organic compounds
Glycinium hydrogen fumarate glycine solvate monohydrate
aDepartment of Physics, Madurai Kamaraj University, Madurai 625 021, India, bDepartment of Physics, The Madura College, Madurai 625 011, India, and cDepartment of Food Science and Technology, Faculty of Agriculture, University of Ruhuna, Mapalana, Kamburupitiya (81100), Sri Lanka
*Correspondence e-mail: nilanthalakshman@yahoo.co.uk
In the title compound, C2H6NO2+·C4H3O4−·C2H5NO2·H2O, the contains two glycine residues, one protonated and one in the zwitterionic form, a hydrogen fumarate anion and a water molecule. Through N—H⋯O and O—H⋯O hydrogen bonds, molecules assemble in layers parallel to the (10) plane, one layer of hydrogen fumarate anions alternating with two layers of glycine molecules. In each glycine layer, hydrogen bonds generate an R44(19) graph-set motif. Further hydrogen bonds involving the water molecule and the hydrogen fumarate anions result in the formation of a three-dimensional network.
Related literature
For related structures and general background, see: Alagar et al. (2003a,b); Kvick et al. (1980). For hydrogen-bonding motifs, see: Etter (1990); Bernstein et al. (1994).
Experimental
Crystal data
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-32 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809001974/dn2415sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809001974/dn2415Isup2.hkl
Colourless single crystals of the complex were grown, as transparent needles by slow evaporation method from a saturated aqueous solution containing glycine and fumaric acid in 1: 1 stoichiometric ratio.
H atoms attached to C and N atoms were found in difference Fourier but introduced in calculated position and treated as riding on their parent atoms with C-H= 0.97Å (CH2) or 0.93Å (aromatic) and N-H= 0.89\%A with Uiso = 1.2Ueq(C) for CH and Uiso = 1.5Ueq(N). H atoms of water molecule were located in difference Fourier maps and included in the subsequent
using restraints (O-H= 0.85 (1)Å and H···H= 1.39 (2)Å) with Uiso(H) = 1.5Ueq(O).Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996), ORTEP-32 for Windows (Farrugia, 1998) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C2H6NO2+·C4H3O4−·C2H5NO2·H2O | F(000) = 600 |
Mr = 284.23 | Dx = 1.498 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 25 reflections |
a = 13.0580 (12) Å | θ = 2–25° |
b = 6.8251 (7) Å | µ = 0.14 mm−1 |
c = 15.3263 (14) Å | T = 293 K |
β = 112.65 (2)° | Needle, colourless |
V = 1260.6 (3) Å3 | 0.18 × 0.16 × 0.11 mm |
Z = 4 |
Nonius MACH3 diffractometer | 1922 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.020 |
Graphite monochromator | θmax = 25.0°, θmin = 2.6° |
ω–2θ scans | h = 0→15 |
Absorption correction: ψ scan (North et al., 1968) | k = −1→8 |
Tmin = 0.923, Tmax = 0.953 | l = −18→16 |
2742 measured reflections | 2 standard reflections every 60 min |
2219 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.095 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0522P)2 + 0.4133P] where P = (Fo2 + 2Fc2)/3 |
2219 reflections | (Δ/σ)max < 0.001 |
182 parameters | Δρmax = 0.18 e Å−3 |
3 restraints | Δρmin = −0.21 e Å−3 |
C2H6NO2+·C4H3O4−·C2H5NO2·H2O | V = 1260.6 (3) Å3 |
Mr = 284.23 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 13.0580 (12) Å | µ = 0.14 mm−1 |
b = 6.8251 (7) Å | T = 293 K |
c = 15.3263 (14) Å | 0.18 × 0.16 × 0.11 mm |
β = 112.65 (2)° |
Nonius MACH3 diffractometer | 1922 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.020 |
Tmin = 0.923, Tmax = 0.953 | 2 standard reflections every 60 min |
2742 measured reflections | intensity decay: none |
2219 independent reflections |
R[F2 > 2σ(F2)] = 0.033 | 3 restraints |
wR(F2) = 0.095 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.18 e Å−3 |
2219 reflections | Δρmin = −0.21 e Å−3 |
182 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | −0.35547 (8) | 0.60201 (18) | 0.80983 (7) | 0.0389 (3) | |
O3 | −0.00347 (8) | 0.78212 (19) | 1.08657 (7) | 0.0422 (3) | |
H3 | 0.0631 | 0.7894 | 1.1190 | 0.063* | |
O2 | −0.30562 (8) | 0.70595 (18) | 0.69432 (7) | 0.0425 (3) | |
O5 | 0.25539 (10) | −0.00488 (18) | 0.92332 (8) | 0.0484 (3) | |
O6 | 0.39983 (11) | 0.16938 (19) | 1.01858 (9) | 0.0537 (3) | |
H6 | 0.3768 | 0.2527 | 0.9770 | 0.081* | |
O7 | 0.14606 (12) | −0.02415 (18) | 0.57652 (9) | 0.0534 (3) | |
N1 | 0.08905 (10) | 0.19739 (19) | 0.76699 (8) | 0.0333 (3) | |
H1A | 0.0202 | 0.1504 | 0.7457 | 0.050* | |
H1B | 0.0891 | 0.3205 | 0.7862 | 0.050* | |
H1C | 0.1325 | 0.1246 | 0.8152 | 0.050* | |
O8 | 0.08973 (12) | −0.14584 (19) | 0.68336 (9) | 0.0559 (4) | |
O4 | 0.05847 (8) | 0.72700 (18) | 0.97294 (7) | 0.0401 (3) | |
N2 | 0.29350 (10) | −0.30064 (19) | 1.04930 (9) | 0.0338 (3) | |
H2A | 0.2224 | −0.2682 | 1.0323 | 0.051* | |
H2B | 0.3130 | −0.3833 | 1.0979 | 0.051* | |
H2C | 0.3033 | −0.3578 | 1.0009 | 0.051* | |
C8 | 0.13098 (13) | 0.1921 (2) | 0.69080 (11) | 0.0362 (4) | |
H8A | 0.2082 | 0.2319 | 0.7157 | 0.043* | |
H8B | 0.0895 | 0.2846 | 0.6419 | 0.043* | |
C2 | −0.13519 (11) | 0.7110 (2) | 0.93693 (10) | 0.0302 (3) | |
H2 | −0.1884 | 0.7059 | 0.9634 | 0.036* | |
C1 | −0.01744 (11) | 0.7426 (2) | 1.00091 (9) | 0.0280 (3) | |
C3 | −0.16785 (12) | 0.6899 (2) | 0.84527 (10) | 0.0346 (3) | |
H3A | −0.1141 | 0.6923 | 0.8194 | 0.041* | |
C7 | 0.12086 (12) | −0.0101 (2) | 0.64808 (10) | 0.0324 (3) | |
C4 | −0.28582 (11) | 0.6623 (2) | 0.77979 (9) | 0.0287 (3) | |
C6 | 0.33294 (12) | 0.0206 (2) | 0.99677 (10) | 0.0338 (3) | |
C5 | 0.36250 (13) | −0.1231 (2) | 1.07712 (11) | 0.0388 (4) | |
H5A | 0.4401 | −0.1591 | 1.0971 | 0.047* | |
H5B | 0.3523 | −0.0618 | 1.1303 | 0.047* | |
O1W | 0.07651 (14) | 0.58567 (19) | 0.80916 (10) | 0.0601 (4) | |
H1W | 0.071 (2) | 0.631 (4) | 0.8594 (11) | 0.090* | |
H2W | 0.088 (2) | 0.682 (3) | 0.7788 (15) | 0.090* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0269 (5) | 0.0548 (7) | 0.0319 (5) | 0.0017 (5) | 0.0080 (4) | 0.0105 (5) |
O3 | 0.0298 (5) | 0.0669 (8) | 0.0243 (5) | 0.0018 (5) | 0.0042 (4) | −0.0097 (5) |
O2 | 0.0319 (6) | 0.0647 (8) | 0.0241 (5) | −0.0057 (5) | 0.0034 (4) | 0.0094 (5) |
O5 | 0.0503 (7) | 0.0474 (7) | 0.0359 (6) | 0.0032 (5) | 0.0039 (5) | 0.0119 (5) |
O6 | 0.0615 (8) | 0.0406 (7) | 0.0504 (7) | −0.0074 (6) | 0.0119 (6) | 0.0091 (6) |
O7 | 0.0852 (9) | 0.0354 (6) | 0.0595 (8) | −0.0111 (6) | 0.0498 (7) | −0.0103 (6) |
N1 | 0.0337 (6) | 0.0342 (7) | 0.0303 (6) | 0.0007 (5) | 0.0105 (5) | −0.0021 (5) |
O8 | 0.0896 (10) | 0.0358 (7) | 0.0515 (7) | −0.0176 (6) | 0.0374 (7) | −0.0025 (6) |
O4 | 0.0281 (5) | 0.0617 (8) | 0.0274 (5) | −0.0029 (5) | 0.0073 (4) | −0.0041 (5) |
N2 | 0.0350 (6) | 0.0359 (7) | 0.0314 (6) | 0.0050 (5) | 0.0137 (5) | 0.0077 (5) |
C8 | 0.0411 (8) | 0.0313 (8) | 0.0408 (9) | −0.0030 (6) | 0.0208 (7) | −0.0021 (6) |
C2 | 0.0274 (7) | 0.0322 (8) | 0.0286 (7) | 0.0027 (6) | 0.0081 (6) | −0.0002 (6) |
C1 | 0.0304 (7) | 0.0261 (7) | 0.0236 (7) | 0.0020 (6) | 0.0062 (6) | 0.0007 (5) |
C3 | 0.0261 (7) | 0.0472 (9) | 0.0278 (7) | 0.0007 (6) | 0.0074 (6) | 0.0036 (6) |
C7 | 0.0327 (7) | 0.0300 (8) | 0.0332 (8) | −0.0023 (6) | 0.0115 (6) | 0.0001 (6) |
C4 | 0.0267 (7) | 0.0317 (7) | 0.0245 (7) | 0.0028 (6) | 0.0062 (6) | 0.0031 (6) |
C6 | 0.0356 (8) | 0.0343 (8) | 0.0340 (8) | 0.0081 (6) | 0.0161 (7) | 0.0030 (6) |
C5 | 0.0367 (8) | 0.0410 (9) | 0.0333 (8) | 0.0007 (7) | 0.0074 (6) | 0.0067 (7) |
O1W | 0.1029 (11) | 0.0375 (7) | 0.0570 (8) | −0.0019 (7) | 0.0496 (8) | −0.0013 (6) |
O1—C4 | 1.2375 (17) | N2—H2B | 0.8900 |
O3—C1 | 1.2826 (17) | N2—H2C | 0.8900 |
O3—H3 | 0.8200 | C8—C7 | 1.511 (2) |
O2—C4 | 1.2691 (17) | C8—H8A | 0.9700 |
O5—C6 | 1.2021 (19) | C8—H8B | 0.9700 |
O6—C6 | 1.296 (2) | C2—C3 | 1.309 (2) |
O6—H6 | 0.8200 | C2—C1 | 1.4869 (19) |
O7—C7 | 1.2643 (19) | C2—H2 | 0.9300 |
N1—C8 | 1.4686 (19) | C3—C4 | 1.4917 (19) |
N1—H1A | 0.8900 | C3—H3A | 0.9300 |
N1—H1B | 0.8900 | C6—C5 | 1.504 (2) |
N1—H1C | 0.8900 | C5—H5A | 0.9700 |
O8—C7 | 1.2185 (19) | C5—H5B | 0.9700 |
O4—C1 | 1.2267 (18) | O1W—H1W | 0.858 (10) |
N2—C5 | 1.472 (2) | O1W—H2W | 0.852 (10) |
N2—H2A | 0.8900 | ||
C1—O3—H3 | 109.5 | O4—C1—O3 | 124.08 (13) |
C6—O6—H6 | 109.5 | O4—C1—C2 | 121.76 (12) |
C8—N1—H1A | 109.5 | O3—C1—C2 | 114.14 (12) |
C8—N1—H1B | 109.5 | C2—C3—C4 | 124.12 (14) |
H1A—N1—H1B | 109.5 | C2—C3—H3A | 117.9 |
C8—N1—H1C | 109.5 | C4—C3—H3A | 117.9 |
H1A—N1—H1C | 109.5 | O8—C7—O7 | 124.76 (15) |
H1B—N1—H1C | 109.5 | O8—C7—C8 | 119.37 (13) |
C5—N2—H2A | 109.5 | O7—C7—C8 | 115.87 (13) |
C5—N2—H2B | 109.5 | O1—C4—O2 | 125.13 (13) |
H2A—N2—H2B | 109.5 | O1—C4—C3 | 120.55 (12) |
C5—N2—H2C | 109.5 | O2—C4—C3 | 114.32 (13) |
H2A—N2—H2C | 109.5 | O5—C6—O6 | 126.57 (15) |
H2B—N2—H2C | 109.5 | O5—C6—C5 | 122.03 (15) |
N1—C8—C7 | 111.70 (12) | O6—C6—C5 | 111.39 (13) |
N1—C8—H8A | 109.3 | N2—C5—C6 | 111.37 (12) |
C7—C8—H8A | 109.3 | N2—C5—H5A | 109.4 |
N1—C8—H8B | 109.3 | C6—C5—H5A | 109.4 |
C7—C8—H8B | 109.3 | N2—C5—H5B | 109.4 |
H8A—C8—H8B | 107.9 | C6—C5—H5B | 109.4 |
C3—C2—C1 | 123.39 (14) | H5A—C5—H5B | 108.0 |
C3—C2—H2 | 118.3 | H1W—O1W—H2W | 107.4 (19) |
C1—C2—H2 | 118.3 | ||
O5—C6—C5—N2 | 6.3 (2) | O7—C7—C8—N1 | 174.08 (13) |
O6—C6—C5—N2 | −174.52 (13) | O8—C7—C8—N1 | −5.8 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O2i | 0.82 | 1.66 | 2.4743 (15) | 174 |
O6—H6···O7ii | 0.82 | 1.70 | 2.4871 (17) | 160 |
N1—H1A···O1iii | 0.89 | 2.01 | 2.8891 (17) | 168 |
N1—H1B···O1W | 0.89 | 1.86 | 2.7475 (19) | 172 |
N1—H1C···O5 | 0.89 | 2.01 | 2.8907 (18) | 168 |
N2—H2A···O4iv | 0.89 | 1.98 | 2.8386 (16) | 162 |
N2—H2B···O1v | 0.89 | 1.98 | 2.8638 (17) | 170 |
N2—H2C···O7vi | 0.89 | 1.93 | 2.8000 (17) | 164 |
O1W—H1W···O4 | 0.86 (1) | 1.93 (1) | 2.7825 (17) | 178 (2) |
O1W—H2W···O8vii | 0.85 (1) | 1.88 (1) | 2.7133 (18) | 165 (2) |
Symmetry codes: (i) x+1/2, −y+3/2, z+1/2; (ii) −x+1/2, y+1/2, −z+3/2; (iii) −x−1/2, y−1/2, −z+3/2; (iv) x, y−1, z; (v) −x, −y, −z+2; (vi) −x+1/2, y−1/2, −z+3/2; (vii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | C2H6NO2+·C4H3O4−·C2H5NO2·H2O |
Mr | 284.23 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 293 |
a, b, c (Å) | 13.0580 (12), 6.8251 (7), 15.3263 (14) |
β (°) | 112.65 (2) |
V (Å3) | 1260.6 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.14 |
Crystal size (mm) | 0.18 × 0.16 × 0.11 |
Data collection | |
Diffractometer | Nonius MACH3 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.923, 0.953 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2742, 2219, 1922 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.594 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.095, 1.04 |
No. of reflections | 2219 |
No. of parameters | 182 |
No. of restraints | 3 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.18, −0.21 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996), ORTEP-32 for Windows (Farrugia, 1998) and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
O3—H3···O2i | 0.82 | 1.66 | 2.4743 (15) | 173.7 |
O6—H6···O7ii | 0.82 | 1.70 | 2.4871 (17) | 159.9 |
N1—H1A···O1iii | 0.89 | 2.01 | 2.8891 (17) | 168.1 |
N1—H1B···O1W | 0.89 | 1.86 | 2.7475 (19) | 172.1 |
N1—H1C···O5 | 0.89 | 2.01 | 2.8907 (18) | 168.4 |
N2—H2A···O4iv | 0.89 | 1.98 | 2.8386 (16) | 162.3 |
N2—H2B···O1v | 0.89 | 1.98 | 2.8638 (17) | 170.2 |
N2—H2C···O7vi | 0.89 | 1.93 | 2.8000 (17) | 164.1 |
O1W—H1W···O4 | 0.858 (10) | 1.925 (10) | 2.7825 (17) | 178 (2) |
O1W—H2W···O8vii | 0.852 (10) | 1.883 (11) | 2.7133 (18) | 165 (2) |
Symmetry codes: (i) x+1/2, −y+3/2, z+1/2; (ii) −x+1/2, y+1/2, −z+3/2; (iii) −x−1/2, y−1/2, −z+3/2; (iv) x, y−1, z; (v) −x, −y, −z+2; (vi) −x+1/2, y−1/2, −z+3/2; (vii) x, y+1, z. |
Acknowledgements
SN thanks the DST for the FIST programme.
References
Alagar, M., Krishnakumar, R. V., Rajagopal, K., Subha Nandhini, M. & Natarajan, S. (2003b). Acta Cryst. E59, o952–o954. Web of Science CSD CrossRef IUCr Journals Google Scholar
Alagar, M., Krishnakumar, R. V., Subha Nandhini, M. & Natarajan, S. (2003a). Acta Cryst. E59, o857–o859. Web of Science CSD CrossRef IUCr Journals Google Scholar
Bernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, Vol. 2, edited by H.-B. Bürgi & J. D. Dunitz, pp. 431–507. New York: VCH. Google Scholar
Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA. Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany. Google Scholar
Kvick, Å., Canning, W. M., Koetzle, T. F. & Williams, G. J. B. (1980). Acta Cryst. B36, 115–120. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Glycine is the simplest amino acid and is the only amino acid that is not optically active. This amino acid is essential for the biosynthesis of nucleic acids, as well as the biosynthesis of bile acids, porphyrins, creatine phosphate and other amino acids. Fumaric acid is among the organic compounds widely found in nature, and is key intermediate in the biosynthesis of organic acids. Our main interest in glycine compounds relates to their geometric features of non-covalent interactions at atomic resolution that are important in the structural assembly and function of proteins. X-ray investigations of amino acid complexes with fumaric acid seem to have been first initiated in our laboratory (Alagar et al., (2003a), (2003b)).
The asymmetric unit is built up from two glycine residues, a ionized fumaric acid and a water molecule linked by hydrogen bonds (Fig. 1). One of the glycine residue has been protonated, and the other one is in the zwitterionic form. The fumaric acid molecule is in the ionized state, as expected from the strength of the acid and the required charge neutrality of the salt.
The glycine carboxyl skeletons including atoms O5, O6, C5, C6 and O7, O8, C7, C8 are both planar with rms deviations of 0.0025 (6) Å and 0.0002 (6) Å respectively. The N2 and N1 atoms are slightly displaced out of these planes, by 0.138 (3)Å and 0.139 (3)Å respectively, corresponding to a small rotation around C5—C6 and C7—C8 atoms respectively. The relevant torsion angles are O5—C6—C5—N2 of 6.3 (2)°, O6—C6—C5—N2 of -174.47 (13)° and O7—C7—C8—N1 of 174.13 (13)°, O8—C7—C8—N2 of -5.8 (2)°. These can be compared with the corresponding values in pure γ-glycine 167.1 (1)° and -15.4 (1)°, respectively (Kvick et al., (1980)), which is more distorted from planarity. The fumaric acid molecule has a non crystallographic centre of symmetry, and is planar with trans configuration about the central C=C bond.
Through N-H···O and O-H···O hydrogen bondings, the molecules assemble in layers parallel to the (1 0 -1) plane, one layer of fumaric acid alternates with two layers of glycine (Fig. 2). In each layer of glycine, the hydrogen bonds generate a graph set motif R44(19) (Etter, 1990; Bernstein et al., 1994) (Fig.3, Table 1). Further H bonds involving the water and the fumaric acid result in the formation of a three dimensional network (Fig. 2, Table 1). Unlike the other amino acid fumaric acid complexes (Alagar et al., 2003a,b ) there are hydrogen bonds found between the fumaric acid molecules.