organic compounds
(E)-N,N′-Bis(2,6-dimethylphenyl)-N,N′-bis(trichlorosilyl)ethylene-1,2-diamine
aSchool of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, People's Republic of China
*Correspondence e-mail: yding@jiangnan.edu.cn
The 18H20Cl6N2Si2, contains one half of the centrosymmetric molecule. The two benzene rings are perpendicular to the plane of Si–N–C=C–N–Si fragment, making a dihedral angle of 89.9 (1)°. The crystal packing exhibits short intermolecular Cl⋯Cl contacts of 3.3119 (17) Å.
of the title compound, CRelated literature
For the geometric parameters of related compounds, see: Haaf et al. (1998, 2000); Baker et al. (2008); Jones et al. (2002).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809006011/cv2522sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809006011/cv2522Isup2.hkl
All manipulations were carried out under an argon atmosphere using standard Schlenk techniques or a nitrogen-filled glovebox. Solvents (THF, toluene) were dried over sodium and freshly distilled prior to use.
Naphthalene (1.24 g,10 mmol) was dissolved in THF (15 ml) and lithium powder (71 mg, 10 mmol) added. The resultant suspension was stirred at room temperature for 4 h to give an green suspension. [N(2,6-Me2C6H3)C(H)]2 (1.17 g, 4.5 mmol) was added to the suspension after cooled to -78 oC. The resultant mixture was stirred at room temperature for 24 h to give a red solution. At -78 oC, silicon tetrachloride (10 ml, 88 mmol) was added to the solution. Warmed to room temperature and stirred for 24 h. Volatiles were removed in vacuo and the residue was extracted with toluene (20 ml). After filtration, the filtrate was placed at -30 oC to give yellow crystals (43%). Elemental analysis(%) calcd. for C18H20Cl6N2Si2: C, 40.54%; H, 3.78%; N, 5.25%; Found: C,40.61%; H, 3.83%; N, 5.17%.
All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C–H of 0.93-0.96 Å, and Uiso(H) = 1.2-1.5 Ueq (C).
Data collection: APEX2 (Bruker, 2005); cell
APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C18H20Cl6N2Si2 | Z = 1 |
Mr = 533.24 | F(000) = 272 |
Triclinic, P1 | Dx = 1.421 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.1858 (3) Å | Cell parameters from 2127 reflections |
b = 8.4249 (3) Å | θ = 2.8–25.6° |
c = 10.6074 (4) Å | µ = 0.79 mm−1 |
α = 74.583 (3)° | T = 273 K |
β = 79.999 (2)° | Block, yellow |
γ = 62.243 (2)° | 0.14 × 0.12 × 0.08 mm |
V = 623.00 (4) Å3 |
Bruker APEX2 CCD area-detector diffractometer | 2168 independent reflections |
Radiation source: fine-focus sealed tube | 1729 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.034 |
ϕ and ω scans | θmax = 25.1°, θmin = 2.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −9→9 |
Tmin = 0.897, Tmax = 0.939 | k = −10→9 |
6168 measured reflections | l = −12→12 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.059 | w = 1/[σ2(Fo2) + (0.133P)2 + 0.1233P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.202 | (Δ/σ)max = 0.088 |
S = 1.11 | Δρmax = 0.57 e Å−3 |
2168 reflections | Δρmin = −0.50 e Å−3 |
129 parameters |
C18H20Cl6N2Si2 | γ = 62.243 (2)° |
Mr = 533.24 | V = 623.00 (4) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.1858 (3) Å | Mo Kα radiation |
b = 8.4249 (3) Å | µ = 0.79 mm−1 |
c = 10.6074 (4) Å | T = 273 K |
α = 74.583 (3)° | 0.14 × 0.12 × 0.08 mm |
β = 79.999 (2)° |
Bruker APEX2 CCD area-detector diffractometer | 2168 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 1729 reflections with I > 2σ(I) |
Tmin = 0.897, Tmax = 0.939 | Rint = 0.034 |
6168 measured reflections |
R[F2 > 2σ(F2)] = 0.059 | 0 restraints |
wR(F2) = 0.202 | H-atom parameters constrained |
S = 1.11 | Δρmax = 0.57 e Å−3 |
2168 reflections | Δρmin = −0.50 e Å−3 |
129 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Si1 | 0.34542 (14) | 0.80312 (14) | 0.19720 (9) | 0.0424 (4) | |
Cl1 | 0.40381 (19) | 1.01460 (17) | 0.18495 (14) | 0.0736 (5) | |
Cl2 | 0.54249 (18) | 0.64298 (19) | 0.08286 (14) | 0.0791 (5) | |
Cl3 | 0.36689 (17) | 0.65899 (17) | 0.38326 (10) | 0.0675 (4) | |
N1 | 0.1308 (4) | 0.8729 (4) | 0.1525 (3) | 0.0394 (7) | |
C1 | 0.0820 (5) | 0.9686 (5) | 0.0214 (3) | 0.0424 (9) | |
H1 | 0.1729 | 0.9875 | −0.0375 | 0.051* | |
C2 | −0.0078 (5) | 0.8409 (5) | 0.2452 (3) | 0.0391 (8) | |
C3 | −0.0237 (6) | 0.6787 (5) | 0.2607 (4) | 0.0510 (10) | |
C4 | −0.1436 (6) | 0.6423 (6) | 0.3580 (5) | 0.0630 (12) | |
H4 | −0.1535 | 0.5335 | 0.3706 | 0.076* | |
C5 | −0.2502 (7) | 0.7654 (8) | 0.4378 (5) | 0.0669 (13) | |
H5 | −0.3294 | 0.7380 | 0.5042 | 0.080* | |
C6 | −0.2389 (6) | 0.9273 (7) | 0.4189 (4) | 0.0623 (12) | |
H6 | −0.3130 | 1.0103 | 0.4716 | 0.075* | |
C7 | −0.1181 (6) | 0.9699 (6) | 0.3218 (4) | 0.0484 (9) | |
C8 | 0.0925 (9) | 0.5424 (7) | 0.1755 (7) | 0.0816 (16) | |
H8A | 0.2172 | 0.4774 | 0.2026 | 0.122* | |
H8B | 0.0917 | 0.6064 | 0.0858 | 0.122* | |
H8C | 0.0426 | 0.4569 | 0.1838 | 0.122* | |
C9 | −0.1071 (8) | 1.1485 (6) | 0.3024 (6) | 0.0736 (14) | |
H9A | −0.0312 | 1.1381 | 0.3666 | 0.110* | |
H9B | −0.2290 | 1.2451 | 0.3122 | 0.110* | |
H9C | −0.0541 | 1.1761 | 0.2162 | 0.110* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Si1 | 0.0486 (7) | 0.0433 (6) | 0.0322 (6) | −0.0209 (5) | −0.0094 (4) | 0.0021 (4) |
Cl1 | 0.0869 (10) | 0.0678 (8) | 0.0823 (9) | −0.0503 (7) | −0.0180 (7) | −0.0021 (6) |
Cl2 | 0.0655 (8) | 0.0787 (9) | 0.0780 (9) | −0.0180 (7) | 0.0111 (6) | −0.0291 (7) |
Cl3 | 0.0699 (8) | 0.0822 (8) | 0.0431 (6) | −0.0385 (7) | −0.0239 (5) | 0.0208 (6) |
N1 | 0.0483 (18) | 0.0413 (16) | 0.0266 (14) | −0.0197 (14) | −0.0087 (12) | −0.0002 (12) |
C1 | 0.054 (2) | 0.0413 (19) | 0.0289 (18) | −0.0214 (18) | −0.0087 (15) | 0.0009 (15) |
C2 | 0.047 (2) | 0.0440 (19) | 0.0252 (16) | −0.0215 (17) | −0.0092 (14) | 0.0006 (15) |
C3 | 0.059 (3) | 0.046 (2) | 0.050 (2) | −0.025 (2) | −0.0104 (19) | −0.0050 (18) |
C4 | 0.064 (3) | 0.061 (3) | 0.068 (3) | −0.038 (2) | −0.009 (2) | 0.002 (2) |
C5 | 0.061 (3) | 0.094 (4) | 0.047 (2) | −0.045 (3) | −0.001 (2) | 0.001 (2) |
C6 | 0.054 (3) | 0.082 (3) | 0.045 (2) | −0.024 (2) | 0.0039 (19) | −0.021 (2) |
C7 | 0.052 (2) | 0.050 (2) | 0.040 (2) | −0.0185 (19) | −0.0105 (17) | −0.0067 (17) |
C8 | 0.096 (4) | 0.059 (3) | 0.100 (4) | −0.039 (3) | 0.013 (3) | −0.035 (3) |
C9 | 0.085 (4) | 0.059 (3) | 0.081 (3) | −0.029 (3) | 0.004 (3) | −0.033 (3) |
Si1—N1 | 1.684 (3) | C4—H4 | 0.9300 |
Si1—Cl3 | 2.0119 (13) | C5—C6 | 1.369 (7) |
Si1—Cl2 | 2.0142 (17) | C5—H5 | 0.9300 |
Si1—Cl1 | 2.0170 (14) | C6—C7 | 1.396 (6) |
N1—C1 | 1.428 (4) | C6—H6 | 0.9300 |
N1—C2 | 1.444 (4) | C7—C9 | 1.507 (6) |
C1—C1i | 1.307 (8) | C8—H8A | 0.9600 |
C1—H1 | 0.9300 | C8—H8B | 0.9600 |
C2—C7 | 1.399 (6) | C8—H8C | 0.9600 |
C2—C3 | 1.397 (5) | C9—H9A | 0.9600 |
C3—C4 | 1.372 (6) | C9—H9B | 0.9600 |
C3—C8 | 1.509 (7) | C9—H9C | 0.9600 |
C4—C5 | 1.386 (7) | ||
Cl3···Cl3ii | 3.3119 (17) | ||
N1—Si1—Cl3 | 108.46 (11) | C6—C5—C4 | 120.1 (4) |
N1—Si1—Cl2 | 112.31 (12) | C6—C5—H5 | 120.0 |
Cl3—Si1—Cl2 | 108.64 (7) | C4—C5—H5 | 120.0 |
N1—Si1—Cl1 | 112.55 (11) | C5—C6—C7 | 121.1 (4) |
Cl3—Si1—Cl1 | 109.04 (7) | C5—C6—H6 | 119.4 |
Cl2—Si1—Cl1 | 105.73 (7) | C7—C6—H6 | 119.4 |
C1—N1—C2 | 118.7 (3) | C2—C7—C6 | 117.8 (4) |
C1—N1—Si1 | 120.1 (2) | C2—C7—C9 | 121.8 (4) |
C2—N1—Si1 | 121.2 (2) | C6—C7—C9 | 120.4 (4) |
C1i—C1—N1 | 124.4 (4) | C3—C8—H8A | 109.5 |
C1i—C1—H1 | 117.8 | C3—C8—H8B | 109.5 |
N1—C1—H1 | 117.8 | H8A—C8—H8B | 109.5 |
C7—C2—C3 | 121.4 (3) | C3—C8—H8C | 109.5 |
C7—C2—N1 | 119.1 (3) | H8A—C8—H8C | 109.5 |
C3—C2—N1 | 119.5 (3) | H8B—C8—H8C | 109.5 |
C4—C3—C2 | 118.7 (4) | C7—C9—H9A | 109.5 |
C4—C3—C8 | 120.2 (4) | C7—C9—H9B | 109.5 |
C2—C3—C8 | 121.0 (4) | H9A—C9—H9B | 109.5 |
C3—C4—C5 | 120.9 (4) | C7—C9—H9C | 109.5 |
C3—C4—H4 | 119.6 | H9A—C9—H9C | 109.5 |
C5—C4—H4 | 119.5 | H9B—C9—H9C | 109.5 |
Cl3—Si1—N1—C1 | −176.0 (2) | N1—C2—C3—C4 | 173.7 (4) |
Cl2—Si1—N1—C1 | −55.9 (3) | C7—C2—C3—C8 | 178.5 (4) |
Cl1—Si1—N1—C1 | 63.3 (3) | N1—C2—C3—C8 | −4.4 (6) |
Cl3—Si1—N1—C2 | 5.2 (3) | C2—C3—C4—C5 | 1.4 (7) |
Cl2—Si1—N1—C2 | 125.3 (3) | C8—C3—C4—C5 | 179.5 (5) |
Cl1—Si1—N1—C2 | −115.5 (3) | C3—C4—C5—C6 | 1.0 (7) |
C2—N1—C1—C1i | 0.4 (7) | C4—C5—C6—C7 | −1.5 (7) |
Si1—N1—C1—C1i | −178.4 (4) | C3—C2—C7—C6 | 2.9 (6) |
C1—N1—C2—C7 | −91.3 (4) | N1—C2—C7—C6 | −174.2 (3) |
Si1—N1—C2—C7 | 87.6 (4) | C3—C2—C7—C9 | −177.7 (4) |
C1—N1—C2—C3 | 91.6 (4) | N1—C2—C7—C9 | 5.2 (6) |
Si1—N1—C2—C3 | −89.6 (4) | C5—C6—C7—C2 | −0.5 (6) |
C7—C2—C3—C4 | −3.4 (6) | C5—C6—C7—C9 | −179.9 (5) |
Symmetry codes: (i) −x, −y+2, −z; (ii) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C18H20Cl6N2Si2 |
Mr | 533.24 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 273 |
a, b, c (Å) | 8.1858 (3), 8.4249 (3), 10.6074 (4) |
α, β, γ (°) | 74.583 (3), 79.999 (2), 62.243 (2) |
V (Å3) | 623.00 (4) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.79 |
Crystal size (mm) | 0.14 × 0.12 × 0.08 |
Data collection | |
Diffractometer | Bruker APEX2 CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.897, 0.939 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6168, 2168, 1729 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.059, 0.202, 1.11 |
No. of reflections | 2168 |
No. of parameters | 129 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.57, −0.50 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
Si1—N1 | 1.684 (3) | Si1—Cl1 | 2.0170 (14) |
Si1—Cl3 | 2.0119 (13) | C1—C1i | 1.307 (8) |
Si1—Cl2 | 2.0142 (17) | ||
Cl3···Cl3ii | 3.3119 (17) |
Symmetry codes: (i) −x, −y+2, −z; (ii) −x+1, −y+1, −z+1. |
Acknowledgements
This work was supported by the National Science Foundation of China (No. 20571033) and by the Program for New Century Excellent Talents in Universities (NCET-06-0483).
References
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Baker, R. J., Jones, C., Mills, D. P., Pierce, G. A. & Waugh, M. (2008). Inorg. Chim. Acta, 361, 427-435. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2005). APEX2 and SAINT. Bruker AXS inc., Madison, Wisconsin, USA. Google Scholar
Haaf, M., Schmedake, T. A. & West, R. (2000). Acc. Chem. Res. 33, 704-714. Web of Science CrossRef PubMed CAS Google Scholar
Haaf, M., Schmiedl, A., Schmedake, T. A., Powell, D. R., Millevolte, A. J., Denk, M. & West, R. (1998). J. Am. Chem. Soc. 120, 12714-12719. Web of Science CSD CrossRef CAS Google Scholar
Jones, C., Junk, P. C., Leary, S. G., Smithies, N. A. & Steed, J. W. (2002). Inorg. Chem. Commun. 5, 533-536. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound, (I), was synthesized by the reaction of the excess silicon tetrachloride and the dilithium salt of the diimine [N(2,6-Me2C6H3)C(H)]2 in THF (Haaf et al., 1998). A high yielding preparation of the title compound was devised whereby two equivalents of SiCl4 were treated with dilithium salt in THF (Baker et al., 2008). The title compound and related compounds are of interest in silylene chemistry in relation to synthesis of the silylene dichloride precursor (Haaf et al., 2000; Baker et al., 2008).
The title molecule (Fig. 1) exists in an E configuration with respect to the C═C double bond (Table 1) and crystallizes in the triclinic space group P1.The planes of the two xylyl substituents at the nitrogen atoms are perpendicularly oriented to the plane of Si1/N1/C1/C1i/N1i/Si1i [symmery code: (i) -x, 2-y, -z] forming dihedral angles of 89.9 (1)°. The Si–Cl and Si–N bond lengths in (I) (Table 1) are slightly shorter than those in the related complex (C5H3N-6-Me-2-NSiMe3)SiCl3 [Si–Cl 2.058 (2)-2.107 (3) Å; Si–N 1.753 (5) Å) (Jones et al., 2002). The distance N1–C1[1.428 (4) Å] agrees well with that observed in the related E-ethenediamine complex (Baker et al., 2008). The C1–N1–C2 angle [118.7 (3) °] in (I) is comparable to that in [PhC(NtBu)2]SiCl [120.70 (11) °] (Haaf et al., 1998). The C1–N1–Si1 angle [120.1 (2) °] in (I) is larger than that in [Si[N(tBu)CH]2]2 [109.42 (14) °] (Haaf et al., 1998), because of E configuration.
The crystal packing exhibits short intermolecular Cl···Cl contacts (Table 1).