organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(2,6-Di­meth­oxy­phen­­oxy)-2-methyl­sulfanylmethyl-2H-tetra­zole

aDepartment of Chemistry, Faculty of Science, Urmia University, 57159 Urmia, Iran, and bDepartment of Chemistry, University of British Columbia, Vancouver, BC, Canada V6T 1Z1
*Correspondence e-mail: pesyan@gmail.com

(Received 24 January 2009; accepted 19 February 2009; online 28 February 2009)

In the title mol­ecule, C11H14N4O3S, the tetra­zole and benzene rings are nearly perpendicular to each other, forming a dihedral angle of 104.93 (14)°. The crystal packing exhibits weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For a related crystal structure, see: Dabbagh et al. (2005[Dabbagh, H. A., Noroozi Pesyan, N., Bagheri, A., Takemoto, S. & Hayashi, H. (2005). Russ. J. Org. Chem. 41, 1055-1063.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14N4O3S

  • Mr = 282.32

  • Orthorhombic, P c a 21

  • a = 12.1795 (5) Å

  • b = 11.0809 (4) Å

  • c = 9.9026 (4) Å

  • V = 1336.45 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 173 K

  • 0.50 × 0.25 × 0.10 mm

Data collection
  • Bruker X8 APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.871, Tmax = 0.975

  • 7950 measured reflections

  • 2873 independent reflections

  • 2670 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.067

  • S = 1.08

  • 2873 reflections

  • 175 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1220 Friedel pairs

  • Flack parameter: 0.06 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O1i 0.99 2.45 3.4277 (19) 170
C11—H11C⋯O3i 0.98 2.45 3.421 (2) 172
C11—H11B⋯O1ii 0.98 2.52 3.471 (2) 163
C10—H10A⋯O2iii 0.99 2.52 3.312 (2) 137
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+1, z]; (ii) [-x+{\script{1\over 2}}, y, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In continuation of our structural study of tetrazole derivatives (Dabbagh et al., 2005) we report herein the structure of the title compound, (I).

In (I) (Fig. 1), the methylsulfanylmethylation proceeded at N2 atom on tetrazole ring. Because of the conjugation of O3 with tetrazole ring the bond distance O3—C9 [1.3388 (17) Å] is obviously shorter than O3—C1 [1.4062 (15) Å]. A similar effect has been found in 5-(4-nitrophenoxy)-1-methylsulfanylmethyl-1H-tetrazole (Dabbagh et al., 2005). Tetrazole ring in (I) is planar, and 2,6-dimethoxyphenoxy group deviates from the tetrazole ring plane so torsion angles C6—C1—O3—C9 and C1—O3—C9—N4 are -79.52 (17)° and -9.6 (2)°, respectively. The torsion angle O3—C1—C2—C3 of 174.02 (13)° implies steric interaction between the benzene and tetrazole rings. The S1—C10 bond [1.792 (2) Å] is slightly shorter than C11—S1 [1.798 (2) Å] in methylsulfanylmethyl group.

The crystal packing exhibits weak intermolecular C—H···O hydrogen bonds (Table 1).

Related literature top

For a related crystal structure, see: Dabbagh et al. (2005).

Experimental top

Dry DMSO, 5 ml, was added dropwise over a period of 30 min to a solution of 0.143 g of compound in 4 ml of acetic anhydride. The mixture was stirred for 40 h at 45–50°C, excess DMSO and acetic anhydride were removed under reduced pressure, and the residue was washed with several 2–3-ml portions of water. The precipitate was dissolved in 20 ml of methylene chloride, the solution was dried over calcium chloride and evaporated, and the residue was separated by column chromatography on silica gel to isolate compound. Yield 20%. IR spectrum (KBr), ν, cm-1: 3050, 2975, 1590, 1530, 1390, 1370, 1300, 1260, 1180, 1110, 760. 1H NMR (300 MHz, DMSO-d6), δ: 7.14 (t, 1H, J = 10 Hz), 6.65 (d, 2H, J = 10 Hz), 5.48 (s, 2H), 3.71 (s, 6H), 2.17 (s, 3H). 13 C NMR (75 MHz, DMSO-d6), δ: 177.50, 152.29, 131.80, 126.74, 105.44, 78.88, 56.20, 56.03, 15.48. Mass spectrum (EI), m/z (Irel, %) 284 (0.6) [M + 2]+, 282 (15) [M]+, 281 (20), 236 (83), 151 (73), 140 (39), 107 (59), 43 (100).

Refinement top

All H atoms were geometrically positioned (C—H 0.95–0.99 Å), and allowed to ride on their parent atoms, with Uiso(H) = 1.2–1.5 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: APEX2 (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SIR (Altomare et al., 1999); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering and 50% probability displacement ellipsoids.
5-(2,6-Dimethoxyphenoxy)-2-methylsulfanylmethyl-2H-tetrazole top
Crystal data top
C11H14N4O3SF(000) = 592
Mr = 282.32Dx = 1.403 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 4562 reflections
a = 12.1795 (5) Åθ = 2.8–27.8°
b = 11.0809 (4) ŵ = 0.25 mm1
c = 9.9026 (4) ÅT = 173 K
V = 1336.45 (9) Å3Irregular, colourless
Z = 40.50 × 0.25 × 0.10 mm
Data collection top
Bruker X8 APEXII
diffractometer
2873 independent reflections
Radiation source: fine-focus sealed tube2670 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Area–detector scansθmax = 28.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1615
Tmin = 0.871, Tmax = 0.975k = 1414
7950 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0323P)2 + 0.1529P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.002
2873 reflectionsΔρmax = 0.18 e Å3
175 parametersΔρmin = 0.15 e Å3
1 restraintAbsolute structure: Flack (1983), 1220 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (6)
Crystal data top
C11H14N4O3SV = 1336.45 (9) Å3
Mr = 282.32Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 12.1795 (5) ŵ = 0.25 mm1
b = 11.0809 (4) ÅT = 173 K
c = 9.9026 (4) Å0.50 × 0.25 × 0.10 mm
Data collection top
Bruker X8 APEXII
diffractometer
2873 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2670 reflections with I > 2σ(I)
Tmin = 0.871, Tmax = 0.975Rint = 0.020
7950 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.067Δρmax = 0.18 e Å3
S = 1.08Δρmin = 0.15 e Å3
2873 reflectionsAbsolute structure: Flack (1983), 1220 Friedel pairs
175 parametersAbsolute structure parameter: 0.06 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.56871 (11)0.77249 (11)0.88143 (15)0.0219 (3)
C20.65815 (12)0.75439 (12)0.96546 (15)0.0236 (3)
C30.74485 (12)0.83700 (14)0.96021 (18)0.0282 (3)
H30.80750.82641.01610.034*
C40.73884 (12)0.93401 (13)0.87333 (17)0.0296 (3)
H40.79840.98930.87000.035*
C50.64873 (13)0.95357 (13)0.79062 (17)0.0279 (3)
H50.64601.02150.73220.033*
C60.56210 (12)0.87112 (12)0.79505 (15)0.0244 (3)
C70.74036 (16)0.64203 (15)1.1436 (2)0.0417 (4)
H7A0.80860.62131.09660.063*
H7B0.72160.57761.20730.063*
H7C0.75030.71791.19300.063*
C80.45668 (14)0.97946 (14)0.6331 (2)0.0388 (4)
H8A0.46211.05390.68610.058*
H8B0.38480.97610.58870.058*
H8C0.51480.97820.56460.058*
C90.39202 (11)0.70979 (11)0.94053 (14)0.0213 (3)
C100.12256 (13)0.65157 (14)1.0324 (2)0.0334 (3)
H10A0.09720.68041.12170.040*
H10B0.12160.56221.03410.040*
C110.05905 (16)0.59888 (17)0.77160 (19)0.0451 (4)
H11A0.13600.60800.74450.068*
H11B0.01130.61570.69410.068*
H11C0.04640.51620.80310.068*
N10.30621 (9)0.63680 (9)0.92891 (14)0.0250 (3)
N20.23531 (10)0.69247 (10)1.01082 (14)0.0266 (3)
N30.27358 (11)0.79161 (11)1.06706 (16)0.0328 (3)
N40.37580 (11)0.80385 (11)1.02308 (15)0.0298 (3)
O10.65369 (8)0.65558 (9)1.04724 (12)0.0297 (2)
O20.46880 (9)0.87735 (9)0.72061 (12)0.0316 (3)
O30.48597 (8)0.68410 (8)0.87649 (10)0.0231 (2)
S10.02856 (3)0.70315 (4)0.90562 (6)0.04717 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0180 (6)0.0215 (6)0.0261 (8)0.0025 (5)0.0015 (6)0.0033 (5)
C20.0226 (7)0.0245 (6)0.0237 (8)0.0029 (5)0.0009 (6)0.0048 (5)
C30.0182 (7)0.0354 (7)0.0310 (9)0.0003 (5)0.0019 (6)0.0091 (6)
C40.0239 (7)0.0294 (7)0.0354 (9)0.0069 (5)0.0059 (6)0.0086 (6)
C50.0292 (7)0.0237 (6)0.0308 (8)0.0041 (5)0.0051 (6)0.0009 (6)
C60.0239 (7)0.0249 (6)0.0243 (8)0.0007 (5)0.0008 (6)0.0018 (5)
C70.0426 (10)0.0425 (8)0.0400 (10)0.0014 (8)0.0177 (9)0.0046 (8)
C80.0417 (9)0.0323 (8)0.0425 (10)0.0001 (7)0.0069 (9)0.0140 (7)
C90.0203 (6)0.0197 (5)0.0238 (8)0.0018 (5)0.0028 (6)0.0026 (5)
C100.0221 (7)0.0346 (7)0.0436 (9)0.0046 (6)0.0078 (7)0.0024 (7)
C110.0453 (11)0.0475 (10)0.0423 (11)0.0133 (8)0.0079 (9)0.0117 (8)
N10.0201 (5)0.0251 (5)0.0298 (7)0.0018 (4)0.0008 (5)0.0012 (5)
N20.0209 (6)0.0257 (6)0.0332 (8)0.0011 (5)0.0028 (5)0.0010 (5)
N30.0267 (6)0.0288 (6)0.0430 (9)0.0028 (5)0.0053 (6)0.0072 (5)
N40.0244 (6)0.0267 (6)0.0382 (8)0.0030 (5)0.0022 (6)0.0059 (5)
O10.0279 (6)0.0299 (5)0.0312 (6)0.0007 (4)0.0075 (5)0.0025 (4)
O20.0296 (6)0.0292 (5)0.0361 (7)0.0045 (4)0.0102 (5)0.0098 (4)
O30.0187 (5)0.0204 (4)0.0302 (6)0.0028 (3)0.0003 (4)0.0023 (4)
S10.02395 (18)0.0424 (2)0.0752 (4)0.00636 (16)0.0048 (2)0.0022 (2)
Geometric parameters (Å, º) top
C1—O31.4062 (15)C7—H7B0.9800
C9—O31.3388 (17)C7—H7C0.9800
N2—C101.4618 (19)C8—O21.4330 (18)
S1—C101.792 (2)C8—H8A0.9800
C6—O21.3562 (18)C8—H8B0.9800
C2—O11.3630 (17)C8—H8C0.9800
C1—C21.385 (2)C9—N11.3265 (17)
C1—C61.390 (2)C9—N41.3393 (18)
C2—C31.399 (2)C10—H10A0.9900
C3—C41.379 (2)C10—H10B0.9900
C3—H30.9500C11—S11.798 (2)
C4—C51.386 (2)C11—H11A0.9800
C4—H40.9500C11—H11B0.9800
C5—C61.3964 (19)C11—H11C0.9800
C5—H50.9500N1—N21.3357 (17)
C7—O11.431 (2)N2—N31.3169 (17)
C7—H7A0.9800N3—N41.3260 (18)
C9—O3—C1116.61 (10)O2—C8—H8B109.5
N2—C10—S1113.52 (12)H8A—C8—H8B109.5
C10—S1—C11100.37 (9)O2—C8—H8C109.5
C2—C1—C6121.93 (12)H8A—C8—H8C109.5
C2—C1—O3118.92 (12)H8B—C8—H8C109.5
C6—C1—O3118.99 (12)N1—C9—O3120.17 (11)
O1—C2—C1116.22 (12)N1—C9—N4114.28 (12)
O1—C2—C3125.32 (13)O3—C9—N4125.50 (12)
C1—C2—C3118.47 (13)N2—C10—H10A108.9
C4—C3—C2119.57 (14)S1—C10—H10A108.9
C4—C3—H3120.2N2—C10—H10B108.9
C2—C3—H3120.2S1—C10—H10B108.9
C3—C4—C5122.18 (13)H10A—C10—H10B107.7
C3—C4—H4118.9S1—C11—H11A109.5
C5—C4—H4118.9S1—C11—H11B109.5
C4—C5—C6118.51 (14)H11A—C11—H11B109.5
C4—C5—H5120.7S1—C11—H11C109.5
C6—C5—H5120.7H11A—C11—H11C109.5
O2—C6—C1115.02 (12)H11B—C11—H11C109.5
O2—C6—C5125.64 (13)C9—N1—N2100.09 (11)
C1—C6—C5119.33 (14)N3—N2—N1114.41 (12)
O1—C7—H7A109.5N3—N2—C10121.96 (13)
O1—C7—H7B109.5N1—N2—C10123.56 (12)
H7A—C7—H7B109.5N2—N3—N4106.18 (12)
O1—C7—H7C109.5N3—N4—C9105.04 (12)
H7A—C7—H7C109.5C2—O1—C7116.81 (12)
H7B—C7—H7C109.5C6—O2—C8117.09 (12)
O2—C8—H8A109.5
C6—C1—O3—C979.52 (17)N4—C9—N1—N20.13 (16)
N4—C9—O3—C19.6 (2)C9—N1—N2—N30.54 (16)
C6—C1—C2—O1178.73 (13)C9—N1—N2—C10177.63 (14)
O3—C1—C2—O15.86 (18)S1—C10—N2—N393.31 (17)
C6—C1—C2—C31.4 (2)S1—C10—N2—N183.56 (15)
O3—C1—C2—C3174.02 (13)N1—N2—N3—N40.76 (18)
O1—C2—C3—C4179.56 (14)C10—N2—N3—N4177.90 (15)
C1—C2—C3—C40.6 (2)N2—N3—N4—C90.60 (17)
C2—C3—C4—C50.5 (2)N1—C9—N4—N30.31 (17)
C3—C4—C5—C60.7 (2)O3—C9—N4—N3177.81 (14)
C2—C1—C6—O2179.07 (13)C1—C2—O1—C7174.19 (14)
O3—C1—C6—O25.51 (18)C3—C2—O1—C75.9 (2)
C2—C1—C6—C51.2 (2)C1—C6—O2—C8178.13 (14)
O3—C1—C6—C5174.26 (13)C5—C6—O2—C82.1 (2)
C4—C5—C6—O2179.84 (14)N1—C9—O3—C1173.03 (12)
C4—C5—C6—C10.1 (2)C2—C1—O3—C9104.93 (14)
O3—C9—N1—N2177.52 (12)N2—C10—S1—C1178.85 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O1i0.992.453.4277 (19)170
C11—H11C···O3i0.982.453.421 (2)172
C11—H11B···O1ii0.982.523.471 (2)163
C10—H10A···O2iii0.992.523.312 (2)137
Symmetry codes: (i) x1/2, y+1, z; (ii) x+1/2, y, z1/2; (iii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H14N4O3S
Mr282.32
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)173
a, b, c (Å)12.1795 (5), 11.0809 (4), 9.9026 (4)
V3)1336.45 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.50 × 0.25 × 0.10
Data collection
DiffractometerBruker X8 APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.871, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
7950, 2873, 2670
Rint0.020
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.067, 1.08
No. of reflections2873
No. of parameters175
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.15
Absolute structureFlack (1983), 1220 Friedel pairs
Absolute structure parameter0.06 (6)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SIR (Altomare et al., 1999), SHELXTL (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O1i0.992.4483.4277 (19)169.92
C11—H11C···O3i0.982.4493.421 (2)171.53
C11—H11B···O1ii0.982.5203.471 (2)163.31
C10—H10A···O2iii0.992.5243.312 (2)136.50
Symmetry codes: (i) x1/2, y+1, z; (ii) x+1/2, y, z1/2; (iii) x+1/2, y, z+1/2.
 

Acknowledgements

The authors thank the Urmia University Research Council for supporting this work. We also gratefully acknowledge the Structural Chemistry Facility of the University of British Columbia.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDabbagh, H. A., Noroozi Pesyan, N., Bagheri, A., Takemoto, S. & Hayashi, H. (2005). Russ. J. Org. Chem. 41, 1055–1063.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds