organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

rac-(S)-2-(1H-Imidazol-1-yl)-3-methyl­butan-1-ol

aTechnical Research Center, China Tabacco Chuanyu Industrial Corporation, Chengdu 610066, People's Republic of China
*Correspondence e-mail: songguangfu@pride56.com

(Received 5 February 2009; accepted 9 February 2009; online 13 February 2009)

In the crystal structure of the title compound, C8H14N2O, inter­molecular O—H⋯N hydrogen bonds link mol­ecules related by translation along the a axis into chains. Weak inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions enhance the crystal packing stability.

Related literature

For useful applications of imidazole derivatives, see Lu et al. (2006[Lu, W. G., Su, C. Y., Lu, T. B., Jiang, L. & Chen, J. M. (2006). J. Am. Chem. Soc. 128, 34-35.]); Zou et al. (2006[Zou, R., Sakurai, H. & Xu, Q. (2006). Angew. Chem. Int. Ed. 45, 2542-2546.]). For details of the synthesis, see Bao et al. (2003[Bao, W. L., Wang, Z. M. & Li, Y. X. (2003). J. Org. Chem. 68, 591-593.]); Guo et al. (2006[Guo, S. J., Luo, K., Wang, W. H., Zhang, S. Y., Jiang, H. Y., Lan, J. B. & Xie, R. G. (2006). Gaodeng Xuexiao Huaxue Xuebao, 27, 1664-1668.]).

[Scheme 1]

Experimental

Crystal data
  • C8H14N2O

  • Mr = 154.21

  • Monoclinic, P 21 /n

  • a = 7.356 (4) Å

  • b = 7.212 (3) Å

  • c = 16.549 (5) Å

  • β = 90.54 (3)°

  • V = 877.9 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 292 K

  • 0.58 × 0.54 × 0.42 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 1931 measured reflections

  • 1630 independent reflections

  • 965 reflections with I > 2σ(I)

  • Rint = 0.004

  • 3 standard reflections every 120 reflections intensity decay: 0.3%

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.197

  • S = 1.18

  • 1630 reflections

  • 104 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2i 0.82 1.93 2.751 (3) 176
C1—H1A⋯O1ii 0.93 2.43 3.353 (4) 173
C4—H4⋯Cgii 0.98 2.86 3.716 (4) 146
Symmetry codes: (i) x-1, y, z; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg is the centroid of the C1–C3/N1/N2 ring.

Data collection: DIFRAC (Gabe & White, 1993[Gabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association, Pittsburgh Meeting. Abstract PA104.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Imidazole is important for biological systems, and its derivatives have attracted widespread interest due to their further expanded application in perfume chemistry and in the construction of some interesting metal–organic frameworks (Lu et al. 2006; Zou et al. 2006). Here, we report the crystal structure of the title compound, (I), which is a basic unit of constructing chiral receptors and could be applied for the preparation of perfume.

As shown in Fig. 1, there is a chiral center at C4 derived from the source L-valine. In the crystal, intermolecular O—H···N hydrogen bonds (Table 1) link the molecules related by translation along axis a into chains. Weak intermolecular C—H···O hydrogen bonds and C—H···π interactions (Table 1) enhance the crystal packing stability.

Related literature top

For useful applications of imidazole derivatives, see Lu et al. (2006); Zou et al. (2006). For details of the synthesis, see Bao et al. (2003); Guo et al. (2006).

Experimental top

The title compound was prepared according to the literature (Guo et al. 2006). Starting from L-valine, methyl 2-(1H-imidazol-1-yl)-3-methylbutanoate was easily prepared according to literature procedure (Bao et al. 2003). Following, NaBH4 (1.52 g, 40 mmol) was added to methyl 2-(1H-imidazol-1-yl)-3-methylbutanoate (1.82 g, 10.0 mmol) in ethanol (50 ml) at 273 K during 30 min. The mixture was stirred at 333 K for another 20 h and then evaporated under vacuum. The residue was diluted with 50 ml saturated K2CO3 and extracted with 30 ml ethyl acetate. The organic layer was dried over anhydrous Na2SO4 and concentrated under reduced pressure. The resulting residue was purified by column chromatography on silica gel eluting with CH2Cl2/CH3OH (20/1, v/v). Then, colourless crystals suitable for X-ray analysis can be obtained by recrystallization of the compound from ethyl acetate.

Refinement top

All H atoms were positioned geometrically and refined in the riding model approximation, with C—H = 0.93–0.98 Å and O—H = 0.82 Å, and Uiso(H) = 1.2–1.5 Ueq of the parent atom.

Computing details top

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC (Gabe & White, 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atomic numbering.
rac-(S)-2-(1H-Imidazol-1-yl)-3-methylbutan-1-ol top
Crystal data top
C8H14N2OF(000) = 336
Mr = 154.21Dx = 1.167 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 21 reflections
a = 7.356 (4) Åθ = 4.6–7.4°
b = 7.212 (3) ŵ = 0.08 mm1
c = 16.549 (5) ÅT = 292 K
β = 90.54 (3)°Block, colourless
V = 877.9 (7) Å30.58 × 0.54 × 0.42 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.004
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 2.5°
Graphite monochromatorh = 88
ω/2θ scansk = 08
1931 measured reflectionsl = 720
1630 independent reflections3 standard reflections every 120 reflections
965 reflections with I > 2σ(I) intensity decay: 0.3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.197 w = 1/[σ2(Fo2) + (0.0941P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.18(Δ/σ)max < 0.001
1630 reflectionsΔρmax = 0.31 e Å3
104 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXS97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.046 (11)
Crystal data top
C8H14N2OV = 877.9 (7) Å3
Mr = 154.21Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.356 (4) ŵ = 0.08 mm1
b = 7.212 (3) ÅT = 292 K
c = 16.549 (5) Å0.58 × 0.54 × 0.42 mm
β = 90.54 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.004
1931 measured reflections3 standard reflections every 120 reflections
1630 independent reflections intensity decay: 0.3%
965 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.197H-atom parameters constrained
S = 1.18Δρmax = 0.31 e Å3
1630 reflectionsΔρmin = 0.24 e Å3
104 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4065 (2)0.1870 (3)0.31165 (14)0.0557 (7)
H10.30110.16970.32550.084*
N10.7629 (3)0.0340 (3)0.34211 (14)0.0459 (7)
N21.0479 (3)0.1263 (4)0.34916 (16)0.0598 (8)
C40.6043 (3)0.0816 (4)0.32307 (17)0.0456 (8)
H40.64730.18480.28980.055*
C50.4713 (4)0.0284 (4)0.27157 (18)0.0480 (8)
H5A0.53060.06600.22210.058*
H5B0.36920.05030.25700.058*
C10.9353 (4)0.0047 (4)0.31778 (19)0.0514 (8)
H1A0.96980.09010.28300.062*
C30.7676 (4)0.1855 (4)0.39170 (18)0.0559 (8)
H30.66960.24060.41740.067*
C60.5261 (4)0.1657 (4)0.39954 (16)0.0487 (8)
H60.47690.06430.43220.058*
C20.9438 (4)0.2392 (4)0.3958 (2)0.0597 (9)
H20.98750.33870.42600.072*
C70.3712 (5)0.2990 (5)0.3805 (2)0.0693 (10)
H7A0.41640.40130.34950.104*
H7B0.27860.23550.35000.104*
H7C0.32080.34440.43000.104*
C80.6711 (5)0.2629 (5)0.4495 (2)0.0761 (11)
H8A0.61990.30350.49960.114*
H8B0.76930.17860.46020.114*
H8C0.71570.36810.42020.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0302 (11)0.0505 (12)0.0864 (15)0.0012 (9)0.0025 (10)0.0011 (11)
N10.0288 (13)0.0493 (13)0.0595 (15)0.0029 (11)0.0026 (10)0.0055 (11)
N20.0307 (14)0.0628 (16)0.086 (2)0.0005 (12)0.0039 (13)0.0031 (14)
C40.0325 (15)0.0424 (15)0.0617 (18)0.0002 (12)0.0060 (13)0.0027 (14)
C50.0355 (16)0.0499 (16)0.0586 (17)0.0024 (13)0.0038 (13)0.0008 (14)
C10.0334 (16)0.0518 (17)0.069 (2)0.0086 (14)0.0035 (14)0.0014 (14)
C30.0353 (16)0.0655 (19)0.0669 (19)0.0006 (15)0.0020 (14)0.0129 (16)
C60.0407 (16)0.0520 (17)0.0532 (17)0.0002 (14)0.0043 (13)0.0040 (14)
C20.0405 (17)0.0628 (19)0.075 (2)0.0027 (15)0.0125 (15)0.0133 (16)
C70.066 (2)0.071 (2)0.071 (2)0.0228 (19)0.0010 (17)0.0087 (18)
C80.063 (2)0.085 (2)0.081 (2)0.0034 (19)0.0120 (19)0.025 (2)
Geometric parameters (Å, º) top
O1—C51.408 (3)C3—C21.354 (4)
O1—H10.8200C3—H30.9300
N1—C11.351 (4)C6—C81.515 (4)
N1—C31.367 (3)C6—C71.522 (4)
N1—C41.466 (3)C6—H60.9800
N2—C11.310 (3)C2—H20.9300
N2—C21.362 (4)C7—H7A0.9600
C4—C51.516 (3)C7—H7B0.9600
C4—C61.521 (4)C7—H7C0.9600
C4—H40.9800C8—H8A0.9600
C5—H5A0.9700C8—H8B0.9600
C5—H5B0.9700C8—H8C0.9600
C1—H1A0.9300
C5—O1—H1109.5N1—C3—H3126.9
C1—N1—C3106.6 (2)C8—C6—C4111.6 (2)
C1—N1—C4126.5 (2)C8—C6—C7110.0 (3)
C3—N1—C4126.8 (2)C4—C6—C7111.6 (2)
C1—N2—C2105.6 (2)C8—C6—H6107.8
N1—C4—C5109.4 (2)C4—C6—H6107.8
N1—C4—C6110.8 (2)C7—C6—H6107.8
C5—C4—C6115.4 (2)C3—C2—N2110.1 (3)
N1—C4—H4107.0C3—C2—H2125.0
C5—C4—H4107.0N2—C2—H2125.0
C6—C4—H4107.0C6—C7—H7A109.5
O1—C5—C4112.3 (2)C6—C7—H7B109.5
O1—C5—H5A109.1H7A—C7—H7B109.5
C4—C5—H5A109.1C6—C7—H7C109.5
O1—C5—H5B109.1H7A—C7—H7C109.5
C4—C5—H5B109.1H7B—C7—H7C109.5
H5A—C5—H5B107.9C6—C8—H8A109.5
N2—C1—N1111.6 (3)C6—C8—H8B109.5
N2—C1—H1A124.2H8A—C8—H8B109.5
N1—C1—H1A124.2C6—C8—H8C109.5
C2—C3—N1106.1 (3)H8A—C8—H8C109.5
C2—C3—H3126.9H8B—C8—H8C109.5
C1—N1—C4—C5115.0 (3)C1—N1—C3—C20.8 (3)
C3—N1—C4—C569.3 (3)C4—N1—C3—C2175.7 (2)
C1—N1—C4—C6116.8 (3)N1—C4—C6—C851.7 (3)
C3—N1—C4—C659.0 (3)C5—C4—C6—C8176.6 (2)
N1—C4—C5—O161.5 (3)N1—C4—C6—C7175.2 (2)
C6—C4—C5—O164.2 (3)C5—C4—C6—C759.9 (3)
C2—N2—C1—N10.0 (3)N1—C3—C2—N20.8 (4)
C3—N1—C1—N20.5 (3)C1—N2—C2—C30.5 (4)
C4—N1—C1—N2175.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.821.932.751 (3)176
C1—H1A···O1ii0.932.433.353 (4)173
C4—H4···Cgii0.982.863.716 (4)146
Symmetry codes: (i) x1, y, z; (ii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC8H14N2O
Mr154.21
Crystal system, space groupMonoclinic, P21/n
Temperature (K)292
a, b, c (Å)7.356 (4), 7.212 (3), 16.549 (5)
β (°) 90.54 (3)
V3)877.9 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.58 × 0.54 × 0.42
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1931, 1630, 965
Rint0.004
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.197, 1.18
No. of reflections1630
No. of parameters104
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.24

Computer programs: DIFRAC (Gabe & White, 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.821.932.751 (3)176
C1—H1A···O1ii0.932.433.353 (4)173
C4—H4···Cgii0.982.863.716 (4)146
Symmetry codes: (i) x1, y, z; (ii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors are grateful to the Science and Technology Bureau of Sichuan Province of China (grant No. 2008JY0142 and 2008JY0143) for financial support.

References

First citationBao, W. L., Wang, Z. M. & Li, Y. X. (2003). J. Org. Chem. 68, 591–593.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association, Pittsburgh Meeting. Abstract PA104.  Google Scholar
First citationGuo, S. J., Luo, K., Wang, W. H., Zhang, S. Y., Jiang, H. Y., Lan, J. B. & Xie, R. G. (2006). Gaodeng Xuexiao Huaxue Xuebao, 27, 1664–1668.  CAS Google Scholar
First citationLu, W. G., Su, C. Y., Lu, T. B., Jiang, L. & Chen, J. M. (2006). J. Am. Chem. Soc. 128, 34–35.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZou, R., Sakurai, H. & Xu, Q. (2006). Angew. Chem. Int. Ed. 45, 2542–2546.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds