metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m286-m287

Hexa-μ-chlorido-hexa­chlorido(η6-hexa­methyl­benzene)trialuminium(III)lanthanum(III) benzene solvate

aDepartment of Chemistry, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
*Correspondence e-mail: marina@albany.edu

(Received 2 February 2009; accepted 10 February 2009; online 18 February 2009)

In the title compound, [Al3LaCl12(C12H18)]·C6H6, all mol­ecules are located on a mirror plane. Three chloridoaluminate groups and a hexa­methyl­benzene mol­ecule are bound to the central lanthanum(III) ion, forming a distorted penta­gonal bipyramid with the η6-coordinated arene located at the apical position. The hexa­methyl­benzene ligand disordered between two orientations in a 1:1 ratio is also involved in parallel-slipped ππ stacking inter­molecular inter­actions with a benzene solvent mol­ecule [centroid–centroid distance 3.612 (4) Å].

Related literature

For the previously characterized lanthanum chloro­aluminate and chloro­gallate complexes, see: Filatov et al. (2008[Filatov, A. S., Rogachev, A. Yu. & Petrukhina, M. A. (2008). J. Mol. Struct. 890, 116-122.]). For a recent review of other lanthanide chloro­aluminate complexes, see: Bochkarev (2002[Bochkarev, M. N. (2002). Chem. Rev. 102, 2089-2117.]). For complexes of lanthanide chloro­gallates with polycyclic aromatic systems, see: Gorlov et al. (2008[Gorlov, M., Hussami, L. L., Fischer, A. & Kloo, L. (2008). Eur. J. Inorg. Chem. pp. 5191-5195.]).

[Scheme 1]

Experimental

Crystal data
  • [Al3LaCl12(C12H18)]·C6H6

  • Mr = 885.62

  • Orthorhombic, P n m a

  • a = 12.2127 (6) Å

  • b = 16.4205 (8) Å

  • c = 16.9790 (8) Å

  • V = 3404.9 (3) Å3

  • Z = 4

  • Mo- Kα radiation

  • μ = 2.28 mm−1

  • T = 173 K

  • 0.22 × 0.20 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.613, Tmax = 0.697

  • 28535 measured reflections

  • 4250 independent reflections

  • 3911 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.063

  • S = 1.05

  • 4250 reflections

  • 189 parameters

  • H-atom parameters not refined

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.99 e Å−3

Table 1
Selected bond lengths (Å)

La1—C1 2.945 (3)
La1—C2 2.965 (2)
La1—C3 2.957 (3)
La1—C4 2.941 (4)
La1—Cl3 2.9128 (5)
La1—Cl4 2.9298 (6)
La1—Cl5 2.9083 (7)
La1—Cl6 2.9097 (7)
La1—Cg1 2.613 (3)

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

We have recently reported X-ray structural characterization of the first two lanthanum(III) chloroaluminate complexes with neutral arenes, [La(η6-C6H5Me)(AlCl4)3] and [La(η6-C6Me6)(AlCl4)3], as well as of the first lanthanum(III) chlorogallate complex, [La(η6-C6Me6)(GaCl4)3] (Filatov et al., 2008). The [La(η6-C6Me6)(AlCl4)3].0.5C6H6 complex crystallizes in the monoclinic P21/c space group with the β angle being close to 90° (β = 90.27°). We later found that under slightly different experimental conditions, namely at a higher temperature (285 versus 273 K), the lanthanum complex with hexamethylbenzene, [La(η6-C6Me6)(AlCl4)3].C6H6 (I), is crystallized.

The molecular structure of (I) is comprised of the three chloroaluminate groups and a hexamethylbenzene molecule bound to the central lanthanum(III) ion (Fig.1). The coordination polyhedron is a distorted pentagonal bipyramid with the η6-arene located at the apical position. The La–C bond distances span from 2.941 (4) to 2.965 (2) Å with a La–centroid distance being 2.613 (3) Å. These distances are comparable to those found in the previously reported complex [La(η6-C6Me6)(AlCl4)3].0.5C6H6 (II) [La—C 2.927 (7)–3.035 (7)Å; La–centroid 2.633 (7)Å].

In (I), coordinated hexamethylbenzene is engaged into π-π stacking interactions with a solvent benzene molecule. The intercentroid distance between their 6-membered rings is 3.612 (4) Å. The two ring planes are not parallel and the dihedral angle is 12.7° (Fig.2). In the above hemisolvate (II), on the contrary, both benzene faces are involved in π-π stacking interactions as benzene is sandwiched between two hexamethylbenzene molecules. The distance between the centroids of the hexamethylbenzene and benzene rings (3.688 (4) Å) is noticeably longer than that found in (I).

Related literature top

For the previously characterized lanthanum chloroaluminate and chlorogallate complexes, see: Filatov et al. (2008). For a recent review of other lanthanide chloroaluminate complexes, see: Bochkarev (2002). For complexes of lanthanide chlorogallates with polycyclic aromatic systems, see: Gorlov et al. (2008).

Experimental top

LaCl3 (100 mg, 0.41 mmol), AlCl3 (163 mg, 1.22 mmol), hexamethylbenzene (66 mg, 0.41 mmol) and an excess of aluminium foil were placed into a Schlenk flask inside the glove box. Benzene (10 ml) was added to the flask and the mixture was refluxed for two hours. The LaCl3, AlCl3, and hexamethylbenzene dissolved completely to give a yellow solution. The solution was filtered while hot through a pad of Celite and then kept at 12°C under argon for 2 days to afford a yellow crystalline material. Yield: 240 mg (65%). IR data (cm-1): 3091 (w), 3071 (w), 3036 (w), 1598 (m), 1531 (w), 1478 (m), 1423 (s), 1382 (m), 1332 (m), 1272 (m), 1180 (w), 1076 (w), 983 (w), 824 (w), 677 (s).

Refinement top

All C—H atoms were refined using the riding model approximation, with C—H = 0.95–0.98Å [Uiso(H) = 1.2 or 1.5Ueq(C)]. All other atoms were refined anisotropically. Large anisotropy of the carbon atoms of hexamethylbenzene suggests the presence of disorder. It was modeled over two rotational orientations in a 1:1 ratio. The C5 and C8 carbon atoms lie on a mirror plane and are constrained to have identical anisotropic displacement parameters (EADP command in the SHELXL realm).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I), along with the atom numbering scheme [symmetry code: (i) x, -y + 1/2, z]. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms and disordered parts are omitted for clarity.
[Figure 2] Fig. 2. A view of the molecular structure of (I) showing π-π stacking interactions between coordinated C6Me6 and benzene rings.
Hexa-µ-chlorido-hexachlorido(η6- hexamethylbenzene)trialuminium(III)lanthanum(III) benzene solvate top
Crystal data top
[Al3LaCl12(C12H18)]·C6H6F(000) = 1728
Mr = 885.62Dx = 1.728 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 7019 reflections
a = 12.2127 (6) Åθ = 2.5–28.2°
b = 16.4205 (8) ŵ = 2.28 mm1
c = 16.9790 (8) ÅT = 173 K
V = 3404.9 (3) Å3Block, yellow
Z = 40.22 × 0.20 × 0.16 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4250 independent reflections
Radiation source: fine-focus sealed tube3911 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
0.30° ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1516
Tmin = 0.613, Tmax = 0.697k = 2121
28535 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H-atom parameters not refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0304P)2 + 3.1621P]
where P = (Fo2 + 2Fc2)/3
4250 reflections(Δ/σ)max < 0.001
189 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.99 e Å3
Crystal data top
[Al3LaCl12(C12H18)]·C6H6V = 3404.9 (3) Å3
Mr = 885.62Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 12.2127 (6) ŵ = 2.28 mm1
b = 16.4205 (8) ÅT = 173 K
c = 16.9790 (8) Å0.22 × 0.20 × 0.16 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4250 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
3911 reflections with I > 2σ(I)
Tmin = 0.613, Tmax = 0.697Rint = 0.018
28535 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.063H-atom parameters not refined
S = 1.05Δρmax = 0.89 e Å3
4250 reflectionsΔρmin = 0.99 e Å3
189 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
La10.106393 (12)0.25000.425620 (9)0.02758 (6)
Al10.09537 (6)0.04272 (4)0.32343 (5)0.04146 (16)
Al20.20200 (8)0.25000.41914 (6)0.0403 (2)
Cl10.02765 (6)0.03298 (4)0.23836 (5)0.06224 (19)
Cl20.18966 (7)0.06204 (4)0.34109 (6)0.0684 (2)
Cl30.19872 (5)0.14875 (3)0.30139 (3)0.04206 (13)
Cl40.02586 (5)0.08226 (4)0.43571 (3)0.04489 (14)
Cl50.09121 (6)0.25000.52121 (4)0.04250 (18)
Cl60.08346 (6)0.25000.32208 (4)0.03682 (16)
Cl70.29273 (6)0.14181 (5)0.41927 (4)0.05841 (18)
C10.3384 (3)0.25000.4729 (2)0.0515 (10)
C20.3003 (3)0.17691 (17)0.50333 (19)0.0609 (8)
C30.2212 (3)0.1777 (3)0.5621 (2)0.0823 (13)
C40.1820 (3)0.25000.5901 (2)0.096 (3)
C50.4271 (4)0.25000.4107 (3)0.194 (5)
H5A0.47890.29430.42140.291*0.50
H5B0.39400.25800.35870.291*0.50
H5C0.46590.19780.41180.291*0.50
C60.3258 (8)0.0879 (6)0.4928 (7)0.087 (3)0.50
H6A0.37810.07060.53320.130*0.50
H6B0.35770.07910.44050.130*0.50
H6C0.25830.05610.49770.130*0.50
C70.1582 (8)0.1206 (6)0.6166 (5)0.093 (3)0.50
H7A0.18120.12990.67110.139*0.50
H7B0.17350.06400.60190.139*0.50
H7C0.07960.13120.61170.139*0.50
C6X0.3773 (8)0.1077 (7)0.4617 (6)0.084 (4)0.50
H6X10.43980.09560.49590.126*0.50
H6X20.40390.12810.41090.126*0.50
H6X30.33440.05810.45330.126*0.50
C7X0.2146 (9)0.0787 (5)0.5824 (6)0.092 (3)0.50
H7X10.14250.06590.60450.137*0.50
H7X20.27160.06460.62060.137*0.50
H7X30.22570.04730.53390.137*0.50
C80.1026 (4)0.25000.6586 (3)0.194 (5)
H8A0.06910.19600.66360.291*0.50
H8B0.04540.29070.64940.291*0.50
H8C0.14200.26330.70720.291*0.50
C90.5948 (4)0.25000.6119 (3)0.088 (2)
H90.66000.25000.58140.106*
C100.5464 (3)0.1771 (2)0.6345 (2)0.0750 (10)
H100.57790.12650.61930.090*
C110.4547 (3)0.1790 (2)0.6780 (2)0.0679 (9)
H110.42120.12930.69360.082*
C120.4094 (3)0.25000.7000 (3)0.0646 (12)
H120.34490.25000.73120.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.02175 (8)0.03570 (10)0.02528 (9)0.0000.00028 (5)0.000
Al10.0428 (4)0.0342 (3)0.0475 (4)0.0003 (3)0.0093 (3)0.0026 (3)
Al20.0247 (4)0.0577 (6)0.0384 (5)0.0000.0008 (4)0.000
Cl10.0664 (4)0.0525 (4)0.0678 (4)0.0015 (3)0.0311 (3)0.0082 (3)
Cl20.0666 (4)0.0438 (3)0.0947 (6)0.0136 (3)0.0232 (4)0.0036 (4)
Cl30.0434 (3)0.0424 (3)0.0404 (3)0.0030 (2)0.0099 (2)0.0068 (2)
Cl40.0460 (3)0.0431 (3)0.0456 (3)0.0101 (2)0.0013 (2)0.0080 (2)
Cl50.0288 (3)0.0687 (5)0.0300 (3)0.0000.0031 (3)0.000
Cl60.0277 (3)0.0530 (4)0.0298 (3)0.0000.0025 (3)0.000
Cl70.0418 (3)0.0720 (5)0.0615 (4)0.0171 (3)0.0028 (3)0.0021 (3)
C10.0227 (14)0.099 (3)0.0325 (16)0.0000.0035 (12)0.000
C20.0654 (17)0.0486 (14)0.0688 (18)0.0173 (13)0.0438 (16)0.0151 (13)
C30.071 (2)0.114 (3)0.0617 (19)0.055 (2)0.0416 (18)0.055 (2)
C40.0269 (19)0.237 (9)0.0259 (18)0.0000.0009 (14)0.000
C50.0328 (17)0.507 (15)0.0414 (19)0.0000.0080 (14)0.000
C60.082 (7)0.060 (5)0.118 (9)0.034 (5)0.054 (6)0.025 (5)
C70.099 (7)0.110 (7)0.070 (5)0.061 (6)0.042 (5)0.058 (5)
C6X0.075 (6)0.089 (8)0.087 (7)0.044 (6)0.037 (5)0.040 (6)
C7X0.111 (8)0.067 (5)0.097 (7)0.032 (5)0.053 (6)0.048 (5)
C80.0328 (17)0.507 (15)0.0414 (19)0.0000.0080 (14)0.000
C90.052 (3)0.172 (7)0.041 (2)0.0000.0042 (19)0.000
C100.081 (2)0.080 (2)0.0634 (19)0.029 (2)0.0217 (18)0.0169 (17)
C110.070 (2)0.069 (2)0.0653 (19)0.0142 (17)0.0277 (16)0.0189 (16)
C120.039 (2)0.105 (4)0.049 (2)0.0000.0136 (17)0.000
Geometric parameters (Å, º) top
La1—C12.945 (3)C3—C7X1.663 (8)
La1—C22.965 (2)C4—C3i1.366 (5)
La1—C32.957 (3)C4—C81.514 (6)
La1—C42.941 (4)C5—H5A0.9800
La1—Cl32.9128 (5)C5—H5B0.9800
La1—Cl42.9298 (6)C5—H5C0.9800
La1—Cl52.9083 (7)C8—H8A0.9800
La1—Cl62.9097 (7)C8—H8B0.9800
La1—Cg12.613 (3)C8—H8C0.9800
Cg1—Cg23.612 (4)C6—H6A0.9800
La1—Cl3i2.9128 (5)C6—H6B0.9800
La1—Cl4i2.9298 (6)C6—H6C0.9800
La1—C3i2.957 (3)C7—H7A0.9800
La1—C2i2.965 (2)C7—H7B0.9800
Al1—Cl12.0902 (10)C7—H7C0.9800
Al1—Cl22.0918 (10)C6X—H6X10.9800
Al1—Cl32.1828 (9)C6X—H6X20.9800
Al1—Cl42.1855 (10)C6X—H6X30.9800
Al2—Cl72.0937 (9)C7X—H7X10.9800
Al2—Cl7i2.0937 (9)C7X—H7X20.9800
Al2—Cl62.1936 (12)C7X—H7X30.9800
Al2—Cl52.1987 (12)C9—C101.389 (5)
C1—C2i1.387 (4)C9—C10i1.389 (5)
C1—C21.387 (4)C9—H90.9500
C1—C51.513 (6)C10—C111.343 (5)
C2—C31.389 (5)C10—H100.9500
C2—C61.505 (10)C11—C121.344 (4)
C2—C6X1.635 (10)C11—H110.9500
C3—C41.366 (5)C12—C11i1.344 (4)
C3—C71.525 (7)C12—H120.9500
Cl5—La1—Cl671.09 (2)Cl7—Al2—Cl5108.96 (4)
Cl5—La1—Cl3136.497 (15)Cl7i—Al2—Cl5108.96 (4)
Cl6—La1—Cl382.586 (17)Cl6—Al2—Cl5100.72 (5)
Cl5—La1—Cl3i136.497 (14)Al1—Cl3—La196.16 (3)
Cl6—La1—Cl3i82.586 (17)Al1—Cl4—La195.61 (3)
Cl3—La1—Cl3i69.61 (2)Al2—Cl5—La194.06 (4)
Cl5—La1—Cl471.868 (13)Al2—Cl6—La194.13 (4)
Cl6—La1—Cl476.576 (13)C2i—C1—C2119.9 (4)
Cl3—La1—Cl468.636 (17)C2i—C1—C5119.99 (18)
Cl3i—La1—Cl4135.147 (17)C2—C1—C5119.99 (18)
Cl5—La1—Cl4i71.868 (13)C2i—C1—La177.23 (17)
Cl6—La1—Cl4i76.576 (13)C2—C1—La177.23 (17)
Cl3—La1—Cl4i135.147 (17)C5—C1—La1119.9 (3)
Cl3i—La1—Cl4i68.636 (17)C1—C2—C3119.5 (3)
Cl4—La1—Cl4i140.15 (3)C1—C2—C6136.6 (6)
Cl5—La1—C474.37 (8)C3—C2—C6103.8 (6)
Cl6—La1—C4145.46 (8)C1—C2—La175.63 (16)
Cl3—La1—C4124.47 (6)C3—C2—La176.11 (16)
Cl3i—La1—C4124.47 (6)C6—C2—La1120.4 (4)
Cl4—La1—C492.86 (3)C6X—C2—La1123.2 (4)
Cl4i—La1—C492.86 (3)C4—C3—C2120.1 (3)
Cl5—La1—C1130.25 (7)C4—C3—C798.4 (6)
Cl6—La1—C1158.66 (7)C2—C3—C7141.3 (6)
Cl3—La1—C179.93 (6)C4—C3—La176.0 (2)
Cl3i—La1—C179.93 (6)C2—C3—La176.76 (15)
Cl4—La1—C1107.879 (16)C7—C3—La1118.9 (3)
Cl4i—La1—C1107.879 (17)C3i—C4—C3120.8 (4)
C4—La1—C155.88 (10)C3i—C4—C8119.5 (2)
Cl5—La1—C3i87.49 (8)C3—C4—C8119.5 (2)
Cl6—La1—C3i148.34 (6)C3i—C4—La177.2 (2)
Cl3—La1—C3i127.81 (6)C3—C4—La177.2 (2)
Cl3i—La1—C3i98.90 (10)C8—C4—La1121.9 (3)
Cl4—La1—C3i119.39 (10)C1—C5—H5A109.5
Cl4i—La1—C3i74.68 (7)C1—C5—H5B109.5
C4—La1—C3i26.77 (10)H5A—C5—H5B109.5
C1—La1—C3i47.94 (8)C1—C5—H5C109.5
Cl5—La1—C387.49 (8)H5A—C5—H5C109.5
Cl6—La1—C3148.34 (6)H5B—C5—H5C109.5
Cl3—La1—C398.90 (10)C4—C8—H8A109.5
Cl3i—La1—C3127.81 (6)C4—C8—H8B109.5
Cl4—La1—C374.68 (7)H8A—C8—H8B109.5
Cl4i—La1—C3119.39 (10)C4—C8—H8C109.5
C4—La1—C326.77 (10)H8A—C8—H8C109.5
C1—La1—C347.94 (8)H8B—C8—H8C109.5
C3i—La1—C347.35 (17)C2—C6—H6A109.5
Cl5—La1—C2i114.49 (8)C2—C6—H6B109.5
Cl6—La1—C2i154.88 (5)C2—C6—H6C109.5
Cl3—La1—C2i104.12 (8)C3—C7—H7A109.5
Cl3i—La1—C2i77.41 (6)C3—C7—H7B109.5
Cl4—La1—C2i128.51 (5)C3—C7—H7C109.5
Cl4i—La1—C2i82.04 (6)C2—C6X—H6X1109.5
C4—La1—C2i47.68 (9)C2—C6X—H6X2109.5
C1—La1—C2i27.14 (7)H6X1—C6X—H6X2109.5
C3i—La1—C2i27.13 (10)C2—C6X—H6X3109.5
C3—La1—C2i55.61 (8)H6X1—C6X—H6X3109.5
Cl5—La1—C2114.49 (8)H6X2—C6X—H6X3109.5
Cl6—La1—C2154.88 (5)C3—C7X—H7X1109.5
Cl3—La1—C277.41 (6)C3—C7X—H7X2109.5
Cl3i—La1—C2104.12 (8)H7X1—C7X—H7X2109.5
Cl4—La1—C282.04 (6)C3—C7X—H7X3109.5
Cl4i—La1—C2128.51 (5)H7X1—C7X—H7X3109.5
C4—La1—C247.68 (9)H7X2—C7X—H7X3109.5
C1—La1—C227.14 (7)C10—C9—C10i119.1 (5)
C3i—La1—C255.61 (8)C10—C9—H9120.5
C3—La1—C227.13 (10)C10i—C9—H9120.5
C2i—La1—C247.76 (11)C11—C10—C9119.2 (4)
Cl1—Al1—Cl2115.58 (4)C11—C10—H10120.4
Cl1—Al1—Cl3110.99 (4)C9—C10—H10120.4
Cl2—Al1—Cl3111.24 (4)C10—C11—C12121.1 (4)
Cl1—Al1—Cl4110.26 (4)C10—C11—H11119.5
Cl2—Al1—Cl4109.45 (5)C12—C11—H11119.5
Cl3—Al1—Cl497.89 (3)C11i—C12—C11120.5 (5)
Cl7—Al2—Cl7i116.10 (6)C11i—C12—H12119.8
Cl7—Al2—Cl6110.49 (4)C11—C12—H12119.8
Cl7i—Al2—Cl6110.49 (4)
Symmetry code: (i) x, y+1/2, z.

Experimental details

Crystal data
Chemical formula[Al3LaCl12(C12H18)]·C6H6
Mr885.62
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)173
a, b, c (Å)12.2127 (6), 16.4205 (8), 16.9790 (8)
V3)3404.9 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.28
Crystal size (mm)0.22 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.613, 0.697
No. of measured, independent and
observed [I > 2σ(I)] reflections
28535, 4250, 3911
Rint0.018
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.063, 1.05
No. of reflections4250
No. of parameters189
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.89, 0.99

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2009).

Selected bond lengths (Å) top
La1—C12.945 (3)La1—Cl42.9298 (6)
La1—C22.965 (2)La1—Cl52.9083 (7)
La1—C32.957 (3)La1—Cl62.9097 (7)
La1—C42.941 (4)La1—Cg12.613 (3)
La1—Cl32.9128 (5)Cg1—Cg23.612 (4)
 

Acknowledgements

We thank the National Science Foundation for financial support (CHE-0546945). We are also very grateful to the University at Albany for supporting the X-ray center at the Department of Chemistry.

References

First citationBochkarev, M. N. (2002). Chem. Rev. 102, 2089–2117.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFilatov, A. S., Rogachev, A. Yu. & Petrukhina, M. A. (2008). J. Mol. Struct. 890, 116-122.  Web of Science CSD CrossRef CAS Google Scholar
First citationGorlov, M., Hussami, L. L., Fischer, A. & Kloo, L. (2008). Eur. J. Inorg. Chem. pp. 5191–5195.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 3| March 2009| Pages m286-m287
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds