ŵ = 0.09 mm1
b = 12.976 (4) ÅT = 293 K
c = 19.688 (5) Å0.21 × 0.15 × 0.07 mm
β = 91.146 (4)°
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
2693 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2279 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.994Rint = 0.018
7461 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.04Δρmax = 0.14 e Å3
2693 reflectionsΔρmin = 0.23 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2340 (2)0.48618 (9)0.09618 (6)0.0607 (3)
O20.2250 (2)0.87656 (8)0.00231 (6)0.0570 (3)
N10.0340 (2)0.44726 (9)0.23515 (6)0.0427 (3)
C60.1036 (2)0.64278 (10)0.04534 (6)0.0396 (3)
C20.0452 (3)0.80221 (11)0.00439 (7)0.0444 (3)
C10.0680 (3)0.72307 (11)0.04300 (7)0.0428 (3)
H1A0.19900.72400.07330.051*
C100.2033 (2)0.37083 (10)0.24527 (7)0.0390 (3)
C70.0797 (2)0.55465 (11)0.09372 (7)0.0415 (3)
C50.3012 (3)0.64292 (12)0.00019 (7)0.0462 (3)
H5A0.41760.58980.00120.055*
C80.1429 (3)0.55249 (11)0.13963 (7)0.0458 (3)
H8A0.29380.55860.11190.055*
H8B0.13480.61200.16940.055*
N20.0569 (3)0.51863 (10)0.28486 (7)0.0573 (4)
C120.5305 (3)0.33871 (12)0.32934 (8)0.0541 (4)
H12A0.61890.35650.36870.065*
C130.5867 (3)0.25211 (13)0.29353 (8)0.0579 (4)
H13A0.71780.21060.30870.070*
N30.2374 (3)0.49148 (10)0.32671 (7)0.0589 (4)
C30.1519 (3)0.80179 (12)0.04920 (7)0.0498 (4)
H3B0.16840.85430.08100.060*
C110.3340 (3)0.39961 (11)0.30415 (7)0.0440 (3)
C150.2589 (3)0.28109 (11)0.20939 (8)0.0505 (4)
H15A0.16860.26170.17060.061*
C40.3230 (3)0.72214 (13)0.04583 (7)0.0518 (4)
H4A0.45620.72210.07540.062*
C90.1613 (3)0.45603 (12)0.18278 (8)0.0516 (4)
H9A0.32240.45530.20440.062*
H9B0.15360.39620.15330.062*
C140.4524 (3)0.22363 (12)0.23434 (9)0.0590 (4)
H14A0.49720.16380.21160.071*
C160.2412 (4)0.94720 (13)0.05808 (9)0.0621 (4)
H16A0.37430.99520.05070.093*
H16B0.27380.90980.09940.093*
H16C0.08650.98390.06160.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0544 (6)0.0619 (7)0.0661 (7)0.0170 (5)0.0131 (5)0.0130 (5)
O20.0617 (7)0.0522 (6)0.0572 (7)0.0079 (5)0.0049 (5)0.0124 (5)
N10.0441 (6)0.0438 (6)0.0404 (6)0.0021 (5)0.0016 (5)0.0031 (5)
C60.0367 (7)0.0471 (7)0.0348 (7)0.0026 (6)0.0028 (5)0.0029 (5)
C20.0446 (8)0.0454 (8)0.0430 (8)0.0040 (6)0.0049 (6)0.0004 (6)
C10.0406 (7)0.0493 (8)0.0386 (7)0.0021 (6)0.0024 (6)0.0005 (6)
C100.0389 (7)0.0402 (7)0.0381 (7)0.0062 (5)0.0051 (5)0.0047 (5)
C70.0368 (7)0.0471 (8)0.0405 (7)0.0005 (6)0.0024 (5)0.0024 (6)
C50.0394 (7)0.0570 (8)0.0423 (8)0.0010 (6)0.0016 (6)0.0028 (6)
C80.0358 (7)0.0545 (8)0.0471 (8)0.0020 (6)0.0005 (6)0.0077 (6)
N20.0683 (9)0.0498 (7)0.0537 (8)0.0062 (6)0.0001 (7)0.0052 (6)
C120.0559 (9)0.0585 (9)0.0476 (9)0.0050 (7)0.0089 (7)0.0084 (7)
C130.0536 (9)0.0557 (9)0.0644 (10)0.0074 (7)0.0007 (8)0.0161 (8)
N30.0747 (9)0.0522 (8)0.0493 (8)0.0034 (7)0.0080 (7)0.0087 (6)
C30.0522 (9)0.0562 (9)0.0409 (8)0.0107 (7)0.0002 (6)0.0070 (6)
C110.0497 (8)0.0437 (7)0.0387 (7)0.0074 (6)0.0006 (6)0.0021 (6)
C150.0588 (9)0.0473 (8)0.0453 (8)0.0034 (7)0.0015 (7)0.0053 (6)
C40.0453 (8)0.0683 (10)0.0420 (8)0.0070 (7)0.0079 (6)0.0004 (7)
C90.0385 (8)0.0610 (9)0.0552 (9)0.0070 (7)0.0021 (6)0.0119 (7)
C140.0703 (11)0.0457 (8)0.0613 (10)0.0074 (8)0.0072 (8)0.0018 (7)
C160.0732 (11)0.0537 (9)0.0591 (10)0.0047 (8)0.0062 (8)0.0119 (8)
Geometric parameters (Å, º) top
O1—C71.2137 (17)C8—H8B0.9700
O2—C21.3649 (18)N2—N31.3063 (19)
O2—C161.4316 (18)C12—C131.363 (2)
N1—N21.3511 (17)C12—C111.399 (2)
N1—C101.3563 (17)C12—H12A0.9300
N1—C91.4586 (18)C13—C141.407 (2)
C6—C11.3896 (19)C13—H13A0.9300
C6—C51.3961 (19)N3—C111.3769 (19)
C6—C71.4954 (19)C3—C41.382 (2)
C2—C31.389 (2)C3—H3B0.9300
C2—C11.394 (2)C15—C141.361 (2)
C1—H1A0.9300C15—H15A0.9300
C10—C111.3933 (19)C4—H4A0.9300
C10—C151.397 (2)C9—H9A0.9700
C7—C81.511 (2)C9—H9B0.9700
C5—C41.377 (2)C14—H14A0.9300
C5—H5A0.9300C16—H16A0.9600
C8—C91.517 (2)C16—H16B0.9600
C8—H8A0.9700C16—H16C0.9600
C2—O2—C16117.48 (12)C12—C13—C14122.05 (15)
N2—N1—C10110.12 (12)C12—C13—H13A119.0
N2—N1—C9120.80 (12)C14—C13—H13A119.0
C10—N1—C9128.99 (12)N2—N3—C11107.97 (12)
C1—C6—C5119.18 (13)C4—C3—C2118.97 (13)
C1—C6—C7121.97 (12)C4—C3—H3B120.5
C5—C6—C7118.83 (12)C2—C3—H3B120.5
O2—C2—C3124.61 (13)N3—C11—C10108.32 (13)
O2—C2—C1115.41 (13)N3—C11—C12131.29 (14)
C3—C2—C1119.98 (14)C10—C11—C12120.37 (14)
C6—C1—C2120.50 (13)C14—C15—C10116.26 (14)
C6—C1—H1A119.7C14—C15—H15A121.9
C2—C1—H1A119.7C10—C15—H15A121.9
N1—C10—C11104.48 (12)C5—C4—C3121.66 (14)
N1—C10—C15133.14 (13)C5—C4—H4A119.2
C11—C10—C15122.38 (13)C3—C4—H4A119.2
O1—C7—C6121.22 (12)N1—C9—C8113.99 (12)
O1—C7—C8120.51 (13)N1—C9—H9A108.8
C6—C7—C8118.28 (12)C8—C9—H9A108.8
C4—C5—C6119.69 (14)N1—C9—H9B108.8
C4—C5—H5A120.2C8—C9—H9B108.8
C6—C5—H5A120.2H9A—C9—H9B107.7
C7—C8—C9114.27 (12)C15—C14—C13121.90 (15)
C7—C8—H8A108.7C15—C14—H14A119.0
C9—C8—H8A108.7C13—C14—H14A119.0
C7—C8—H8B108.7O2—C16—H16A109.5
C9—C8—H8B108.7O2—C16—H16B109.5
H8A—C8—H8B107.6H16A—C16—H16B109.5
N3—N2—N1109.11 (12)O2—C16—H16C109.5
C13—C12—C11117.02 (15)H16A—C16—H16C109.5
C13—C12—H12A121.5H16B—C16—H16C109.5
C11—C12—H12A121.5
C16—O2—C2—C313.0 (2)N1—N2—N3—C110.44 (17)
C16—O2—C2—C1167.35 (13)O2—C2—C3—C4179.60 (13)
C5—C6—C1—C20.8 (2)C1—C2—C3—C40.0 (2)
C7—C6—C1—C2177.70 (12)N2—N3—C11—C100.20 (17)
O2—C2—C1—C6179.60 (12)N2—N3—C11—C12178.69 (15)
C3—C2—C1—C60.8 (2)N1—C10—C11—N30.12 (15)
N2—N1—C10—C110.40 (14)C15—C10—C11—N3179.28 (13)
C9—N1—C10—C11176.92 (12)N1—C10—C11—C12178.56 (12)
N2—N1—C10—C15179.42 (15)C15—C10—C11—C120.6 (2)
C9—N1—C10—C154.1 (2)C13—C12—C11—N3177.86 (15)
C1—C6—C7—O1178.41 (13)C13—C12—C11—C100.5 (2)
C5—C6—C7—O13.1 (2)N1—C10—C15—C14177.59 (14)
C1—C6—C7—C81.83 (19)C11—C10—C15—C141.3 (2)
C5—C6—C7—C8176.67 (12)C6—C5—C4—C30.7 (2)
C1—C6—C5—C40.1 (2)C2—C3—C4—C50.7 (2)
C7—C6—C5—C4178.46 (13)N2—N1—C9—C861.53 (17)
O1—C7—C8—C94.4 (2)C10—N1—C9—C8122.27 (15)
C6—C7—C8—C9175.40 (12)C7—C8—C9—N168.40 (17)
C10—N1—N2—N30.54 (16)C10—C15—C14—C131.0 (2)
C9—N1—N2—N3177.39 (12)C12—C13—C14—C150.1 (3)
C11—C12—C13—C140.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···Cg1i0.972.743.504136
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC16H15N3O2
Mr281.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)5.3583 (14), 12.976 (4), 19.688 (5)
β (°) 91.146 (4)
V3)1368.6 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.21 × 0.15 × 0.07
Data collection
DiffractometerSiemens SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.981, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
7461, 2693, 2279
Rint0.018
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.112, 1.04
No. of reflections2693
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.23

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···Cg1i0.972.7433.504135.79
Symmetry code: (i) x1, y, z.
 

Acknowledgements

This project was supported by the Natural Science Foundation of Shandong Province (grant Nos. Y2008B02 and Y2008B32).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationChen, Z.-Y. & Wu, M.-T. (2005). Org. Lett. 7, 475–477.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, Y.-J., Wang, M., Bi, J.-L. & Li, F. (2007). Acta Cryst. E63, o4548.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds