organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-[2-(4-Iso­butyl­phen­yl)propano­yl]thiosemicarbazide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 21 January 2009; accepted 23 February 2009; online 28 February 2009)

In the title compound, C14H21N3OS, inter­molecular N—H⋯O inter­actions generate ten-membered rings with R22(10) ring motifs, whereas N—H⋯S inter­actions generate eight, 14- and 16-membered rings with R22(8), R44(14) and R44(16) ring motifs, respectively. There are weak intra­molecular N—H⋯π inter­actions which might influence the conformation of the mol­ecule. The compound has a stereogenic center but the space group is centrosymmetic so the mol­ecule exists as a racemate.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For biomedical applications of non-steroidal anti-inflammatory drugs, see, for example; Kawail et al. (2005[Kawail, S., Kojima, F. & Kusunoki, N. (2005). Allergol. Int. 54, 209-215.]); Klasser & Epstein (2005[Klasser, G. D. & Epstein, J. (2005). J. Can. Dent. Assoc. 71, 575-580.]); Kean & Buchanan (2005[Kean, W. F. & Buchanan, W. W. (2005). Inflammopharmacology, 13, 343-370.]); Nielsen & Bundgaard (1988[Nielsen, N. M. & Bundgaard, H. (1988). J. Pharm. Sci. 77, 285-298.]); Khan & Akhter (2005[Khan, M. S. Y. & Akhter, M. (2005). Eur. J. Med. Chem. 40, 371-376.]); Zhao et al. (2006[Zhao, X., Tao, X., Wei, D. & Song, Q. (2006). Eur. J. Med. Chem. 41, 1352-1358.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C14H21N3OS

  • Mr = 279.40

  • Triclinic, [P \overline 1]

  • a = 5.5347 (1) Å

  • b = 10.6209 (3) Å

  • c = 13.1435 (3) Å

  • α = 97.935 (1)°

  • β = 98.418 (1)°

  • γ = 96.293 (1)°

  • V = 750.30 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.54 × 0.32 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.894, Tmax = 0.969

  • 18596 measured reflections

  • 6524 independent reflections

  • 5896 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.096

  • S = 1.05

  • 6524 reflections

  • 191 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.857 (15) 2.029 (15) 2.8745 (9) 169.0 (14)
N1—H1N1⋯S1ii 0.886 (12) 2.495 (13) 3.3324 (7) 157.8 (11)
N3—H1N3⋯S1iii 0.842 (15) 2.577 (15) 3.3945 (7) 164.1 (14)
C7—H7A⋯O1ii 1.00 2.44 3.3501 (9) 151
N3—H2N3⋯Cg1 0.850 (16) 2.870 (14) 3.5083 (7) 133.4 (12)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z; (iii) -x+1, -y+2, -z+1. Cg1 is the centroid of the C1–C6 benzene ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Non-steroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen are widely used in the treatment of pain and inflammation (Kawail et al., 2005; Klasser & Epstein, 2005).In fact, prolonged use of NSAIDs, for example ibuprofen, has been associated with gastrointestinal complications (Kean & Buchanan, 2005). Therefore, synthetic approaches based upon NSAIDs chemical modification have been undertaken with the aim of improving the NSAID safety profile. The utilization of prodrugs to temporarily mask the acidic group of NSAIDs has been proposed as an approach to reduce or suppress the GI toxicity due to the direct contact effect and also to increase their absorption values (Nielsen & Bundgaard, 1988). Ester prodrugs of ibuprofen have been synthesized with this aim (Khan & Akhter, 2005). Ester prodrugs of ibuprofen were synthesized and found to have anti-inflammatory, analgesic and ulcerogenic activities (Zhao et al., 2006). Due to these reasons, we have synthesized the thiosemicarbazide analogue of ibuprofen and report its crystal structure.

The title compound, I, Fig. 1, comprises a single molecule in the asymmetric unit. Intermolecular N—H···O interactions generate ten-membered rings producing R22(10) ring motifs, whereas N—H···S interactions generate eight, fourteen, sixteen rings producing R22(8), R44(14) and R44(16) ring motifs, respectively. (Fig.2) (Bernstein et al., 1995). There is a weak intramolecular N—H···π interaction (Table 1, Cg1 is the centroid of the C1–C6 benzene ring). The compound has a stereogenic center at C7 but the space group is centrosymmetic so the molecule exists as a racemate.

Related literature top

For hydrogen-bond motifs, see: Bernstein et al. (1995). For biomedical applications of non-steroidal anti-inflammatory drugs, see, for example; Kawail et al. (2005); Klasser & Epstein (2005); Kean & Buchanan (2005); Nielsen & Bundgaard (1988); Khan & Akhter (2005); Zhao et al. (2006). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). Cg1 is the centroid of the C1–C6 benzene ring.

Experimental top

A mixture of 2-[2-(4-isobutylphenyl)propanoyl]hydrazine (0.01 mole), potassium thiocyanate (1.9 g, 0.02 mole), conc. HCl (1 ml) and water (20 ml) was refluxed for 3 h. On cooling the solid obtained was collected by filtration, washed with water and dried. Crystals suitable for X-ray analysis were obtained from ethanol by slow evaporation (Yield 62%; m.p. 447 K).

Refinement top

N-bound hydrogen atoms were located from the difference Fourier map and refined freely; see Table 1. The rest of the hydrogen atoms were positioned geometrically and constrained to refine with the parent atoms with C—H = 0.93–1.00 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with the atom labeling scheme. Ellipsoids are drawn at the 50% probability level. H atoms are represented as small sphere of arbitrary radii. The enantiomer represented has R configuration at C7.
[Figure 2] Fig. 2. The crystal packing of (I) showing the graph set motifs. Intermolecular interactions are shown as dashed lines. H atoms not involved in hydrogen bondings have been removed for clarity.
1-[2-(4-Isobutylphenyl)propanoyl]thiosemicarbazide top
Crystal data top
C14H21N3OSZ = 2
Mr = 279.40F(000) = 300
Triclinic, P1Dx = 1.237 Mg m3
Hall symbol: -P 1Melting point: 335 K
a = 5.5347 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6209 (3) ÅCell parameters from 9906 reflections
c = 13.1435 (3) Åθ = 2.3–38.2°
α = 97.935 (1)°µ = 0.21 mm1
β = 98.418 (1)°T = 100 K
γ = 96.293 (1)°Block, colourless
V = 750.30 (3) Å30.54 × 0.32 × 0.15 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6524 independent reflections
Radiation source: fine-focus sealed tube5896 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ϕ and ω scansθmax = 35.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 88
Tmin = 0.894, Tmax = 0.969k = 1617
18596 measured reflectionsl = 2021
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0494P)2 + 0.1966P]
where P = (Fo2 + 2Fc2)/3
6524 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C14H21N3OSγ = 96.293 (1)°
Mr = 279.40V = 750.30 (3) Å3
Triclinic, P1Z = 2
a = 5.5347 (1) ÅMo Kα radiation
b = 10.6209 (3) ŵ = 0.21 mm1
c = 13.1435 (3) ÅT = 100 K
α = 97.935 (1)°0.54 × 0.32 × 0.15 mm
β = 98.418 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6524 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5896 reflections with I > 2σ(I)
Tmin = 0.894, Tmax = 0.969Rint = 0.018
18596 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.68 e Å3
6524 reflectionsΔρmin = 0.32 e Å3
191 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.30182 (3)0.806105 (17)0.407445 (14)0.01523 (5)
O10.65430 (10)0.57112 (5)0.62717 (5)0.01802 (10)
N10.87208 (11)0.64109 (6)0.50767 (5)0.01429 (10)
N20.66238 (12)0.66716 (6)0.44588 (5)0.01530 (11)
N30.74599 (12)0.87876 (6)0.52340 (5)0.01701 (11)
C10.95446 (14)0.81565 (7)0.78524 (6)0.01651 (12)
H1A0.82810.75780.80190.020*
C20.96885 (14)0.94657 (7)0.82013 (6)0.01724 (12)
H2A0.85190.97690.86040.021*
C31.15276 (14)1.03429 (7)0.79679 (6)0.01707 (12)
C41.32484 (15)0.98630 (8)0.73933 (6)0.01981 (14)
H4A1.45341.04390.72390.024*
C51.31130 (14)0.85529 (8)0.70412 (6)0.01828 (13)
H5A1.43030.82490.66500.022*
C61.12491 (13)0.76844 (7)0.72571 (5)0.01440 (11)
C71.09656 (13)0.62723 (7)0.67782 (6)0.01577 (12)
H7A1.23280.61340.63690.019*
C80.85365 (13)0.60673 (6)0.60322 (6)0.01385 (11)
C90.58753 (12)0.78460 (6)0.46377 (5)0.01334 (11)
C101.16404 (17)1.17610 (7)0.83421 (6)0.02134 (14)
H10A0.99761.20130.81730.026*
H10B1.27501.22400.79600.026*
C111.25548 (16)1.21505 (8)0.95183 (6)0.02091 (14)
H11A1.14651.16310.98930.025*
C121.5176 (2)1.18766 (13)0.98222 (10)0.0422 (3)
H12A1.56591.20841.05800.063*
H12B1.62901.24020.94850.063*
H12C1.52711.09670.95980.063*
C131.2345 (2)1.35641 (8)0.98524 (8)0.02918 (18)
H13A1.29431.38021.06010.044*
H13B1.06171.37060.97000.044*
H13C1.33391.40910.94700.044*
C141.09915 (18)0.53538 (8)0.75758 (7)0.02360 (15)
H14A1.25810.55210.80440.035*
H14B1.07470.44670.72140.035*
H14C0.96640.54840.79820.035*
H1N20.556 (3)0.6019 (14)0.4190 (11)0.027 (3)*
H1N11.013 (2)0.6698 (13)0.4891 (10)0.024 (3)*
H2N30.888 (3)0.8658 (13)0.5509 (11)0.029 (3)*
H1N30.703 (3)0.9524 (14)0.5348 (11)0.027 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01232 (8)0.01386 (8)0.01930 (9)0.00173 (5)0.00039 (6)0.00418 (6)
O10.0155 (2)0.0151 (2)0.0225 (3)0.00111 (18)0.00474 (19)0.00054 (19)
N10.0111 (2)0.0143 (2)0.0172 (2)0.00244 (18)0.00100 (19)0.00253 (19)
N20.0134 (2)0.0117 (2)0.0190 (3)0.00211 (19)0.0017 (2)0.00032 (19)
N30.0137 (2)0.0116 (2)0.0239 (3)0.00168 (19)0.0009 (2)0.0003 (2)
C10.0146 (3)0.0140 (3)0.0202 (3)0.0002 (2)0.0040 (2)0.0003 (2)
C20.0164 (3)0.0145 (3)0.0197 (3)0.0017 (2)0.0028 (2)0.0006 (2)
C30.0196 (3)0.0145 (3)0.0151 (3)0.0006 (2)0.0012 (2)0.0020 (2)
C40.0206 (3)0.0196 (3)0.0175 (3)0.0040 (3)0.0034 (2)0.0018 (2)
C50.0153 (3)0.0213 (3)0.0169 (3)0.0004 (2)0.0033 (2)0.0002 (2)
C60.0127 (3)0.0145 (3)0.0149 (3)0.0020 (2)0.0002 (2)0.0005 (2)
C70.0147 (3)0.0148 (3)0.0173 (3)0.0043 (2)0.0008 (2)0.0007 (2)
C80.0141 (3)0.0098 (2)0.0168 (3)0.0020 (2)0.0019 (2)0.0004 (2)
C90.0128 (3)0.0121 (2)0.0152 (3)0.0012 (2)0.0025 (2)0.0026 (2)
C100.0288 (4)0.0131 (3)0.0194 (3)0.0001 (3)0.0021 (3)0.0019 (2)
C110.0263 (4)0.0156 (3)0.0185 (3)0.0009 (3)0.0011 (3)0.0004 (2)
C120.0356 (5)0.0422 (6)0.0389 (6)0.0109 (5)0.0156 (4)0.0103 (5)
C130.0385 (5)0.0165 (3)0.0286 (4)0.0021 (3)0.0034 (4)0.0032 (3)
C140.0315 (4)0.0181 (3)0.0212 (3)0.0078 (3)0.0000 (3)0.0044 (3)
Geometric parameters (Å, º) top
S1—C91.6982 (7)C5—H5A0.9500
O1—C81.2259 (9)C6—C71.5261 (10)
N1—C81.3699 (10)C7—C81.5190 (10)
N1—N21.3927 (9)C7—C141.5270 (11)
N1—H1N10.884 (14)C7—H7A1.0000
N2—C91.3578 (9)C10—C111.5381 (12)
N2—H1N20.855 (15)C10—H10A0.9900
N3—C91.3318 (9)C10—H10B0.9900
N3—H2N30.851 (14)C11—C121.5178 (14)
N3—H1N30.843 (14)C11—C131.5269 (12)
C1—C21.3925 (10)C11—H11A1.0000
C1—C61.4019 (10)C12—H12A0.9800
C1—H1A0.9500C12—H12B0.9800
C2—C31.4002 (11)C12—H12C0.9800
C2—H2A0.9500C13—H13A0.9800
C3—C41.3957 (12)C13—H13B0.9800
C3—C101.5100 (11)C13—H13C0.9800
C4—C51.3947 (11)C14—H14A0.9800
C4—H4A0.9500C14—H14B0.9800
C5—C61.3946 (11)C14—H14C0.9800
C8—N1—N2119.30 (6)N1—C8—C7114.12 (6)
C8—N1—H1N1123.8 (9)N3—C9—N2117.81 (6)
N2—N1—H1N1114.5 (8)N3—C9—S1123.05 (5)
C9—N2—N1119.39 (6)N2—C9—S1119.12 (5)
C9—N2—H1N2119.6 (9)C3—C10—C11113.56 (6)
N1—N2—H1N2115.4 (9)C3—C10—H10A108.9
C9—N3—H2N3121.5 (10)C11—C10—H10A108.9
C9—N3—H1N3118.9 (10)C3—C10—H10B108.9
H2N3—N3—H1N3119.6 (13)C11—C10—H10B108.9
C2—C1—C6120.56 (7)H10A—C10—H10B107.7
C2—C1—H1A119.7C12—C11—C13110.83 (8)
C6—C1—H1A119.7C12—C11—C10111.70 (8)
C1—C2—C3121.12 (7)C13—C11—C10110.21 (7)
C1—C2—H2A119.4C12—C11—H11A108.0
C3—C2—H2A119.4C13—C11—H11A108.0
C4—C3—C2117.97 (7)C10—C11—H11A108.0
C4—C3—C10121.57 (7)C11—C12—H12A109.5
C2—C3—C10120.45 (7)C11—C12—H12B109.5
C5—C4—C3121.16 (7)H12A—C12—H12B109.5
C5—C4—H4A119.4C11—C12—H12C109.5
C3—C4—H4A119.4H12A—C12—H12C109.5
C6—C5—C4120.71 (7)H12B—C12—H12C109.5
C6—C5—H5A119.6C11—C13—H13A109.5
C4—C5—H5A119.6C11—C13—H13B109.5
C5—C6—C1118.45 (7)H13A—C13—H13B109.5
C5—C6—C7120.22 (6)C11—C13—H13C109.5
C1—C6—C7121.14 (6)H13A—C13—H13C109.5
C8—C7—C6104.02 (5)H13B—C13—H13C109.5
C8—C7—C14112.04 (7)C7—C14—H14A109.5
C6—C7—C14113.91 (6)C7—C14—H14B109.5
C8—C7—H7A108.9H14A—C14—H14B109.5
C6—C7—H7A108.9C7—C14—H14C109.5
C14—C7—H7A108.9H14A—C14—H14C109.5
O1—C8—N1121.87 (7)H14B—C14—H14C109.5
O1—C8—C7123.83 (7)
C8—N1—N2—C981.80 (8)C1—C6—C7—C1459.88 (9)
C6—C1—C2—C30.06 (12)N2—N1—C8—O116.17 (10)
C1—C2—C3—C41.36 (11)N2—N1—C8—C7159.10 (6)
C1—C2—C3—C10179.31 (7)C6—C7—C8—O191.51 (8)
C2—C3—C4—C51.40 (12)C14—C7—C8—O131.97 (10)
C10—C3—C4—C5179.28 (7)C6—C7—C8—N183.65 (7)
C3—C4—C5—C60.13 (12)C14—C7—C8—N1152.87 (6)
C4—C5—C6—C11.19 (11)N1—N2—C9—N314.79 (10)
C4—C5—C6—C7173.91 (7)N1—N2—C9—S1166.70 (5)
C2—C1—C6—C51.22 (11)C4—C3—C10—C11106.27 (9)
C2—C1—C6—C7173.83 (7)C2—C3—C10—C1173.03 (10)
C5—C6—C7—C8112.59 (7)C3—C10—C11—C1262.58 (11)
C1—C6—C7—C862.37 (8)C3—C10—C11—C13173.75 (8)
C5—C6—C7—C14125.16 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.857 (15)2.029 (15)2.8745 (9)169.0 (14)
N1—H1N1···S1ii0.886 (12)2.495 (13)3.3324 (7)157.8 (11)
N3—H1N3···S1iii0.842 (15)2.577 (15)3.3945 (7)164.1 (14)
C7—H7A···O1ii1.002.443.3501 (9)151
N3—H2N3···Cg10.850 (16)2.870 (14)3.5083 (7)133.4 (12)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC14H21N3OS
Mr279.40
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)5.5347 (1), 10.6209 (3), 13.1435 (3)
α, β, γ (°)97.935 (1), 98.418 (1), 96.293 (1)
V3)750.30 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.54 × 0.32 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.894, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
18596, 6524, 5896
Rint0.018
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.096, 1.05
No. of reflections6524
No. of parameters191
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.68, 0.32

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.857 (15)2.029 (15)2.8745 (9)169.0 (14)
N1—H1N1···S1ii0.886 (12)2.495 (13)3.3324 (7)157.8 (11)
N3—H1N3···S1iii0.842 (15)2.577 (15)3.3945 (7)164.1 (14)
C7—H7A···O1ii1.00002.44003.3501 (9)151.00
N3—H2N3···Cg10.850 (16)2.870 (14)3.5083 (7)133.4 (12)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+2, z+1.
 

Acknowledgements

HKF, RK and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK and SRJ thank Universiti Sains Malaysia for post-doctoral research fellowships. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKawail, S., Kojima, F. & Kusunoki, N. (2005). Allergol. Int. 54, 209–215.  Google Scholar
First citationKean, W. F. & Buchanan, W. W. (2005). Inflammopharmacology, 13, 343–370.  CrossRef PubMed CAS Google Scholar
First citationKhan, M. S. Y. & Akhter, M. (2005). Eur. J. Med. Chem. 40, 371–376.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKlasser, G. D. & Epstein, J. (2005). J. Can. Dent. Assoc. 71, 575–580.  PubMed Google Scholar
First citationNielsen, N. M. & Bundgaard, H. (1988). J. Pharm. Sci. 77, 285–298.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, X., Tao, X., Wei, D. & Song, Q. (2006). Eur. J. Med. Chem. 41, 1352–1358.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds