metal-organic compounds
Hexa-μ-chlorido-hexachlorido(η6-hexamethylbenzene)trialuminium(III)lanthanum(III) benzene solvate
aDepartment of Chemistry, University at Albany, 1400 Washington Avenue, Albany, NY 12222, USA
*Correspondence e-mail: marina@albany.edu
In the title compound, [Al3LaCl12(C12H18)]·C6H6, all molecules are located on a mirror plane. Three chloridoaluminate groups and a hexamethylbenzene molecule are bound to the central lanthanum(III) ion, forming a distorted pentagonal bipyramid with the η6-coordinated arene located at the apical position. The hexamethylbenzene ligand disordered between two orientations in a 1:1 ratio is also involved in parallel-slipped π–π stacking intermolecular interactions with a benzene solvent molecule [centroid–centroid distance 3.612 (4) Å].
Related literature
For the previously characterized lanthanum chloroaluminate and chlorogallate complexes, see: Filatov et al. (2008). For a recent review of other lanthanide chloroaluminate complexes, see: Bochkarev (2002). For complexes of lanthanide chlorogallates with polycyclic aromatic systems, see: Gorlov et al. (2008).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2003); cell SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2009).
Supporting information
10.1107/S1600536809004899/cv2516sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809004899/cv2516Isup2.hkl
LaCl3 (100 mg, 0.41 mmol), AlCl3 (163 mg, 1.22 mmol), hexamethylbenzene (66 mg, 0.41 mmol) and an excess of aluminium foil were placed into a Schlenk flask inside the
Benzene (10 ml) was added to the flask and the mixture was refluxed for two hours. The LaCl3, AlCl3, and hexamethylbenzene dissolved completely to give a yellow solution. The solution was filtered while hot through a pad of Celite and then kept at 12°C under argon for 2 days to afford a yellow crystalline material. Yield: 240 mg (65%). IR data (cm-1): 3091 (w), 3071 (w), 3036 (w), 1598 (m), 1531 (w), 1478 (m), 1423 (s), 1382 (m), 1332 (m), 1272 (m), 1180 (w), 1076 (w), 983 (w), 824 (w), 677 (s).All C—H atoms were refined using the riding model approximation, with C—H = 0.95–0.98Å [Uiso(H) = 1.2 or 1.5Ueq(C)]. All other atoms were refined anisotropically. Large anisotropy of the carbon atoms of hexamethylbenzene suggests the presence of disorder. It was modeled over two rotational orientations in a 1:1 ratio. The C5 and C8 carbon atoms lie on a mirror plane and are constrained to have identical anisotropic displacement parameters (EADP command in the SHELXL realm).
Data collection: SMART (Bruker, 2003); cell
SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2009).[Al3LaCl12(C12H18)]·C6H6 | F(000) = 1728 |
Mr = 885.62 | Dx = 1.728 Mg m−3 |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 7019 reflections |
a = 12.2127 (6) Å | θ = 2.5–28.2° |
b = 16.4205 (8) Å | µ = 2.28 mm−1 |
c = 16.9790 (8) Å | T = 173 K |
V = 3404.9 (3) Å3 | Block, yellow |
Z = 4 | 0.22 × 0.20 × 0.16 mm |
Bruker SMART APEX CCD area-detector diffractometer | 4250 independent reflections |
Radiation source: fine-focus sealed tube | 3911 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
0.30° ω scans | θmax = 28.3°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −15→16 |
Tmin = 0.613, Tmax = 0.697 | k = −21→21 |
28535 measured reflections | l = −22→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.063 | H-atom parameters not refined |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0304P)2 + 3.1621P] where P = (Fo2 + 2Fc2)/3 |
4250 reflections | (Δ/σ)max < 0.001 |
189 parameters | Δρmax = 0.89 e Å−3 |
0 restraints | Δρmin = −0.99 e Å−3 |
[Al3LaCl12(C12H18)]·C6H6 | V = 3404.9 (3) Å3 |
Mr = 885.62 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 12.2127 (6) Å | µ = 2.28 mm−1 |
b = 16.4205 (8) Å | T = 173 K |
c = 16.9790 (8) Å | 0.22 × 0.20 × 0.16 mm |
Bruker SMART APEX CCD area-detector diffractometer | 4250 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | 3911 reflections with I > 2σ(I) |
Tmin = 0.613, Tmax = 0.697 | Rint = 0.018 |
28535 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.063 | H-atom parameters not refined |
S = 1.05 | Δρmax = 0.89 e Å−3 |
4250 reflections | Δρmin = −0.99 e Å−3 |
189 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
La1 | 0.106393 (12) | 0.2500 | 0.425620 (9) | 0.02758 (6) | |
Al1 | 0.09537 (6) | 0.04272 (4) | 0.32343 (5) | 0.04146 (16) | |
Al2 | −0.20200 (8) | 0.2500 | 0.41914 (6) | 0.0403 (2) | |
Cl1 | −0.02765 (6) | 0.03298 (4) | 0.23836 (5) | 0.06224 (19) | |
Cl2 | 0.18966 (7) | −0.06204 (4) | 0.34109 (6) | 0.0684 (2) | |
Cl3 | 0.19872 (5) | 0.14875 (3) | 0.30139 (3) | 0.04206 (13) | |
Cl4 | 0.02586 (5) | 0.08226 (4) | 0.43571 (3) | 0.04489 (14) | |
Cl5 | −0.09121 (6) | 0.2500 | 0.52121 (4) | 0.04250 (18) | |
Cl6 | −0.08346 (6) | 0.2500 | 0.32208 (4) | 0.03682 (16) | |
Cl7 | −0.29273 (6) | 0.14181 (5) | 0.41927 (4) | 0.05841 (18) | |
C1 | 0.3384 (3) | 0.2500 | 0.4729 (2) | 0.0515 (10) | |
C2 | 0.3003 (3) | 0.17691 (17) | 0.50333 (19) | 0.0609 (8) | |
C3 | 0.2212 (3) | 0.1777 (3) | 0.5621 (2) | 0.0823 (13) | |
C4 | 0.1820 (3) | 0.2500 | 0.5901 (2) | 0.096 (3) | |
C5 | 0.4271 (4) | 0.2500 | 0.4107 (3) | 0.194 (5) | |
H5A | 0.4789 | 0.2943 | 0.4214 | 0.291* | 0.50 |
H5B | 0.3940 | 0.2580 | 0.3587 | 0.291* | 0.50 |
H5C | 0.4659 | 0.1978 | 0.4118 | 0.291* | 0.50 |
C6 | 0.3258 (8) | 0.0879 (6) | 0.4928 (7) | 0.087 (3) | 0.50 |
H6A | 0.3781 | 0.0706 | 0.5332 | 0.130* | 0.50 |
H6B | 0.3577 | 0.0791 | 0.4405 | 0.130* | 0.50 |
H6C | 0.2583 | 0.0561 | 0.4977 | 0.130* | 0.50 |
C7 | 0.1582 (8) | 0.1206 (6) | 0.6166 (5) | 0.093 (3) | 0.50 |
H7A | 0.1812 | 0.1299 | 0.6711 | 0.139* | 0.50 |
H7B | 0.1735 | 0.0640 | 0.6019 | 0.139* | 0.50 |
H7C | 0.0796 | 0.1312 | 0.6117 | 0.139* | 0.50 |
C6X | 0.3773 (8) | 0.1077 (7) | 0.4617 (6) | 0.084 (4) | 0.50 |
H6X1 | 0.4398 | 0.0956 | 0.4959 | 0.126* | 0.50 |
H6X2 | 0.4039 | 0.1281 | 0.4109 | 0.126* | 0.50 |
H6X3 | 0.3344 | 0.0581 | 0.4533 | 0.126* | 0.50 |
C7X | 0.2146 (9) | 0.0787 (5) | 0.5824 (6) | 0.092 (3) | 0.50 |
H7X1 | 0.1425 | 0.0659 | 0.6045 | 0.137* | 0.50 |
H7X2 | 0.2716 | 0.0646 | 0.6206 | 0.137* | 0.50 |
H7X3 | 0.2257 | 0.0473 | 0.5339 | 0.137* | 0.50 |
C8 | 0.1026 (4) | 0.2500 | 0.6586 (3) | 0.194 (5) | |
H8A | 0.0691 | 0.1960 | 0.6636 | 0.291* | 0.50 |
H8B | 0.0454 | 0.2907 | 0.6494 | 0.291* | 0.50 |
H8C | 0.1420 | 0.2633 | 0.7072 | 0.291* | 0.50 |
C9 | 0.5948 (4) | 0.2500 | 0.6119 (3) | 0.088 (2) | |
H9 | 0.6600 | 0.2500 | 0.5814 | 0.106* | |
C10 | 0.5464 (3) | 0.1771 (2) | 0.6345 (2) | 0.0750 (10) | |
H10 | 0.5779 | 0.1265 | 0.6193 | 0.090* | |
C11 | 0.4547 (3) | 0.1790 (2) | 0.6780 (2) | 0.0679 (9) | |
H11 | 0.4212 | 0.1293 | 0.6936 | 0.082* | |
C12 | 0.4094 (3) | 0.2500 | 0.7000 (3) | 0.0646 (12) | |
H12 | 0.3449 | 0.2500 | 0.7312 | 0.077* |
U11 | U22 | U33 | U12 | U13 | U23 | |
La1 | 0.02175 (8) | 0.03570 (10) | 0.02528 (9) | 0.000 | 0.00028 (5) | 0.000 |
Al1 | 0.0428 (4) | 0.0342 (3) | 0.0475 (4) | −0.0003 (3) | −0.0093 (3) | −0.0026 (3) |
Al2 | 0.0247 (4) | 0.0577 (6) | 0.0384 (5) | 0.000 | 0.0008 (4) | 0.000 |
Cl1 | 0.0664 (4) | 0.0525 (4) | 0.0678 (4) | 0.0015 (3) | −0.0311 (3) | −0.0082 (3) |
Cl2 | 0.0666 (4) | 0.0438 (3) | 0.0947 (6) | 0.0136 (3) | −0.0232 (4) | −0.0036 (4) |
Cl3 | 0.0434 (3) | 0.0424 (3) | 0.0404 (3) | −0.0030 (2) | 0.0099 (2) | −0.0068 (2) |
Cl4 | 0.0460 (3) | 0.0431 (3) | 0.0456 (3) | −0.0101 (2) | 0.0013 (2) | 0.0080 (2) |
Cl5 | 0.0288 (3) | 0.0687 (5) | 0.0300 (3) | 0.000 | 0.0031 (3) | 0.000 |
Cl6 | 0.0277 (3) | 0.0530 (4) | 0.0298 (3) | 0.000 | −0.0025 (3) | 0.000 |
Cl7 | 0.0418 (3) | 0.0720 (5) | 0.0615 (4) | −0.0171 (3) | 0.0028 (3) | −0.0021 (3) |
C1 | 0.0227 (14) | 0.099 (3) | 0.0325 (16) | 0.000 | −0.0035 (12) | 0.000 |
C2 | 0.0654 (17) | 0.0486 (14) | 0.0688 (18) | 0.0173 (13) | −0.0438 (16) | −0.0151 (13) |
C3 | 0.071 (2) | 0.114 (3) | 0.0617 (19) | −0.055 (2) | −0.0416 (18) | 0.055 (2) |
C4 | 0.0269 (19) | 0.237 (9) | 0.0259 (18) | 0.000 | −0.0009 (14) | 0.000 |
C5 | 0.0328 (17) | 0.507 (15) | 0.0414 (19) | 0.000 | 0.0080 (14) | 0.000 |
C6 | 0.082 (7) | 0.060 (5) | 0.118 (9) | 0.034 (5) | −0.054 (6) | −0.025 (5) |
C7 | 0.099 (7) | 0.110 (7) | 0.070 (5) | −0.061 (6) | −0.042 (5) | 0.058 (5) |
C6X | 0.075 (6) | 0.089 (8) | 0.087 (7) | 0.044 (6) | −0.037 (5) | −0.040 (6) |
C7X | 0.111 (8) | 0.067 (5) | 0.097 (7) | −0.032 (5) | −0.053 (6) | 0.048 (5) |
C8 | 0.0328 (17) | 0.507 (15) | 0.0414 (19) | 0.000 | 0.0080 (14) | 0.000 |
C9 | 0.052 (3) | 0.172 (7) | 0.041 (2) | 0.000 | 0.0042 (19) | 0.000 |
C10 | 0.081 (2) | 0.080 (2) | 0.0634 (19) | 0.029 (2) | −0.0217 (18) | −0.0169 (17) |
C11 | 0.070 (2) | 0.069 (2) | 0.0653 (19) | −0.0142 (17) | −0.0277 (16) | 0.0189 (16) |
C12 | 0.039 (2) | 0.105 (4) | 0.049 (2) | 0.000 | −0.0136 (17) | 0.000 |
La1—C1 | 2.945 (3) | C3—C7X | 1.663 (8) |
La1—C2 | 2.965 (2) | C4—C3i | 1.366 (5) |
La1—C3 | 2.957 (3) | C4—C8 | 1.514 (6) |
La1—C4 | 2.941 (4) | C5—H5A | 0.9800 |
La1—Cl3 | 2.9128 (5) | C5—H5B | 0.9800 |
La1—Cl4 | 2.9298 (6) | C5—H5C | 0.9800 |
La1—Cl5 | 2.9083 (7) | C8—H8A | 0.9800 |
La1—Cl6 | 2.9097 (7) | C8—H8B | 0.9800 |
La1—Cg1 | 2.613 (3) | C8—H8C | 0.9800 |
Cg1—Cg2 | 3.612 (4) | C6—H6A | 0.9800 |
La1—Cl3i | 2.9128 (5) | C6—H6B | 0.9800 |
La1—Cl4i | 2.9298 (6) | C6—H6C | 0.9800 |
La1—C3i | 2.957 (3) | C7—H7A | 0.9800 |
La1—C2i | 2.965 (2) | C7—H7B | 0.9800 |
Al1—Cl1 | 2.0902 (10) | C7—H7C | 0.9800 |
Al1—Cl2 | 2.0918 (10) | C6X—H6X1 | 0.9800 |
Al1—Cl3 | 2.1828 (9) | C6X—H6X2 | 0.9800 |
Al1—Cl4 | 2.1855 (10) | C6X—H6X3 | 0.9800 |
Al2—Cl7 | 2.0937 (9) | C7X—H7X1 | 0.9800 |
Al2—Cl7i | 2.0937 (9) | C7X—H7X2 | 0.9800 |
Al2—Cl6 | 2.1936 (12) | C7X—H7X3 | 0.9800 |
Al2—Cl5 | 2.1987 (12) | C9—C10 | 1.389 (5) |
C1—C2i | 1.387 (4) | C9—C10i | 1.389 (5) |
C1—C2 | 1.387 (4) | C9—H9 | 0.9500 |
C1—C5 | 1.513 (6) | C10—C11 | 1.343 (5) |
C2—C3 | 1.389 (5) | C10—H10 | 0.9500 |
C2—C6 | 1.505 (10) | C11—C12 | 1.344 (4) |
C2—C6X | 1.635 (10) | C11—H11 | 0.9500 |
C3—C4 | 1.366 (5) | C12—C11i | 1.344 (4) |
C3—C7 | 1.525 (7) | C12—H12 | 0.9500 |
Cl5—La1—Cl6 | 71.09 (2) | Cl7—Al2—Cl5 | 108.96 (4) |
Cl5—La1—Cl3 | 136.497 (15) | Cl7i—Al2—Cl5 | 108.96 (4) |
Cl6—La1—Cl3 | 82.586 (17) | Cl6—Al2—Cl5 | 100.72 (5) |
Cl5—La1—Cl3i | 136.497 (14) | Al1—Cl3—La1 | 96.16 (3) |
Cl6—La1—Cl3i | 82.586 (17) | Al1—Cl4—La1 | 95.61 (3) |
Cl3—La1—Cl3i | 69.61 (2) | Al2—Cl5—La1 | 94.06 (4) |
Cl5—La1—Cl4 | 71.868 (13) | Al2—Cl6—La1 | 94.13 (4) |
Cl6—La1—Cl4 | 76.576 (13) | C2i—C1—C2 | 119.9 (4) |
Cl3—La1—Cl4 | 68.636 (17) | C2i—C1—C5 | 119.99 (18) |
Cl3i—La1—Cl4 | 135.147 (17) | C2—C1—C5 | 119.99 (18) |
Cl5—La1—Cl4i | 71.868 (13) | C2i—C1—La1 | 77.23 (17) |
Cl6—La1—Cl4i | 76.576 (13) | C2—C1—La1 | 77.23 (17) |
Cl3—La1—Cl4i | 135.147 (17) | C5—C1—La1 | 119.9 (3) |
Cl3i—La1—Cl4i | 68.636 (17) | C1—C2—C3 | 119.5 (3) |
Cl4—La1—Cl4i | 140.15 (3) | C1—C2—C6 | 136.6 (6) |
Cl5—La1—C4 | 74.37 (8) | C3—C2—C6 | 103.8 (6) |
Cl6—La1—C4 | 145.46 (8) | C1—C2—La1 | 75.63 (16) |
Cl3—La1—C4 | 124.47 (6) | C3—C2—La1 | 76.11 (16) |
Cl3i—La1—C4 | 124.47 (6) | C6—C2—La1 | 120.4 (4) |
Cl4—La1—C4 | 92.86 (3) | C6X—C2—La1 | 123.2 (4) |
Cl4i—La1—C4 | 92.86 (3) | C4—C3—C2 | 120.1 (3) |
Cl5—La1—C1 | 130.25 (7) | C4—C3—C7 | 98.4 (6) |
Cl6—La1—C1 | 158.66 (7) | C2—C3—C7 | 141.3 (6) |
Cl3—La1—C1 | 79.93 (6) | C4—C3—La1 | 76.0 (2) |
Cl3i—La1—C1 | 79.93 (6) | C2—C3—La1 | 76.76 (15) |
Cl4—La1—C1 | 107.879 (16) | C7—C3—La1 | 118.9 (3) |
Cl4i—La1—C1 | 107.879 (17) | C3i—C4—C3 | 120.8 (4) |
C4—La1—C1 | 55.88 (10) | C3i—C4—C8 | 119.5 (2) |
Cl5—La1—C3i | 87.49 (8) | C3—C4—C8 | 119.5 (2) |
Cl6—La1—C3i | 148.34 (6) | C3i—C4—La1 | 77.2 (2) |
Cl3—La1—C3i | 127.81 (6) | C3—C4—La1 | 77.2 (2) |
Cl3i—La1—C3i | 98.90 (10) | C8—C4—La1 | 121.9 (3) |
Cl4—La1—C3i | 119.39 (10) | C1—C5—H5A | 109.5 |
Cl4i—La1—C3i | 74.68 (7) | C1—C5—H5B | 109.5 |
C4—La1—C3i | 26.77 (10) | H5A—C5—H5B | 109.5 |
C1—La1—C3i | 47.94 (8) | C1—C5—H5C | 109.5 |
Cl5—La1—C3 | 87.49 (8) | H5A—C5—H5C | 109.5 |
Cl6—La1—C3 | 148.34 (6) | H5B—C5—H5C | 109.5 |
Cl3—La1—C3 | 98.90 (10) | C4—C8—H8A | 109.5 |
Cl3i—La1—C3 | 127.81 (6) | C4—C8—H8B | 109.5 |
Cl4—La1—C3 | 74.68 (7) | H8A—C8—H8B | 109.5 |
Cl4i—La1—C3 | 119.39 (10) | C4—C8—H8C | 109.5 |
C4—La1—C3 | 26.77 (10) | H8A—C8—H8C | 109.5 |
C1—La1—C3 | 47.94 (8) | H8B—C8—H8C | 109.5 |
C3i—La1—C3 | 47.35 (17) | C2—C6—H6A | 109.5 |
Cl5—La1—C2i | 114.49 (8) | C2—C6—H6B | 109.5 |
Cl6—La1—C2i | 154.88 (5) | C2—C6—H6C | 109.5 |
Cl3—La1—C2i | 104.12 (8) | C3—C7—H7A | 109.5 |
Cl3i—La1—C2i | 77.41 (6) | C3—C7—H7B | 109.5 |
Cl4—La1—C2i | 128.51 (5) | C3—C7—H7C | 109.5 |
Cl4i—La1—C2i | 82.04 (6) | C2—C6X—H6X1 | 109.5 |
C4—La1—C2i | 47.68 (9) | C2—C6X—H6X2 | 109.5 |
C1—La1—C2i | 27.14 (7) | H6X1—C6X—H6X2 | 109.5 |
C3i—La1—C2i | 27.13 (10) | C2—C6X—H6X3 | 109.5 |
C3—La1—C2i | 55.61 (8) | H6X1—C6X—H6X3 | 109.5 |
Cl5—La1—C2 | 114.49 (8) | H6X2—C6X—H6X3 | 109.5 |
Cl6—La1—C2 | 154.88 (5) | C3—C7X—H7X1 | 109.5 |
Cl3—La1—C2 | 77.41 (6) | C3—C7X—H7X2 | 109.5 |
Cl3i—La1—C2 | 104.12 (8) | H7X1—C7X—H7X2 | 109.5 |
Cl4—La1—C2 | 82.04 (6) | C3—C7X—H7X3 | 109.5 |
Cl4i—La1—C2 | 128.51 (5) | H7X1—C7X—H7X3 | 109.5 |
C4—La1—C2 | 47.68 (9) | H7X2—C7X—H7X3 | 109.5 |
C1—La1—C2 | 27.14 (7) | C10—C9—C10i | 119.1 (5) |
C3i—La1—C2 | 55.61 (8) | C10—C9—H9 | 120.5 |
C3—La1—C2 | 27.13 (10) | C10i—C9—H9 | 120.5 |
C2i—La1—C2 | 47.76 (11) | C11—C10—C9 | 119.2 (4) |
Cl1—Al1—Cl2 | 115.58 (4) | C11—C10—H10 | 120.4 |
Cl1—Al1—Cl3 | 110.99 (4) | C9—C10—H10 | 120.4 |
Cl2—Al1—Cl3 | 111.24 (4) | C10—C11—C12 | 121.1 (4) |
Cl1—Al1—Cl4 | 110.26 (4) | C10—C11—H11 | 119.5 |
Cl2—Al1—Cl4 | 109.45 (5) | C12—C11—H11 | 119.5 |
Cl3—Al1—Cl4 | 97.89 (3) | C11i—C12—C11 | 120.5 (5) |
Cl7—Al2—Cl7i | 116.10 (6) | C11i—C12—H12 | 119.8 |
Cl7—Al2—Cl6 | 110.49 (4) | C11—C12—H12 | 119.8 |
Cl7i—Al2—Cl6 | 110.49 (4) |
Symmetry code: (i) x, −y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | [Al3LaCl12(C12H18)]·C6H6 |
Mr | 885.62 |
Crystal system, space group | Orthorhombic, Pnma |
Temperature (K) | 173 |
a, b, c (Å) | 12.2127 (6), 16.4205 (8), 16.9790 (8) |
V (Å3) | 3404.9 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.28 |
Crystal size (mm) | 0.22 × 0.20 × 0.16 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2003) |
Tmin, Tmax | 0.613, 0.697 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 28535, 4250, 3911 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.063, 1.05 |
No. of reflections | 4250 |
No. of parameters | 189 |
H-atom treatment | H-atom parameters not refined |
Δρmax, Δρmin (e Å−3) | 0.89, −0.99 |
Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2009).
La1—C1 | 2.945 (3) | La1—Cl4 | 2.9298 (6) |
La1—C2 | 2.965 (2) | La1—Cl5 | 2.9083 (7) |
La1—C3 | 2.957 (3) | La1—Cl6 | 2.9097 (7) |
La1—C4 | 2.941 (4) | La1—Cg1 | 2.613 (3) |
La1—Cl3 | 2.9128 (5) | Cg1—Cg2 | 3.612 (4) |
Acknowledgements
We thank the National Science Foundation for financial support (CHE-0546945). We are also very grateful to the University at Albany for supporting the X-ray center at the Department of Chemistry.
References
Bochkarev, M. N. (2002). Chem. Rev. 102, 2089–2117. Web of Science CrossRef PubMed CAS Google Scholar
Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Filatov, A. S., Rogachev, A. Yu. & Petrukhina, M. A. (2008). J. Mol. Struct. 890, 116-122. Web of Science CSD CrossRef CAS Google Scholar
Gorlov, M., Hussami, L. L., Fischer, A. & Kloo, L. (2008). Eur. J. Inorg. Chem. pp. 5191–5195. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2009). publCIF. In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
We have recently reported X-ray structural characterization of the first two lanthanum(III) chloroaluminate complexes with neutral arenes, [La(η6-C6H5Me)(AlCl4)3] and [La(η6-C6Me6)(AlCl4)3], as well as of the first lanthanum(III) chlorogallate complex, [La(η6-C6Me6)(GaCl4)3] (Filatov et al., 2008). The [La(η6-C6Me6)(AlCl4)3].0.5C6H6 complex crystallizes in the monoclinic P21/c space group with the β angle being close to 90° (β = 90.27°). We later found that under slightly different experimental conditions, namely at a higher temperature (285 versus 273 K), the lanthanum complex with hexamethylbenzene, [La(η6-C6Me6)(AlCl4)3].C6H6 (I), is crystallized.
The molecular structure of (I) is comprised of the three chloroaluminate groups and a hexamethylbenzene molecule bound to the central lanthanum(III) ion (Fig.1). The coordination polyhedron is a distorted pentagonal bipyramid with the η6-arene located at the apical position. The La–C bond distances span from 2.941 (4) to 2.965 (2) Å with a La–centroid distance being 2.613 (3) Å. These distances are comparable to those found in the previously reported complex [La(η6-C6Me6)(AlCl4)3].0.5C6H6 (II) [La—C 2.927 (7)–3.035 (7)Å; La–centroid 2.633 (7)Å].
In (I), coordinated hexamethylbenzene is engaged into π-π stacking interactions with a solvent benzene molecule. The intercentroid distance between their 6-membered rings is 3.612 (4) Å. The two ring planes are not parallel and the dihedral angle is 12.7° (Fig.2). In the above hemisolvate (II), on the contrary, both benzene faces are involved in π-π stacking interactions as benzene is sandwiched between two hexamethylbenzene molecules. The distance between the centroids of the hexamethylbenzene and benzene rings (3.688 (4) Å) is noticeably longer than that found in (I).