metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{6,6′-Dimeth­­oxy-2,2′-[6-bromo­pyridine-2,3-diylbis(nitrilo­methyl­­idyne)]­diphenol­ato}­copper(II) methanol solvate

aDepartment of Chemistry, Dezhou University, Dezhou 253023, People's Republic of China
*Correspondence e-mail: dzxyjz@126.com

(Received 22 January 2009; accepted 27 January 2009; online 28 February 2009)

In the title compound, [Cu(C21H16BrN3O4)]·CH3OH, the CuII ion is coordinated by two N [Cu—N = 1.814 (3) and 1.917 (3) Å] and two O [Cu—O = 1.805 (3) and 1.893 (3) Å] atoms from the tetra­dentate Schiff base ligand in a distorted square-planar geometry. In the crystal structure, the approximately planar Cu complex mol­ecules are paired into centrosymmetric dimers with short inter­molecular Cu⋯N distances of 3.162 (3) Å. Weak O---H...O hydrogen bonds may help to stabilize the structure.

Related literature

For a related crystal structure, see Saha et al. (2007[Saha, P. K., Dutta, B., Jana, S., Bera, R., Saha, S., Okamoto, K. & Koner, S. (2007). Polyhedron, 26, 563-571.]). For general background, see: Ghosh et al. (2006[Ghosh, R., Rahaman, S. H., Lin, C. N., Lu, T. H. & Ghosh, B. K. (2006). Polyhedron, 25, 3104-3112.]); Nayak et al. (2006[Nayak, M., Koner, R., Lin, H. H., Flörke, U., Wei, H. H. & Mohanta, S. (2006). Inorg. Chem. 45, 10764-10773.]); Singh et al. (2007[Singh, K., Barwa, M. S. & Tyagi, P. (2007). Eur. J. Med. Chem. 42, 394-402.]); Yu et al. (2007[Yu, T. Z., Zhang, K., Zhao, Y. L., Yang, C. H., Zhang, H., Fan, D. W. & Dong, W. K. (2007). Inorg. Chem. Commun. 10, 401-403.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C21H16BrN3O4)]·CH4O

  • Mr = 549.86

  • Triclinic, [P \overline 1]

  • a = 7.4520 (8) Å

  • b = 11.5402 (13) Å

  • c = 12.9432 (14) Å

  • α = 104.345 (2)°

  • β = 96.467 (2)°

  • γ = 96.531 (2)°

  • V = 1059.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.96 mm−1

  • T = 293 (2) K

  • 0.15 × 0.13 × 0.11 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.665, Tmax = 0.737

  • 5332 measured reflections

  • 3705 independent reflections

  • 2885 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.139

  • S = 1.06

  • 3705 reflections

  • 293 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O1 0.82 2.24 3.033 (5) 163
O5—H5⋯O3 0.82 2.63 3.165 (5) 124

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Sheldrick, 1998[Sheldrick, G. M. (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: XP.

Supporting information


Comment top

Schiff bases play an important role in the development of coordination chemistry as they readily form stable complexes with most of the transition metals, in which some could exhibit interesting properties (Yu et al., 2007; Ghosh et al., 2006; Singh et al., 2007; Nayak et al., 2006). Here, we report a new CuII complex based on the tetradentate Schiff-base ligand 6-bromo-2,3-diaminopyridine-N,N'-bis (3-methoxysalicylideneimine).

The geometry and labeling scheme for the crystal structure of the title complex are shown in Figure 1. The coordination sphere for the CuII ion in the title complex is a slightly distorted square planar, in which the four positions are occupied by two N atoms and two O atoms of the Schiff-base ligand. The mean deviation from the plane formed by the two N atoms, two O atoms and the Cu ion is only 0.0329 /A%, indicative of that these five atoms are nearly coplanar. The average bond lengths of Cu—N and Cu—O are 1.866 and 1.849 /A%, respectively, which are slightly shorter than the corresponding distances in aqua-(N,N'-ethylenebis(3-methoxysalicylaldiminato)-N,N',O,O')copper(II) (Saha, et al., 2007).

Related literature top

For a related crystal structure, see Saha et al. (2007). For general background, see: Ghosh et al. (2006); Nayak et al. (2006); Singh et al. (2007); Yu et al. (2007).

Experimental top

The Schiff base ligand was synthesized by condensation 6-bromo-2,3-diaminopyridine and 2-hydroxy-3-methoxybenzaldehyde with the ratio 1:2 in ethanol. The synthesis of the title complex was carried out by reacting Cu(ClO4)2.6H2O, and the Schiff-base ligand (1:1, molar ratio) in methanol. After the stirring process was continued for about 30 min at room temperature, the mixture was filtered and the filtrate was allowed to partial evaporate in air for sevral days to produce crystals suitable for X-ray diffraction with a yield about 60%.

Refinement top

All H atoms were geometrically positioned (C—H 0.93, 0.96 Å and O—H 0.82 Å), and were refined as riding, with Uiso(H) = 1.2-1.5Ueq(C, O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Sheldrick, 1998); software used to prepare material for publication: XP (Sheldrick, 1998).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom-labelling scheme and displacement ellipsoids drawn at the 30% probability level. All H-atoms and the methanol molecule are omitted for clarity.
{6,6'-Dimethoxy-2,2'-[6-bromopyridine-2,3- diylbis(nitrilomethylidyne)]diphenolato}copper(II) methanol solvate top
Crystal data top
[Cu(C21H16BrN3O4)]·CH4OZ = 2
Mr = 549.86F(000) = 554
Triclinic, P1Dx = 1.723 Mg m3
Dm = 1.723 Mg m3
Dm measured by not measured
a = 7.4520 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.5402 (13) ÅCell parameters from 1770 reflections
c = 12.9432 (14) Åθ = 3.0–24.5°
α = 104.345 (2)°µ = 2.96 mm1
β = 96.467 (2)°T = 293 K
γ = 96.531 (2)°Block, blue
V = 1059.9 (2) Å30.15 × 0.13 × 0.11 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3705 independent reflections
Radiation source: fine-focus sealed tube2885 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 88
Tmin = 0.665, Tmax = 0.737k = 139
5332 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0831P)2 + 0.2066P]
where P = (Fo2 + 2Fc2)/3
3705 reflections(Δ/σ)max = 0.001
293 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.45 e Å3
Crystal data top
[Cu(C21H16BrN3O4)]·CH4Oγ = 96.531 (2)°
Mr = 549.86V = 1059.9 (2) Å3
Triclinic, P1Z = 2
a = 7.4520 (8) ÅMo Kα radiation
b = 11.5402 (13) ŵ = 2.96 mm1
c = 12.9432 (14) ÅT = 293 K
α = 104.345 (2)°0.15 × 0.13 × 0.11 mm
β = 96.467 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3705 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2885 reflections with I > 2σ(I)
Tmin = 0.665, Tmax = 0.737Rint = 0.019
5332 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.06Δρmax = 0.73 e Å3
3705 reflectionsΔρmin = 0.45 e Å3
293 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.36241 (7)0.01108 (4)0.60230 (4)0.03577 (19)
Br10.23295 (10)0.51353 (5)0.16747 (4)0.0761 (3)
O10.2903 (4)0.1323 (3)0.5995 (2)0.0383 (7)
O20.2316 (5)0.3501 (3)0.6365 (3)0.0485 (8)
O30.4745 (4)0.0684 (3)0.7448 (2)0.0405 (7)
O40.6350 (5)0.2207 (3)0.9307 (3)0.0634 (10)
O50.1419 (5)0.2035 (3)0.8114 (3)0.0625 (10)
H50.20140.19450.76120.075*
N10.4117 (5)0.3542 (3)0.4995 (3)0.0425 (9)
N20.4290 (4)0.1555 (3)0.6099 (3)0.0332 (8)
N30.2583 (4)0.0873 (3)0.4554 (3)0.0314 (7)
C10.3764 (5)0.2447 (4)0.5091 (3)0.0360 (9)
C20.2886 (5)0.2069 (3)0.4228 (3)0.0334 (9)
C30.2440 (6)0.2854 (4)0.3183 (4)0.0451 (11)
H30.18960.26130.26030.054*
C40.2859 (6)0.3987 (4)0.3081 (4)0.0450 (11)
C50.3641 (6)0.4313 (4)0.3988 (4)0.0465 (11)
H5A0.38500.51090.38960.056*
C60.1301 (5)0.0772 (4)0.4117 (3)0.0359 (9)
C70.1961 (5)0.1589 (4)0.5164 (3)0.0342 (9)
C80.1615 (6)0.2776 (4)0.5331 (4)0.0397 (10)
C90.0664 (6)0.3116 (4)0.4483 (4)0.0478 (12)
H90.04520.39130.45970.057*
C100.0008 (6)0.2296 (5)0.3456 (4)0.0501 (12)
H100.06190.25640.29190.060*
C110.0288 (6)0.1147 (4)0.3262 (4)0.0443 (11)
H110.01530.06020.25980.053*
C120.1635 (5)0.0414 (4)0.3872 (3)0.0366 (10)
H120.11660.09130.31910.044*
C130.2030 (8)0.4705 (4)0.6604 (4)0.0583 (14)
H13A0.25750.50960.61170.087*
H13B0.25760.51080.73310.087*
H13C0.07430.47410.65270.087*
C140.5858 (6)0.0953 (4)0.7995 (3)0.0379 (10)
C150.5660 (6)0.0254 (4)0.8168 (3)0.0372 (10)
C160.6525 (6)0.1045 (4)0.9197 (4)0.0446 (11)
C170.7470 (7)0.0636 (5)1.0005 (4)0.0547 (13)
H170.79980.11771.06570.066*
C180.7609 (7)0.0570 (5)0.9823 (4)0.0546 (13)
H180.82090.08591.03560.066*
C190.6857 (7)0.1340 (5)0.8852 (4)0.0501 (12)
H190.69880.21520.87310.060*
C200.5175 (6)0.1781 (4)0.6964 (3)0.0380 (10)
H200.53760.25760.68900.046*
C210.7138 (11)0.3026 (5)1.0320 (5)0.088 (2)
H21A0.65890.27931.08880.132*
H21B0.69270.38311.03160.132*
H21C0.84280.30061.04350.132*
C220.2129 (10)0.3101 (5)0.8876 (5)0.0784 (18)
H22A0.26490.29250.95230.118*
H22B0.11750.35820.90320.118*
H22C0.30600.35380.86040.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0395 (3)0.0311 (3)0.0352 (3)0.0046 (2)0.0021 (2)0.0076 (2)
Br10.1168 (6)0.0451 (3)0.0517 (4)0.0169 (3)0.0020 (3)0.0105 (3)
O10.0485 (17)0.0308 (15)0.0337 (15)0.0054 (13)0.0022 (13)0.0085 (12)
O20.066 (2)0.0302 (16)0.0483 (19)0.0142 (15)0.0021 (16)0.0084 (14)
O30.0484 (17)0.0341 (16)0.0364 (16)0.0062 (13)0.0035 (14)0.0086 (13)
O40.092 (3)0.039 (2)0.047 (2)0.0006 (18)0.0166 (19)0.0059 (16)
O50.071 (2)0.062 (2)0.048 (2)0.0059 (19)0.0110 (18)0.0016 (18)
N10.045 (2)0.032 (2)0.050 (2)0.0079 (16)0.0042 (18)0.0097 (18)
N20.0338 (18)0.0295 (18)0.0352 (19)0.0026 (14)0.0053 (15)0.0074 (15)
N30.0306 (17)0.0291 (18)0.0335 (18)0.0022 (14)0.0043 (14)0.0078 (15)
C10.032 (2)0.035 (2)0.039 (2)0.0020 (18)0.0081 (18)0.0070 (19)
C20.033 (2)0.028 (2)0.036 (2)0.0014 (17)0.0079 (18)0.0032 (18)
C30.050 (3)0.038 (3)0.045 (3)0.007 (2)0.002 (2)0.007 (2)
C40.054 (3)0.034 (2)0.039 (2)0.006 (2)0.007 (2)0.003 (2)
C50.051 (3)0.034 (2)0.054 (3)0.011 (2)0.014 (2)0.006 (2)
C60.030 (2)0.043 (3)0.037 (2)0.0034 (18)0.0054 (18)0.017 (2)
C70.032 (2)0.034 (2)0.039 (2)0.0039 (17)0.0082 (18)0.0132 (19)
C80.038 (2)0.039 (2)0.043 (3)0.0040 (19)0.005 (2)0.014 (2)
C90.045 (3)0.048 (3)0.059 (3)0.015 (2)0.009 (2)0.024 (2)
C100.047 (3)0.059 (3)0.050 (3)0.015 (2)0.002 (2)0.026 (3)
C110.040 (2)0.051 (3)0.041 (3)0.005 (2)0.001 (2)0.015 (2)
C120.035 (2)0.040 (2)0.033 (2)0.0013 (18)0.0057 (18)0.0082 (19)
C130.077 (4)0.034 (3)0.066 (3)0.015 (2)0.011 (3)0.014 (2)
C140.037 (2)0.043 (3)0.036 (2)0.0122 (19)0.0084 (19)0.011 (2)
C150.037 (2)0.041 (2)0.035 (2)0.0035 (18)0.0057 (18)0.0137 (19)
C160.046 (3)0.045 (3)0.040 (3)0.002 (2)0.000 (2)0.010 (2)
C170.053 (3)0.065 (3)0.040 (3)0.001 (2)0.005 (2)0.011 (2)
C180.063 (3)0.059 (3)0.042 (3)0.020 (3)0.007 (2)0.017 (2)
C190.057 (3)0.052 (3)0.049 (3)0.020 (2)0.006 (2)0.022 (2)
C200.040 (2)0.035 (2)0.043 (2)0.0151 (19)0.009 (2)0.014 (2)
C210.139 (6)0.042 (3)0.060 (4)0.012 (3)0.032 (4)0.002 (3)
C220.104 (5)0.064 (4)0.053 (3)0.016 (3)0.008 (3)0.004 (3)
Geometric parameters (Å, º) top
Cu1—O11.805 (3)C7—C81.392 (6)
Cu1—N21.814 (3)C8—C91.400 (6)
Cu1—O31.893 (3)C9—C101.423 (7)
Cu1—N31.917 (3)C9—H90.9300
Br1—C41.936 (4)C10—C111.332 (6)
O1—C71.337 (5)C10—H100.9300
O2—C131.393 (5)C11—H110.9300
O2—C81.398 (5)C12—H120.9300
O3—C151.320 (5)C13—H13A0.9600
O4—C161.335 (6)C13—H13B0.9600
O4—C211.430 (6)C13—H13C0.9600
O5—C221.378 (6)C14—C151.382 (6)
O5—H50.8200C14—C201.434 (6)
N1—C11.298 (5)C14—C191.456 (6)
N1—C51.366 (6)C15—C161.447 (6)
N2—C201.331 (5)C16—C171.402 (6)
N2—C11.430 (5)C17—C181.371 (7)
N3—C121.317 (5)C17—H170.9300
N3—C21.392 (5)C18—C191.364 (7)
C1—C21.417 (6)C18—H180.9300
C2—C31.408 (6)C19—H190.9300
C3—C41.356 (6)C20—H200.9300
C3—H30.9300C21—H21A0.9600
C4—C51.405 (7)C21—H21B0.9600
C5—H5A0.9300C21—H21C0.9600
C6—C121.385 (6)C22—H22A0.9600
C6—C71.441 (6)C22—H22B0.9600
C6—C111.451 (6)C22—H22C0.9600
O1—Cu1—N2177.45 (14)C9—C10—H10119.9
O1—Cu1—O385.51 (12)C10—C11—C6118.1 (4)
N2—Cu1—O393.31 (13)C10—C11—H11121.0
O1—Cu1—N393.72 (13)C6—C11—H11121.0
N2—Cu1—N387.57 (14)N3—C12—C6123.4 (4)
O3—Cu1—N3177.17 (13)N3—C12—H12118.3
C7—O1—Cu1127.0 (3)C6—C12—H12118.3
C13—O2—C8117.2 (4)O2—C13—H13A109.5
C15—O3—Cu1129.7 (3)O2—C13—H13B109.5
C16—O4—C21116.2 (4)H13A—C13—H13B109.5
C22—O5—H5109.5O2—C13—H13C109.5
C1—N1—C5115.7 (4)H13A—C13—H13C109.5
C20—N2—C1123.0 (3)H13B—C13—H13C109.5
C20—N2—Cu1125.7 (3)C15—C14—C20119.8 (4)
C1—N2—Cu1111.3 (3)C15—C14—C19118.7 (4)
C12—N3—C2119.4 (3)C20—C14—C19121.3 (4)
C12—N3—Cu1128.3 (3)O3—C15—C14123.0 (4)
C2—N3—Cu1112.3 (3)O3—C15—C16120.7 (4)
N1—C1—C2123.0 (4)C14—C15—C16116.2 (4)
N1—C1—N2120.0 (4)O4—C16—C17122.9 (4)
C2—C1—N2116.9 (4)O4—C16—C15113.8 (4)
N3—C2—C3127.0 (4)C17—C16—C15123.3 (4)
N3—C2—C1111.8 (3)C18—C17—C16119.3 (5)
C3—C2—C1121.3 (4)C18—C17—H17120.3
C4—C3—C2115.3 (4)C16—C17—H17120.3
C4—C3—H3122.4C19—C18—C17119.1 (4)
C2—C3—H3122.4C19—C18—H18120.4
C3—C4—C5120.1 (4)C17—C18—H18120.4
C3—C4—Br1118.7 (4)C18—C19—C14123.2 (4)
C5—C4—Br1121.2 (3)C18—C19—H19118.4
N1—C5—C4124.5 (4)C14—C19—H19118.4
N1—C5—H5A117.7N2—C20—C14128.2 (4)
C4—C5—H5A117.7N2—C20—H20115.9
C12—C6—C7121.2 (4)C14—C20—H20115.9
C12—C6—C11116.5 (4)O4—C21—H21A109.5
C7—C6—C11122.3 (4)O4—C21—H21B109.5
O1—C7—C8116.2 (4)H21A—C21—H21B109.5
O1—C7—C6126.3 (4)O4—C21—H21C109.5
C8—C7—C6117.5 (4)H21A—C21—H21C109.5
C7—C8—O2113.3 (4)H21B—C21—H21C109.5
C7—C8—C9118.9 (4)O5—C22—H22A109.5
O2—C8—C9127.8 (4)O5—C22—H22B109.5
C8—C9—C10123.0 (4)H22A—C22—H22B109.5
C8—C9—H9118.5O5—C22—H22C109.5
C10—C9—H9118.5H22A—C22—H22C109.5
C11—C10—C9120.3 (4)H22B—C22—H22C109.5
C11—C10—H10119.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O10.822.243.033 (5)163
O5—H5···O30.822.633.165 (5)124

Experimental details

Crystal data
Chemical formula[Cu(C21H16BrN3O4)]·CH4O
Mr549.86
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.4520 (8), 11.5402 (13), 12.9432 (14)
α, β, γ (°)104.345 (2), 96.467 (2), 96.531 (2)
V3)1059.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)2.96
Crystal size (mm)0.15 × 0.13 × 0.11
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.665, 0.737
No. of measured, independent and
observed [I > 2σ(I)] reflections
5332, 3705, 2885
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.139, 1.06
No. of reflections3705
No. of parameters293
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.73, 0.45

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Sheldrick, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O10.822.243.033 (5)163.2
O5—H5···O30.822.633.165 (5)124.1
 

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGhosh, R., Rahaman, S. H., Lin, C. N., Lu, T. H. & Ghosh, B. K. (2006). Polyhedron, 25, 3104–3112.  Web of Science CSD CrossRef CAS Google Scholar
First citationNayak, M., Koner, R., Lin, H. H., Flörke, U., Wei, H. H. & Mohanta, S. (2006). Inorg. Chem. 45, 10764–10773.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSaha, P. K., Dutta, B., Jana, S., Bera, R., Saha, S., Okamoto, K. & Koner, S. (2007). Polyhedron, 26, 563–571.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1998). XP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, K., Barwa, M. S. & Tyagi, P. (2007). Eur. J. Med. Chem. 42, 394–402.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYu, T. Z., Zhang, K., Zhao, Y. L., Yang, C. H., Zhang, H., Fan, D. W. & Dong, W. K. (2007). Inorg. Chem. Commun. 10, 401–403.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds